
z/Writer
Quick-Code Tool for z/OS

Native

Reference
Manual

 Our Customers Talk About Our Products...

"Everything we hoped it would be. In fact, I can honestly say it exceeded our initial
expectations."

"I can create reports in a few minutes. I don't know what I'd do without it."

“Thanks again for the information. We were able to download the evaluation copy, and I have
found it super easy to use. To me, it is exactly the right tool for us to use.”

"It is easy to use, flexible and has all the features needed to produce virtually any type of
report."

"The syntax is straightforward, the documentation is good, the support is good."

“Since I only used the product today and saw how easy it was to generate these reports, it would
save me a lot of time from writing assembler routines to do this. Hopefully I can get this point across
to management.”

“A really great product for an old bit-flipper that finds himself in a management job ;-)“

“I REALLY like your product and I am trying my best to prove how valuable that this product
could be for us at such a low cost. For the couple of times that I have used the product in testing to
produce certain results, I was able to get the information I needed without a large effort and time
on my part. That is what I liked. I didn't have to create a new assembler program to do this work.”

... and Our Customer Service

“You are truly a breath of fresh air in an industry that has level1 level2 level3 support. I have
been twiddling bits in the mainframe for 40 years and the last 10 have been scarce to find support
like you have provided. Being able to debug without the data is a truly scarce talent.“

“Thanks for getting back to me so quickly! ... By the way, you have a terrific product.”

“As I mentioned before, I really appreciate all of your help, and wish that all of the vendors with
whom I work were half as pleasant and helpful as you have been. It has been a pleasure.”

“Thanks [for checking] but it is all working perfectly. Really pleasantly surprised.”

“Wow!! Excellent turn around time! Thank you!”

“That's perfect! I knew it could be done but I just couldn't find it. Thanks so much for your help.
By the way, I love this product. I'm just getting my feet wet with it but I can see a lot of potential
for our shop.“

6th Edition. z/Writer Release 2.0 (175)

Copyright 2011-2019 Pacific Systems Group. All Rights Reserved. The material in this publication is confidential and
contains proprietary information and trade secrets. No part of this publication may be reproduced or transmitted in any form
or by any means, electronic or mechanical, without written permission from Pacific Systems Group.

z/Writer is a trademark and Pacific Systems Group is a registered trademark of Pacific Systems Group. Other program names
are trademarks of their respective companies.

Pacific Systems Group, LLC
501 Fourth St. #790

Lake Oswego OR 97034

1-503-675-5982
pacsys.com

Z-Writer Reference Manual

Table of Contents

Table of Contents . 3

Who Is This Manual For? . 6

Chapter 1. What is z/Writer? . 7

z/Writer Features . 7

Chapter 2. How to Make Reports with z/Writer . 9

z/Writer’s Auto-Cycle Mode . 9
z/Writer’s Standard Mode . 11
Order of Statements In Your Program . 11
Report Column Headings . 13
Printing Multiple Reports . 13
Runs with Multiple Phases . 14

Chapter 3. Sample z/Writer Reports . 16

Auto-Cycle Report with Control Breaks . 16
Auto-Cycle Report with Record Selection . 16
A Sequential File Conversion Program . 19
Making a Comma-Delimited Export File . 19
Keyed Reads to a VSAM file . 19

Chapter 4. Using Macros . 23

Chapter 5. z/Writer Control Statements . 25

BREAK Statement . 25
CALL Statement . 30
CASE Statement . 32
CLOSE Statement . 34
COMPUTE Statement . 35
COPY Statement . 39
CURSOR Statement . 41
DATA Statement . 45
DELREC Statement . 46
DELTABREC Statement . 48
DOUNTIL Statement . 50
DOWHILE Statement . 52
ELSE Statement . 54
ELSEIF Statement . 56
ENDCASE Statement . 57
ENDDO Statement . 58
ENDIF Statement . 59
ENDREDEFINE Statement . 60
EXCLUDE Statement . 62
EXPORT Statement . 63
FETCH Statement . 67
FIELD Statement . 69
FILE Statement . 78

Z-Writer Reference Manual

GOTO Statement .85
IF Statement .86
INCLUDE Statement .91
LISTOFF Statement .92
LISTON Statement .93
MACRO Statement .94
MOVE Statement .95
NEWPHASE Statement .97
ONERROR Statement .99
OPEN Statement .104
OPTION Statement .106
PERFORM Statement .108
POSITION Statement .110
PRINT Statement .112
PRINTMODEL Statement .121
READ Statement .122
REDEFINE Statement .125
RELEASE Statement .126
REPORT Statement .128
RETRIEVE Statement .132
REUSE Statement .135
REWRITE Statement .137
SHOW Statement .139
SHOWHEX Statement .140
STOP Statement .141
STORE Statement .142
TABLE Statement .144
TITLE Statement .147
TRACEOFF STATEMENT6 .152
TRACEON STATEMENT .153
WHEN Statement .154
WORKAREA Statement .155
WRITE Statement .157

Chapter 6. z/Writer’s DB2 Option. 159

What Is z/Writer’s DB2 Option? .159
How It Works .159
The CURSOR Statement - A Quick Look .159
The FETCH Statement -- A Quick Look .162
The CURSOR Statement -- More Details .163

Chapter 7. z/Writer’s IMS Option . 176

What Is z/Writer’s IMS Option? .176
How to Run z/Writer with IMS .176
What Does the IMS Option Do? .176
The DLI Statement .177
New Built-In Fields for IMS Option .178

Z-Writer Reference Manual

Appendix A. Built-In Fields . 182

Appendix B. Built-In Functions . 184

Functions that Return a Character Value . 186
Functions that Return a Numeric Value . 190
Functions that Return a Date Value . 192

Appendix C. Syntax of PICTURE Display Formats . 195

Examples of PICTUREs . 195
How PICTUREs Work . 197
Scaling Numbers with PICTUREs . 200

Index . 202

Who Is This Manual For?

6

Who Is This Manual For?
This manual is intended for users of our z/Writer product without any special filter. We call that “native
z/Writer.”

We also have several sister z/Writer products that do include special built-in filters, The filters allow
z/Writer to execute certain CA programs without any conversion at all. (Currently, there are versions
that can emulate DYL-280, Easytrieve, Quikjob and CA-Earl.) These specialized products each have
their own manuals.

This manual is intended specifically for those users who are not replacing an existing quick-code
product from CA.

z/Writer Features

z/Writer Reference Manual 7

Chapter 1. What is z/Writer?

z/Writer is a powerful quick-code tool for z/OS mainframes: Its “simplified COBOL-like” syntax
makes it an ideal tool for writing:

 one-time queries

 quick-and-dirty reports or analyses.

 attractive new production-quality reports.

 file manipulations, for scheduled production runs or one-time updates or conversions.

 exporting mainframe data as a CSV file to work with in PC programs.

Your programmers will be up and running with z/Writer in no time at all. z/Writer also accepts existing
COBOL or Assembler record definitions so you can get started using it right away.

z/Writer is a powerful quick-code tool for z/OS mainframes. Its “simplified COBOL-like” syntax
makes it an ideal tool for quickly writing new reports, modifying files and much more.

z/Writer Features
Some of z/Writer's major features include:

 control statements use an easy, free format, COBOL–like syntax that's quickly learned

 user–friendly field names can be up to 70 characters long (unlike some report writers that
restrict you to cryptic 8–byte names). This also allows full compatibility with existing COBOL,
PL/1 and Assembler data names.

 you can easily work with any number of flat files and VSAM files

 access DB2 tables, with our available DB2 Option

 access IMS databases, with our available IMS Option

 export function formats data as comma delimited file for use on PCs

 create and read back temporary work files, without any JCL changes

 use your existing COBOL or Assembler record layouts instead of creating a data dictionary.
Or, use z/Writer's simple data dictionary for added functionality.

 produces efficient internal machine code that is easy on your CPU

 produces multiple reports (or output files) in a single file pass

 macro expansion feature to help in supplying run-time parms

 floating point data support

 report lines are not limited to only 132 characters. z/Writer can format a report as wide as your
laser printer supports.

 any number of control breaks allowed

z/Writer Features

8 Chapter 1. What is z/Writer?

 ability to print full–page forms

 full control of carriage control when printing reports

 allows complete control over formatting of numeric fields, including handling of special
cases like telephone numbers, social security numbers, etc.

 has special formatting options for international users

 allows complete control over report titles, column headings

 includes thorough, clear documentation

 includes an option to validity–check numeric data before processing it, to prevent S0C7

abends

 ability to display file data in hexadecimal format, for analyzing invalid data

 full program trace facility, to help when developing new program

 translates fields from EBCDIC to ASCII and vice verse

 supports full "boolean logic" (the use of AND, OR and NOT) in conditional expressions

 ability to scan free format fields, to see if a certain text appears anywhere within the field

 comparisons and computations are allowed among all numeric fields, (even if some are
packed, some are binary, and others are zoned, etc.)

 supports all types of mainframe data widely in use, including packed, BCD, signed and
unsigned binary and hexadecimal floating point

 full mathematical calculations are supported, including the use of many built–in functions

 supports a full range of functions to manipulate string data, including powerful parsing
features

 "compress" formatting features lets you, for example, compress separate city, state and ZIP

fields into a normal formatted line format

 handles complicated record layouts, including variably–located fields, fields located by
pointer or pointer expressions, etc.

 supports records that contain arrays, nested to any level

 allows an unlimited number of input files

 built–in fields provide the system date, time, jobname, etc.

 can halt input processing when a user-defined condition is met, to eliminate unnecessary I/O

z/Writer’s Auto-Cycle Mode

z/Writer Reference Manual 9

Chapter 2. How to Make Reports with z/Writer

This chapter gives you a quick introduction to writing z/Writer programs

z/Writer has two programming modes. The one you choose will depend on what you need z/Writer to
do.

 Auto-Cycle Mode. In this mode, z/Writer automatically handles the primary file I/O, report
formatting, and, optionally, control breaks and subtotals and grand totals.

 Standard Mode. In this mode, you have complete control on what the program does and how
it does it.

We will look at a simple example of each run mode next. In the following chapter, we will examine
more complex examples of each mode.

z/Writer’s Auto-Cycle Mode
Use auto-cycle mode if you need to print a relatively simple report from an input file. In this mode,
z/Writer reads sequentially through your whole primary input file, record by record. You can choose
which records to include in your report, and you can print whichever fields you want from them.
z/Writer then formats the raw data into an attractive report for you automatically.

In this mode, you do not need to code any READ statements for your input file. Nor do you need to code
a test for EOF on that file. The statements that you code in the report program are simply executed, from
the beginning, for each input record that z/Writer reads. In your program code, you will take care of any
data manipulation or computation logic that may be needed. And you will normally then print a line to
a report (using a PRINT statement). Or you could export it as a comma-delimited file (using EXPORT and
PRINT statements.) Or perhaps you will want to format a new mainframe record and write that record to
an output file with a WRITE statement.

Even though this feature is designed for “basic” reports, you can still do all of the following in an auto-
cycle report:

 sort the input file

 read through the (sorted) input file until it reaches EOF

 include only selected records from the file in the report and the report totals

 print whatever fields you want in the report

 break and print subtotals (to any level), as well print grand totals

So this actually covers quite a few reports.

The auto-cycle execution mode is automatically invoked whenever a report has a primary input file, but
the program code does not have any READ statements for it.

The primary input file is the first input (or update) type file defined in your program (for a given

phase). If you program has multiple phases (see page 14), each phase can run as a separate auto-cycle
report, if you so choose.

z/Writer’s Auto-Cycle Mode

10 Chapter 2. How to Make Reports with z/Writer

For auto-cycle mode, the essential elements that you should code are:

 one FILE statement and multiple FIELD statements to define your primary input file

 a PRINT statement to specify how your report body should look

Figure 1. A report produced with just three control statements

Figure 1. A Simple z/Writer Auto-Cycle Report, with JCL

This Job:

//ZWRITER JOB
//ZW EXEC PGM=ZWRITER
//STEPLIB DD DSN=PROD.ZW200.LOADLIB,DISP=SHR
//SALES DD DSN=PROD.SALEFILE,DISP=SHR INPUT FILE
//ZWOUT001 DD SYSOUT=* ZWRITER REPORT
//SYSPRINT DD SYSOUT=* ZWRITER CONTROL LISTING
//SYSOUT DD SYSOUT=* SORT MESSAGES
//SYSIN DD * PROGRAM STATEMENTS
FILE SALES
*
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX

TITLE 'SALES REPORT'

//

Produce this Report:

09/20/12 SALES REPORT PAGE 1

 EMPL EMPL SALES SALES
REGION NUM NAME DATE TIME AMOUNT TAX

SOUTH 037 JOHNSON 950312 102500 101.38 6.09
WEST 044 BAKER 950326 120909 137.00 8.22
EAST 042 MORRISSOHN 950329 153022 44.35 2.66
EAST 042 MORRISSOHN 950330 190541 29.65 1.78
EAST 041 SIMPSON 950401 081757 14.99 0.90
NORTH 039 JOHNSON 950401 170247 234.45 14.07
NORTH 039 JOHNSON 950405 143310 9.98 0.60
WEST 044 BAKER 950412 143112 135.75 8.15
WEST 045 THOMAS 950414 154138 9.98 0.60
NORTH 036 JONES 950415 075832 10.25 0.62
NORTH 036 JONES 950415 080159 121.76 7.31
NORTH 036 JONES 950415 135241 10.25 0.62
SOUTH 037 JOHNSON 950416 114833 500.00 30.00
EAST 041 SIMPSON 950430 153021 23.87 1.43

GRAND TOTAL 1,383.66 83.05

z/Writer’s Standard Mode

z/Writer Reference Manual 11

 a TITLE statement to specify the title for the report

Of course, you will also use any other statements needed to perform any special logic or computations
required by your report.

Note: you will learn the syntax and usage details of each z/Writer statement in
Chapter 5. z/Writer Control Statements (page 25).

Figure 1 shows a very simple auto-cycle report. You can see that z/Writer printed one report line for
each input record. It also completed the report title and printed column headings and grand totals
automatically.

z/Writer’s Standard Mode
Now let’s look at a simple standard mode report.

Use z/Writer’s standard mode if you want complete control of the program flow. With this mode, you
can do anything a COBOL program could do, but using much simpler code.

In standard mode, z/Writer does not perform any automatic I/O or totaling. (It will, however, complete
your report title and prepare column headings for you, unless you request otherwise.) In this mode, you
must execute a READ statement each time you want to read a record from the primary input file.

As long as your code includes at least one READ statement for the primary (first) input file, z/Writer will
execute your program in standard mode. That is, it passes control to the first executable statement in
your program. From then on, your program controls the flow of execution (using GOTOs, DOWHILE

loops, etc.) The program will end when the flow reaches the end of the executable statements, or when
a STOP statement is encountered.

Figure 2 shows a simple example of a standard mode program. This report is similar to the report in

Figure 1 (page 10). However, in this example we coded the READ statements and checked for EOF

ourself. Also notice that there are no grand totals in this report. z/Writer only performs automatic grand
totals in auto-cycle reports. In standard mode reports, your code must handle the accumulation and
printing of any totals (or other statistics) that you want.

Order of Statements In Your Program
Whichever execution mode you prefer, there are a few rules regarding the location of certain statements.
In general, non-executable statements should come at the beginning or the end of the program
(depending on the statement.) They should not be mixed in among the executable statements.

You should generally put your program statements in the following order.

1. First put any OPTION statements you may need. These statements specify special options that apply
to all phases in the execution (if there are more than one.)

2. Then put the REPORT statement for your first (or only) report. This statement specifies report options
that apply only to the primary report in the current phase. If you have other REPORT statements (for
additional reports in the same phase), you may want to put them here as well. (However, that is not a
requirement.)

3. Next come all statements that define inputs, outputs and working storage areas. This means all FILE,
TABLE and/or WORKAREA statements, along with the FIELD statements that follow those statements.

Order of Statements In Your Program

12 Chapter 2. How to Make Reports with z/Writer

For DB2 runs, also put your CURSOR statements in this are. And for IMS runs, also put the IMSFILE and
SEGMENT statements here.

4. Next comes all of the actual executable code for your specific program. For auto-cycle reports, this
is the code that will be executed for each input record read. For standard mode runs, this is the code that
will be executed one time -- from the first statement until the last program statement (or until
encountering a STOP statement.) This is where all executable statements (such as IF, PRINT, PERFORM,
MOVE, GOTO, and so on) will go.

Figure 2. A report produced with just three control statements

Figure 2. A Simple Standard Mode Program

These Control Statements:

FILE SALES
*
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

READ SALES

DOWHILE (#EOF = 'N')
 PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX
 READ SALES
ENDDO

TITLE 'SALES REPORT'

Produce this Report:

09/20/12 SALES REPORT PAGE 1

 EMPL EMPL SALES SALES
REGION NUM NAME DATE TIME AMOUNT TAX

SOUTH 037 JOHNSON 950312 102500 101.38 6.09
WEST 044 BAKER 950326 120909 137.00 8.22
EAST 042 MORRISSOHN 950329 153022 44.35 2.66
EAST 042 MORRISSOHN 950330 190541 29.65 1.78
EAST 041 SIMPSON 950401 081757 14.99 0.90
NORTH 039 JOHNSON 950401 170247 234.45 14.07
NORTH 039 JOHNSON 950405 143310 9.98 0.60
WEST 044 BAKER 950412 143112 135.75 8.15
WEST 045 THOMAS 950414 154138 9.98 0.60
NORTH 036 JONES 950415 075832 10.25 0.62
NORTH 036 JONES 950415 080159 121.76 7.31
NORTH 036 JONES 950415 135241 10.25 0.62
SOUTH 037 JOHNSON 950416 114833 500.00 30.00
EAST 041 SIMPSON 950430 153021 23.87 1.43

Report Column Headings

z/Writer Reference Manual 13

Within the executable user code, be careful where you place the non-executable BREAK and TITLE

statements, in relation to the first PRINT statement. Follow these rules:

 All BREAK statements must precede the first PRINT statement for a report.

 All TITLE statements must be coded after the first PRINT statement for a report.

Note: these requirements ensure that the titles and break total lines are aligned correctly with the
body of your report.

The program in Figure 3 (page 17) illustrates this order of statements (as do the other examples.)

Report Column Headings
By default, z/Writer prints column headings for any report (auto-cycle or standard mode) that uses at
least one PRINT statement. The column headings are printed at the top of each page of the report, right
after all of the title lines. Column headings are printed for each field listed in the first PRINT (or
PRINTMODEL) statement in the program.

The column heading printed for each column is taken (in this order of preference) from:

 override column heading text specified directly in the first PRINT statement

 column heading text specified in the HEADING parm of the FIELD statement

 the fieldname itself, broken apart at each dash or underscore

Suppressing Column Headings
You can suppress column headings from a report by specifying the NOCOLHDG report parm, like this:

REPORT NOCOLHDGS

You might want to suppress the automatic column headings if you plan to build your own column
heading lines using TITLE statements.

Printing Multiple Reports
z/Writer allows you to print a (theoretically) unlimited number of reports during your program
execution. This has the advantage of only reading an input file once to create multiple reports.

Notice that only three statements directly control the appearance of a report:

 REPORT statement (which is optional for the primary report in a program). This non-
executable statement describes overall characteristics of the report (such as page size and
whether column headings are wanted, for example.)

 PRINT statement. This executable statement writes one line to the report output. It tells which
fields to print in the body of the report.

 TITLE statement (optional for all reports). This non-executable statement defines how the
title(s) for a report will look. z/Writer decides when the titles are actually written, but the
TITLE statement determines the contents and layout of the report titles.

So, if you want to print more than one report, you will just make an adjustment to each of these three
statements. Specifically, you will just include a report-name, in parentheses, as the first parm in each of
these 3 statements. Here are the steps to write a new report from your program:

Runs with Multiple Phases

14 Chapter 2. How to Make Reports with z/Writer

 add a new REPORT statement that specifies a 1- to 8-byte “report name” that you want to use
for it. The report name must be enclosed in parentheses and must be the first parm in the
statement. After the report name, you can add any other REPORT statement options that you
want for the new report. For example, to define a new “error” report named ERRRPT, you
could code:

REPORT (ERRRPT) NOCOLHDGS

 to write lines to the new report, use a PRINT statement that has the new report name, in
parentheses, as its first parm. Example:

PRINT (ERRRPT) EMPL_NAME STATUS

 optionally, you can add one or more TITLE statements for the new report. The TITLE statement
will also begin with the new report name, in parentheses, as its first parm. Example:

TITLE (ERRRPT) ‘EMPLOYEES WITH INVALID STATUS CODES’

 add a DD to your execution JCL for the new report. The DDNAME is the same as the report name.
Example:

//ERRRPT DD SYSOUT=*

The “report name” (ERRRPT in this case) is what links the REPORT, PRINT and TITLE statements for a
given report to each other. And it links the report to its output DD in your JCL.

You may specify as many different report names in your REPORT, PRINT and TITLE statements as you
like. Just be sure to add a DD statement for each report to your JCL.

By the way, all PRINT, TITLE and REPORT statements that do not begin with a report name parm (in
parentheses) apply to the first, or “primary” report for the phase. The primary report does not have a
name. It uses the DDNAME ZWOUT001 (for the first phase.)

Note: certain auto-cycle features, such as automatic control break handling via the BREAK

statement, are supported only for the primary report in each phase.

Note: if multiple phases are used, the report names you choose must be unique across all phases.

Runs with Multiple Phases
Within a single execution of the z/Writer program, you may code multiple “phases”. A new phase is
almost like starting z/Writer again in a new jobstep. When you start a new phase, nothing is retained
from any earlier phase. In the new phase, you will again define each file you that wish to use, any
needed working storage fields, etc., and then you will code your execution logic for that phase.
(However, z/Writer does offer the REUSE statement (page 135) that makes it easy to quickly define
again any file that was defined in an earlier phase.)

To add additional phases (after the first one), use the NEWPHASE statement (page 97). This statement
ends the previous phase and begins a fresh, new phase.

One use of multiple phases is to perform file processing logic that can not be done in a single “step”.
For example, you may need an initial phase to read a file and write “summary” records to a z/Writer
TEMP file. The next phase might then read this “summary” TEMP file and perform further processing on
it. Of course, you could do this in 2 separate JCL jobsteps. But if you prefer to keep the jobstream
simple, you can use phases to perform both steps in a single execution of z/Writer.

Runs with Multiple Phases

z/Writer Reference Manual 15

The “primary report” output for each phase is written to its own DD. The first phase’s report is written
to the ZWOUT001 DD. The second phase’s report is written to the ZWOUT002 DD, and so on.

In addition to a primary report, each phase is also allowed to produce any number of additional reports.
See "Printing Multiple Reports" (page 13).

Auto-Cycle Report with Control Breaks

16 Chapter 3. Sample z/Writer Reports

Chapter 3. Sample z/Writer Reports

Programmers often pick up new techniques best by browsing examples. With that in mind, we will look
at a variety of z/Writer programs in this chapter.

Auto-Cycle Report with Control Breaks
We saw earlier in Figure 1 (page 10) that auto-cycle reports automatically get grand totals. (You can
suppress them, if you want, with a NOGRAND parm on a REPORT statement.)

Auto-cycle reports can also include any number of additional control breaks, with automatic subtotals
at each break. To add a control break, you should:

 add a PRESORT parm to the FILE statement for the primary input file (unless the input file is
already sorted in the proper order)

 add one or more BREAK statements to specify which sort field(s) to break on. If you have
multiple BREAK statements, put the BREAK statement for the high-order break field first. (That
is the break field that appeared earliest in the SORT parm.) All BREAK statement should appear
before your first PRINT statement.

Figure 3 shows an example of an auto-cycle report with two levels of control breaks. z/Writer

maintained and printed subtotals for each level of break (plus the grand total) automatically.

Note: we used a “(+6)” parm for REGION in the PRINT statement in this example. That parm
shifted the REGION column right by 6 bytes (from its default location of column 1.) We did that
in order to leave room for the word “TOTAL” on the total lines, without overlapping the region
value. Without this extra space, the word TOTAL would have been printed on a separate line,
above the line containing the region name and the actual numeric totals. The “+6” parm just helps
keep the report a little easier to read, and somewhat shorter.

Note: the BREAK statement is only available for auto-cycle reports.

Auto-Cycle Report with Record Selection
Our examples so far have printed a report line for every record in the input file. z/Writer also provides
a method for selecting only certain records to include in an auto-cycle report.

Of course, you can always use an IF statement to prevent the PRINT statement from being executed under
certain conditions. But if that is all that you do, the record would still be included in the grand totals
(and in any subtotals for control breaks.)

Use the EXCLUDE and/or INCLUDE statements to tell z/Writer whether to include a record’s values in the
totals it maintains. EXCLUDE means do not include the record in the totals. INCLUDE means include the
record in the totals. (Of course, including the record is also the default, when neither an INCLUDE nor
EXCLUDE statement is executed.)

Both INCLUDE and EXCLUDE also cause the remainder of the program code (from that statement to the
end of the program) to be skipped over for the current input record.

Auto-Cycle Report with Record Selection

z/Writer Reference Manual 17

Figure 3. A report produced with just three control statements

Figure 3. An Auto-Cycle Report with Two Levels of Control Breaks

These Control Statements:

FILE SALES
 PRESORT(REGION EMPL_NAME)
*
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

BREAK REGION
BREAK EMPL_NAME

PRINT REGION(+6) EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX

TITLE 'SALES REPORT'
TITLE 'TOTALED BY REGION AND EMPLOYEE'

Produce this Report:

 09/20/12 SALES REPORT PAGE 1
 TOTALED BY REGION AND EMPLOYEE

 EMPL EMPL SALES SALES
 REGION NUM NAME DATE TIME AMOUNT TAX

 EAST 042 MORRISSOHN 950329 153022 44.35 2.66
 EAST 042 MORRISSOHN 950330 190541 29.65 1.78
 TOTAL EAST MORRISSOHN 74.00 4.44

 EAST 041 SIMPSON 950401 081757 14.99 0.90
 EAST 041 SIMPSON 950430 153021 23.87 1.43
 TOTAL EAST SIMPSON 38.86 2.33

 TOTAL EAST 112.86 6.77

 NORTH 039 JOHNSON 950401 170247 234.45 14.07
 NORTH 039 JOHNSON 950405 143310 9.98 0.60
 TOTAL NORTH JOHNSON 244.43 14.67

 NORTH 036 JONES 950415 075832 10.25 0.62
 NORTH 036 JONES 950415 080159 121.76 7.31
 NORTH 036 JONES 950415 135241 10.25 0.62
 TOTAL NORTH JONES 142.26 8.55

 TOTAL NORTH 386.69 23.22

(additional lines not shown)

 WEST 045 THOMAS 950414 154138 9.98 0.60
 TOTAL WEST THOMAS 9.98 0.60

 TOTAL WEST 282.73 16.97

Auto-Cycle Report with Record Selection

18 Chapter 3. Sample z/Writer Reports

Figure 4 uses the EXCLUDE statement to exclude records with sales amounts under $100. The EXCLUDE

statement causes the PRINT statement to be skipped. It also excludes those records from all report totals.

Figure 8 (page 24) shows another example of using the INCLUDE and EXCLUDE statements.

Note: the INCLUDE and EXCLUDE statements are only available for auto-cycle reports.

Figure 4. A report produced with just three control statements

Figure 4. An Auto-Cycle Report with Record Selection

These Control Statements:

FILE SALES
*
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

IF AMOUNT < 100
 EXCLUDE
ENDIF

PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX

TITLE 'SALES REPORT'
TITLE 'FOR SALES OVER $100'

Produce this Report:

09/20/12 SALES REPORT PAGE 1
 FOR SALES OVER $100

 EMPL EMPL SALES SALES
REGION NUM NAME DATE TIME AMOUNT TAX

SOUTH 037 JOHNSON 950312 102500 101.38 6.09
WEST 044 BAKER 950326 120909 137.00 8.22
NORTH 039 JOHNSON 950401 170247 234.45 14.07
WEST 044 BAKER 950412 143112 135.75 8.15
NORTH 036 JONES 950415 080159 121.76 7.31
SOUTH 037 JOHNSON 950416 114833 500.00 30.00

GRAND TOTAL 1,230.34 73.84

A Sequential File Conversion Program

z/Writer Reference Manual 19

A Sequential File Conversion Program
It is easy to perform file conversions with z/Writer. Just define the input and output files, add code to
prepare your output record (from the input record), and then use a WRITE statement to write each record
to the output file.

Figure 5 shows an example of an auto-cycle file conversion program. It writes out a new file that is just

like the old file, except that the amount field is increased by 10. It also prints a log report showing the
changes made.

Making a Comma-Delimited Export File
z/Writer automates the process of making export files from your mainframe data. These are comma
delimited files that can easily be imported into PC programs. This opens up the possibility of working
with mainframe data in PC spreadsheets, databases, graphing programs, etc.

Use an EXPORT statement (page 63) to indicate that you will be creating an export file output in your
run. (The EXPORT statement is similar to the REPORT statement, which defines a report output.) The
EXPORT statement assigns a name to your export file. The name will also be the DDNAME of the output
DD in your JCL. Optionally, you can also specify certain options for your export file on this statement.

To write data to your export file, just use a standard PRINT statement, specifying the export file as the
“report name.” The fields (or literals) specified in the PRINT statement will be formatted into an output
record in comma delimited format:

 character (and date) data will be enclosed in parentheses

 numbers will be formatted without commas

 the fields will be separated with commas.

Also note these differences between an export file and a report:

 export files do not have titles

 the column headings for export files only appear once, at the beginning of the export file.
(You can also specify NOCOLHDGS in your EXPORT statement if you do not want any column
headings.)

Figure 6 shows an example of making an export file.

Keyed Reads to a VSAM file
In this example, we read sequentially through a flat file (SALES). We let auto-cycle handle that part for
us. Then, for each record automatically read from that SALES file, we perform a direct read to the EMPL

file. This is a keyed (KSDS) VSAM file.

The key to the EMPL file is a 3-byte employee number. The SALES file also has an employee number
field. So, we simply use the employee number from the primary input file (SALES) as they key to read
a record from the secondary file (EMPL).

The PRINT statement can now include fields from both the SALES record and the EMPL record. So we
printed mostly data from the SALES file in our report. But we did include the Department Number and
Total Accounts data from the EMPL file.

Keyed Reads to a VSAM file

20 Chapter 3. Sample z/Writer Reports

Figure 5. A report produced with just three control statements

Figure 5. A Sequential File Conversion Program

These Control Statements:

FILE SALES
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

FILE NEWSALES OUTPUT
FLD NEW_EMPL_NAME 10
FLD NEW_EMPL_NUM 3
FLD NEW_BACKUP_EMPL_NUM 3
FLD NEW_REGION 5
FLD NEW_AMOUNT N6.2
FLD NEW_TAX N4.2
FLD NEW_COMMISSION_RATE N4.3
FLD NEW_SALES_DATE 6
FLD NEW_SALES_TIME 6

MOVE SALES TO NEWSALES /* COPY WHOLE RECORD */
NEW_AMOUNT = AMOUNT +10 /* MODIFY AMOUNT IN NEWSALES */

WRITE NEWSALES /* WRITE NEW RECORD */

PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME
 AMOUNT NEW_AMOUNT TAX /* PRINT A LINE IN LOG */

TITLE 'FILE CONVERSION LOG'

Produce an Output File and this Log Report:

09/20/12 FILE CONVERSION LOG PAGE 1

 EMPL EMPL SALES SALES NEW
REGION NUM NAME DATE TIME AMOUNT AMOUNT TAX

SOUTH 037 JOHNSON 950312 102500 101.38 111.38 6.09
WEST 044 BAKER 950326 120909 137.00 147.00 8.22
EAST 042 MORRISSOHN 950329 153022 44.35 54.35 2.66
EAST 042 MORRISSOHN 950330 190541 29.65 39.65 1.78
EAST 041 SIMPSON 950401 081757 14.99 24.99 0.90
NORTH 039 JOHNSON 950401 170247 234.45 244.45 14.07
NORTH 039 JOHNSON 950405 143310 9.98 19.98 0.60
WEST 044 BAKER 950412 143112 135.75 145.75 8.15
WEST 045 THOMAS 950414 154138 9.98 19.98 0.60
NORTH 036 JONES 950415 075832 10.25 20.25 0.62
NORTH 036 JONES 950415 080159 121.76 131.76 7.31
NORTH 036 JONES 950415 135241 10.25 20.25 0.62
SOUTH 037 JOHNSON 950416 114833 500.00 510.00 30.00
EAST 041 SIMPSON 950430 153021 23.87 33.87 1.43

GRAND TOTAL 1,383.66 1,523.66 83.05

Keyed Reads to a VSAM file

z/Writer Reference Manual 21

Note that if a field of the same name exists in both records (like EMPL_NUM) it must be qualified (in the
READ and PRINT statements.) We wanted to use the EMPL_NUM field from the SALES file as the key value
in our READ statement, so we qualified it thus:

SALES.EMPL-NUM

Figure 7 shows the resulting report.

Figure 6. A report produced with just three control statements

Figure 6. Making a Comma Delimited Export File

These Control Statements:

FILE SALES
FLD EMPL_NAME 10
FLD EMPL_NUM 3
FLD BACKUP_EMPL_NUM 3
FLD REGION 5
FLD AMOUNT N6.2
FLD TAX N4.2
FLD COMMISSION_RATE N4.3
FLD SALES_DATE 6
FLD SALES_TIME 6

EXPORT

PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX

Produce This Comma Delimited Export File:

" ","EMPL","EMPL","SALES","SALES"," "," "
"REGION","NUM","NAME","DATE","TIME","AMOUNT","TAX"
"SOUTH" ,"037" ,"JOHNSON ","950312","102500", 101.38, 6.09
"WEST " ,"044" ,"BAKER ","950326","120909", 137.00, 8.22
"EAST " ,"042" ,"MORRISSOHN","950329","153022", 44.35, 2.66
"EAST " ,"042" ,"MORRISSOHN","950330","190541", 29.65, 1.78
"EAST " ,"041" ,"SIMPSON ","950401","081757", 14.99, 0.90
"NORTH" ,"039" ,"JOHNSON ","950401","170247", 234.45, 14.07
"NORTH" ,"039" ,"JOHNSON ","950405","143310", 9.98, 0.60
"WEST " ,"044" ,"BAKER ","950412","143112", 135.75, 8.15
"WEST " ,"045" ,"THOMAS ","950414","154138", 9.98, 0.60
"NORTH" ,"036" ,"JONES ","130415","075832", 10.25, 0.62
"NORTH" ,"036" ,"JONES ","130415","080159", 121.76, 7.31
"NORTH" ,"036" ,"JONES ","130415","135241", 10.25, 0.62
"SOUTH" ,"037" ,"JOHNSON ","950416","114833", 500.00, 30.00
"EAST " ,"041" ,"SIMPSON ","950430","153021", 23.87, 1.43
"GRAND TOTAL"," "," "," "," ", 1383.66, 83.05

Keyed Reads to a VSAM file

22 Chapter 3. Sample z/Writer Reports

Figure 7. A report produced with just three control statements

Figure 7. A Report with Keyed Reads to a Second File

These Control Statements:

COPY SALES

FILE EMPL TYPE(KSDS) V(150)
FLD EMPL_NUM 3
FLD LAST_NAME 15
FLD FIRST_NAME 15
FLD HIRE_DATE N6
FLD DEPT_NUM 1
FLD SEX 1
FLD STATUS_BYTE 1
FLD SOCIAL_SEC_NUM N9
FLD NUM_ACCOUNTS N4
FLD TOTAL_SALES N7.2
FLD SALES_QTR1 N7.2
FLD SALES_QTR2 N7.2
FLD SALES_QTR3 N7.2
FLD SALES_QTR4 N7.2
FLD ADDRESS 20
FLD CITY 15
FLD STATE 2
FLD ZIP 5
FLD TELEPHONE 10

READ EMPL KEY(SALES.EMPL_NUM)

PRINT REGION SALES.EMPL_NUM DEPT_NUM EMPL_NAME
 NUM_ACCOUNTS SALES_DATE SALES_TIME AMOUNT TAX

TITLE 'SALES FILE REPORT'

Produce This Report:

 04/05/14 SALES FILE REPORT PAGE 1

 DEPT NUM SALES SALES AMOUNT
 REGION EMPL NUM NUM EMPL NAME ACCOUNTS DATE TIME PAID TAX
______ ________ ____ __________ ________ ______ ______ __________ _______
 SOUTH 037 1 JOHNSON 128 950312 102500 101.38 6.09
 WEST 044 4 BAKER 147 950326 120909 137.00 8.22
 EAST 042 3 MORRISSOHN 154 950329 153022 44.35 2.66
 EAST 042 3 MORRISSOHN 154 950330 190541 29.65 1.78
 EAST 041 3 SIMPSON 16 950401 081757 14.99 0.90
 NORTH 039 2 JOHNSON 104 950401 170247 234.45 14.07
 NORTH 039 2 JOHNSON 104 950405 143310 9.98 0.60
 WEST 044 4 BAKER 147 950412 143112 135.75 8.15
 WEST 045 4 THOMAS 118 950414 154138 9.98 0.60
 NORTH 036 2 JONES 78 130415 075832 10.25 0.62
 NORTH 036 2 JONES 78 130415 080159 121.76 7.31
 NORTH 036 2 JONES 78 130415 135241 10.25 0.62
 SOUTH 037 1 JOHNSON 128 950416 114833 500.00 30.00
 EAST 041 3 SIMPSON 16 950430 153021 23.87 1.43
0GRAND TOTAL 1,383.66 83.05

z/Writer Reference Manual 23

Chapter 4. Using Macros

z/Writer provides a macro facility that makes it easy to customize individual runs by simply changing
the value in a MACRO statement at the beginning of your code.

When used, macros definitions should normally precede all other statements. The format of a macro
definition is:

MACRO $name = value

All macro names must begin with a dollar sign ($). That allows z/Writer to distinguish between macro
references from fieldnames or keywords.

Here is an example of a macro definition:

MACRO $BEGDATE = 01012018

As soon as z/Writer processes this statement, all occurrences of $BEGDATE in subsequent control
statements will be replaced with the text 01012018. This even includes occurrences of the macro name
found in quoted texts, in comments, and in subsequent MACRO statements.

Here is an example of using a MACRO statement to specific selection criteria in a run:

MACRO $BEGDATE = 01012013
...
IF RECDATE = ‘$BEGDATE’

 INCLUDE
ENDIF

The IF statement will be treated as if it was written this way:

IF RECDATE = ‘01012018’
 INCLUDE

ENDIF

Note that the control listing printed by z/Writer shows both the original versions of statements that
reference macros, and the modified version. That lets you see exactly how z/Writer sees the final
statement.

Note: you only need to enclose the MACRO statement’s “value” in ticks if the value contains
embedded spaces or other delimiters. When the value is enclosed in ticks, the outer ticks are not

considered a part of the value. However, you may use double ticks anywhere within the outer
ticks if you want a tick to be included in your value. For example:

MACRO $BEGDATE = ‘’’01012018’’’
...
IF RECDATE = $BEGDATE

 INCLUDE
ENDIF

Now you do not need ticks in the source version of the IF statement, since in this case they are included
in the macro value itself.

Figure 8 shows an example of using a macro in a report.

24 Chapter 4. Using Macros

Figure 8. A report produced with just three control statements

Figure 8. Using a Macro to Select Records for a Report

These Control Statements:

MACRO %SELREGION = NORTH

COPY SALES

IF REGION = '%SELREGION'
 PRINT REGION EMPL_NUM EMPL_NAME SALES_DATE SALES_TIME AMOUNT TAX
 INCLUDE
ENDIF
EXCLUDE

TITLE 'SALES FILE REPORT'

Produce This Report:

04/07/14 SALES FILE REPORT PAGE 1

 SALES SALES AMOUNT
REGION EMPL NUM EMPL NAME DATE TIME PAID TAX
______ ________ __________ ______ ______ __________ _______
NORTH 039 JOHNSON 950401 170247 234.45 14.07
NORTH 039 JOHNSON 950405 143310 9.98 0.60
NORTH 036 JONES 130415 075832 10.25 0.62
NORTH 036 JONES 130415 080159 121.76 7.31
NORTH 036 JONES 130415 135241 10.25 0.62

GRAND TOTAL 386.69 23.22

BREAK Statement

z/Writer Reference Manual 25

Chapter 5. z/Writer Control Statements

This chapter explains the syntax and usage details of each of z/Writer’s control statements.

BREAK Statement

PURPOSE

This is a declaratory statement that specifies that a control break should occur in an auto-cycle report.
The BREAK statement can also be used to customize the handling of the grand totals.

SYNTAX

DISCUSSION

BREAK statements are only allowed when these two conditions are met:

 it is used for the primary report in a program phase (page 14).

 it is used in a report that uses auto-cycle logic (page 9).

If you want control breaks in reports that do not meet both of these requirements, you will need to code
the break logic yourself.

The BREAK statement specifies that a control break should occur whenever the value of the named field
changes. By default, the following actions are taken at a control break:

BREAK STATEMENT SYNTAX

BREAK fieldname/#GRAND

 [‘total line text’]

 [BREAKCODE(label1 [THRU label2])]

 [NOTOTALS]

 [SPACE(n/PAGE [,N/PAGE])]

Abbreviations Allowed:

BREAKCODE - BRKCODE

NOTOTALS - NOTOTAL

BREAK Statement

26 Chapter 5. z/Writer Control Statements

 a total line prints, showing the total value of all quantitative fields for that break

 a single, extra blank line prints

The layout of the total line is governed by the primary (first) PRINT statement in your program code.
The total line at a control break shows:

 the control group’s total value for each quantitative field listed in the primary PRINT

statement. A “quantitative” field is any numeric field for which the “decimals” parm was
specified. (That includes numeric fields for which zero decimals was explicitly specified,
using a DEC(0) parm or a shorthand notation such as N7.0.)

 the value of the breaking control field itself (if it was listed in the primary PRINT statement.)

 the value of any more major control field(s) that also appeared in the primary PRINT statement.

Since the break total line is governed by the first PRINT or PRINTMODEL statement, be sure your program
has at least one of those statements whenever you use a BREAK statement. Try to design your print line
(in the PRINT statement) so that there will be enough room at the beginning of the line to print the total
line text (e.g., “TOTALS FOR REGION”) before the first numeric column that is totalled. (Otherwise,
z/Writer will have to be split the total line into two lines.) You can either begin the print line with some
character fields (that are not totalled) or use a numeric spacing factor with the first columns (to shift it
to the right):

PRINT SALES_QTR1(+20) SALES_QTR2 SALES_QTR3 SALES_QTR4

Normally, only a sort field should be named in a BREAK statement. (A sort field is a field that appears
in the PRESORT parm of the primary input file’s FILE statement.) However, in some cases you may know
that the primary input file will already be sorted externally. In such cases it would make sense to break
on a field that the file is sorted on, even though there is no PRESORT parm on the FILE statement.

You may have multiple BREAK statements in a report. The BREAK statements should appear in

major-to-minor order. (That is, the same order as in the PRESORT statement.)

The BREAK statement can also be used to customize the grand totals. Just specify #GRAND as
the break field name on the statement.

The BREAK statement can also:

 specify control break spacing (whether to skip to a new page or print a number of blank lines
at a control break)

 suppress the default printing of a total line at a control break

 customize the text used in the total line at a control break

BREAK Statement Location
As a declaratory (rather than executable) statement, the exact location of your BREAK statement is not
critical. However, it should appear near the beginning of the z/Writer control statements (after your file
definitions). It is mandatory that it appear before the first PRINT statement.

BREAK Statement

z/Writer Reference Manual 27

PARMS

The fieldname is required in a BREAK statement, and must be the first item after the statement name. All
other parms are optional and can appear in any order on the BREAK statement.

fieldname/#GRAND
Identifies the control break field. Whenever the contents of this field changes, a control break will occur
in the report. This field will normally have been specified as a sort field in the primary input file’s FILE

statement.

BREAK: REGION

The above example specifies that a control break should occur whenever the REGION field changes
value. Since no other parms are specified, default processing will take place at the break: a line of region
totals will print, followed by one blank line.

You may also specify #GRAND rather than an actual field name. Using #GRAND allows you to specify
control break options for the grand totals “pseudo control break” (at the end of the whole report).

BREAK: #GRAND ‘END OF RUN TOTALS’

The above statement specifies that the text on the grand total line should be “END OF RUN TOTALS.”

‘total line text’
Specifies the constant text to use at the beginning of each break total line. (When this parm is not
present, the total line will begin with a default text.)

BREAK REGION ‘TOTALS FOR THE ABOVE REGION’

The above example specifies that a control break should occur whenever the value of REGION changes.
The total line at this break should begin with the text "TOTALS FOR THE ABOVE REGION.”

BREAKCODE(label1 [THRU label2])
Specifies a paragraph, or a range of paragraphs, to be performed each time the control break occurs. The
paragraph(s) will be performed before the default total line prints (if it prints).

BREAK: REGION BREAKCODE(REG-100 THRU REG-999)

The above example specifies that whenever the REGION field changes value a control break should
occur. At the break, paragraphs REG-100 through REG-999 (inclusive) will be performed. After that, the
default total line and one blank line will print.

The built-in field named #TALLY is also useful within break code. It is a numeric field containing the
number of records included in the control group just ended.

Note: you can use this parm (in a BREAK statement for #GRAND) to perform custom code at EOF

on the primary input file. (The regular program code does not execute when the file gets to EOF.)

NOTOTALS
Suppresses the total line which normally prints at a control break.

BREAK: REGION NOTOTAL

BREAK Statement

28 Chapter 5. z/Writer Control Statements

The above example specifies that a control break should occur whenever the REGION field changes
value. However, no total line will print. z/Writer will just print the default blank line after the break.

SPACE(1 / n / PAGE [, n / PAGE])
Specifies the spacing desired at the control break. An “n” in this parm represents a number of blank
lines to print. “PAGE” indicates that a page break is wanted.

When only one value (“n” or PAGE) is specified, that value determines the spacing to be performed after

the control break processing is complete. That is, after the break code, if any, has been performed and
after the total line, if any, has printed.

When two “n” and/or PAGE values are specified, the first one indicates the spacing desired before the
control break. That is, before the break code, if any, is performed and the total line, if any, is printed.
The second value indicates the spacing desired after the control break processing is complete.

When this parm is omitted, the default is to print 1 blank line after the control break processing.

BREAK REGION SPACE(1, PAGE)
BREAK CITY SPACE(2) NOTOTALS

The above example specifies that one blank line should print before the total line
prints at REGION control breaks. And after the REGION total prints, the report
should skip to a new page. When the CITY field changes value, two blank lines (and
no total line) should print.

EXAMPLE

FILE EMPL TYPE(KSDS) V(150)
 PRESORT(STATE DEPT_NUM EMPL_NUM LAST_NAME)
FLD EMPL_NUM N3
FLD LAST_NAME 15
FLD FIRST_NAME 15
FLD HIRE_DATE N6
FLD DEPT_NUM 1
FLD SEX 1
FLD STATUS_BYTE 1
FLD SOCIAL_SEC_NUM N9
FLD NUM_ACCOUNTS N4
FLD TOTAL_SALES N7.2
FLD SALES_QTR1 N7.2
FLD SALES_QTR2 N7.2
FLD SALES_QTR3 N7.2
FLD SALES_QTR4 N7.2
FLD ADDRESS 20
FLD CITY 15
FLD STATE 2
FLD ZIP 5
FLD TELEPHONE 10

****************** PROCEDURE *****************
BREAK #GRAND NOTOTALS
 BRKCODE(GRAND-TOTALS)

BREAK STATE NOTOTALS
 BRKCODE(STATE-TOTALS)

BREAK DEPT_NUM NOTOTALS
 BRKCODE(DEPT-TOTALS)

PRINT STATE(+25) DEPT_NUM EMPL_NUM LAST_NAME
 SALES_QTR1 SALES_QTR2 SALES_QTR3 SALES_QTR4

BREAK Statement

z/Writer Reference Manual 29

TITLE 'SALES BROKEN DOWN BY DEPARTMENT AND STATE'
GOTO DONE

DEPT-TOTALS:
 PRINT 'DEPT' DEPT_NUM(LAST) 'TOTALS'
 SALES_QTR1(SUM @SALES_QTR1) SALES_QTR2(SUM)
 SALES_QTR3(SUM) SALES_QTR4(SUM)

STATE-TOTALS:
 PRINT STATE(LAST) 'STATE TOTALS (' #TALLY(+0) 'RECORDS)'
 SALES_QTR1(SUM @SALES_QTR1) SALES_QTR2(SUM)
 SALES_QTR3(SUM) SALES_QTR4(SUM)

GRAND-TOTALS:
 PRINT 'GRAND TOTALS (' #TALLY(+0) 'RECORDS)'
 SALES_QTR1(SUM @SALES_QTR1) SALES_QTR2(SUM)
 SALES_QTR3(SUM) SALES_QTR4(SUM)

DONE:

CALL Statement

30 Chapter 5. z/Writer Control Statements

CALL Statement

PURPOSE

Calls an external program. Optionally, you may pass one or more parms to the called program.

SYNTAX

DISCUSSION

z/Writer uses the standard Assembler language linkage conventions when calling the program.
Specifically, the following registers will have special settings:

 R1 holds the address of a standard parm list (if parms were specified on the CALL statement.)

 R13 holds the address of an 18 fullword save area that the called program should use to
preserve z/Writer’s registers.

 R14 holds the return address within z/Writer.

 R15 holds the entry point address of the called program.

Note: programs are called in 24-bit address mode, and must return in the same.

PARMS

program
Specifies the name of the program to call. This parm must be the 1-8 byte name (or alias) of a load
module present in a program library accessible to the job step.

Note: you may need to add the library containing the called program to your JOBLIB or STEPLIB

DD in order for the program to be found.

fieldname / ‘literal’
Specifies one parm to be passed to the called program. If you name a field, its contents will be passed
to the program as parm. If you specify a literal text (within quotes or apostrophes), that text will be
passed to the program as a parm.

CALL STATEMENT SYNTAX

 CALL program [USING fieldname/’literal’ [, fieldname/’literal’] ...)]

CALL Statement

z/Writer Reference Manual 31

Note: when a field is used as a parm to the program, z/Writer passes the address of the field’s
data in the actual record area or workarea. The called program is allowed to modify the data
there, but it should be careful not to accidentally modify memory before or after that area.

EXAMPLE

CALL DECRYPT USING ENCRYPT-SEGMENT ‘TYPE1’

CASE Statement

32 Chapter 5. z/Writer Control Statements

CASE Statement

PURPOSE

The CASE statement begins a “case-structure.” The purpose of a case-structure is to conditionally
execute (at most) one set of statements within the structure.

SYNTAX

DISCUSSION

A case-structure functions just like an IF statement followed by a number of ELSEIF statements and an
ELSE statement. If you are simply comparing one field to various values, you can use a case-structure
instead of an if-structure. The advantage of the case-structure is that it is less verbose, and may be easier
to read, modify and maintain.

Here is a description of the case-structure syntax.

The CASE statement itself must contain exactly one fieldname, of any type. This is the “test field.”
Immediately after the CASE statement, a WHEN statement must follow.

A WHEN statement contains one or more values (or range of values) which the test field (from the CASE

statement) should be compared to. Therefore the values in the WHEN statements must be of a type
(character or numeric) that is compatible with the test field.

If the test field equals any value on the WHEN statement, then that WHEN statement is true and all of the
“other statements” immediately following it will be executed. After those statements are executed,
control is passed to the statement immediately following the ENDCASE statement. (You are allowed to
have zero “other statements” following a WHEN, in which case control just passes immediately to the
first statement after the ENDCASE statement.)

CASE STRUCTURE SYNTAX

CASE fieldname

WHEN [NOT] value/range [value/range ...]
other statements

WHEN [NOT] value/range [value/range ...]
other statements
...

ELSE
other statements

ENDCASE

CASE Statement

z/Writer Reference Manual 33

If the CASE test field is not equal to any value on the WHEN statement, then the next WHEN statement (if
any) is evaluated. This process continues until a “true” WHEN statement is found, or until there are no
more WHEN statements.

If none of the WHEN statements are true, then one of the following occurs:

 if there is a final ELSE statement within the case-structure, the statements following it are
executed.

 if there is no ELSE statement, control just passes to the statement after the ENDCASE statement
(with none of the “other statements” being executed.)

The last element of a case-structure is always the required ENDCASE statement.

WHEN Statement Syntax
A WHEN statement can contain:

 a single value (either a fieldname or a literal)

 a range of values (specified using the keyword THRU), or

 a list of values and/or ranges

Note: when specifying a list of values and/or ranges, you may separate them with spaces or
commas

Using NOT on WHEN Statements
You may also begin a WHEN statement with the keyword “NOT” (followed with one or more values
and/or ranges):

WHEN NOT 2, 4, 6, 100 THRU 9999999999

When NOT is specified, the WHEN statement is passed if the test field does not equal any value on the
statement, and does not fall within any range (inclusive) on the statement.

EXAMPLE

CASE AMOUNT
 WHEN TEST-AMOUNT
 PRINT ‘EQUALS TEST AMOUNT’
 WHEN 400
 PRINT ‘EQUALS 400’
 WHEN 500 THRU 599
 PRINT ‘BETWEEN 500 AND 599 (INCLUSIVE)’
 WHEN 2, 4, 6
 PRINT ‘EQUALS 2, 4 OR 6’
 WHEN 1, 3, 5, 700-799, 1000-1099, 9999
 PRINT ‘1, 3, 5, SEVEN HUNDRED SOMETHING, ONE THOUSAND SOMETHING OR 9999’
 ELSE
 PRINT ‘DID NOT EQUAL ANY OF THE ABOVE’
ENDCASE

CLOSE Statement

34 Chapter 5. z/Writer Control Statements

CLOSE Statement

PURPOSE

Closes a file or DB2 cursor (if it is open.)

SYNTAX

DISCUSSION

You do not normally need to code an explicit CLOSE statement. z/Writer closes all open files for you at
the end of your program. (Or at the end of each phase’s execution, when the program consists of
multiple phases.)

However, this statement (along with the OPEN statement) is useful if you wish to read through a file or
DB2 cursor more than one time within the same phase.

If you attempt to close a file that is not open, the CLOSE instruction is just ignored. No error occurs and
no messages are printed.

PARMS

filename/cursorname
Specifies the name of the file or DB2 cursor to close. The file or cursor must have been previously
defined using a FILE or CURSOR statement. This parm is required.

EXAMPLE

OPEN EMPL
READ EMPL
DOWHILE #EOF <> ‘Y’

PRINT EMPL_NUM EMPL_NAME
READ EMPL

ENDDO
CLOSE EMPL

OPEN EMPL /* READ 2ND PASS */
...

CLOSE STATEMENT SYNTAX

CLOSE filename/cursorname

COMPUTE Statement

z/Writer Reference Manual 35

COMPUTE Statement

PURPOSE

Use this statement to compute a value and move it to a field.

SYNTAX

Note: the statement name (“COMPUTE”) is optional. You may omit it if you prefer. Both of the
following statements are valid and do the same thing:

COMPUTE TOTAL = AMOUNT + TAX
TOTAL = AMOUNT + TAX

DISCUSSION

Use the COMPUTE statement to perform calculations on one or more fields and literals to obtain a new
value, to move to a target field.

In addition to math and character operations, z/Writer has many powerful built-in functions to help
calculate your value. These easy-to-use functions can save you a lot of procedural code when
performing complex tasks, such as:

 computing math functions (such as square roots, modulus, rounding, truncating and more)

 parsing words from text strings

 searching for or replacing text strings

Appendix B, "Built-In Functions" on page 184 contains a complete list of built-in functions that can be
used in COMPUTE statements.

Note: to simply assign the contents of one field (or literal) to another field, you can use the more
efficient MOVE statement. The MOVE statement is allowed even when the field’s are stored in
different formats.

COMPUTE STATEMENT SYNTAX

 [COMPUTE] fieldname = computational-expression

COMPUTE Statement

36 Chapter 5. z/Writer Control Statements

Syntax of Computational Expressions
Computational expressions are used to specify a value. A computational expression might be nothing
more than a single field name (or literal value). Or, it might be dozens of lines long and involve many
mathematical operations and built-in functions.

Only the first operand is required. You may specify as many additional operator/operand pairs as you
like. Computational expressions return either a character or numeric value. The type of expression
(numeric or character) must be compatible with the target field to which it is being assigned.

Operands
An operand in a computational expression specifies a data value. An operand can be any of the
following:

 a literal value

 a field from a file record area or a work area

 a built–in field (such as #TIME)

 a built–in function (see Appendix B, "Built-In Functions" on page 184 for a complete list)

Operators
An operator in a computational expression specifies an operation to perform on the operands
surrounding it. The following table shows the operators that are supported, and the symbol to use for
each

COMPUTATIONAL EXPRESSION SYNTAX

operand [operator operand] [operator operand] ...

Parentheses can also be used, indicate the priority of operations. Nesting is
allowed to any level.

OPERATORS ALLOWED IN COMPUTATIONAL EXPRESSIONS

CHARACTER OPERATORS NUMERIC OPERATORS

+ (concatenation)

+ (addition)

– (subtraction)

* (multiplication)

/ (division)

** (raise to an integer power)

COMPUTE Statement

z/Writer Reference Manual 37

Note: be sure to use one or more blanks both before and after the subtraction operator (–) in
computational expressions. This is required because the same symbol is valid as a character
within field names. The following:

ABC–XYZ

would be considered the name of a single field, named ABC–XYZ. However, the following:

ABC – XYZ

would be considered a subtraction operation, where field XYZ is subtracted from field ABC. For
all other operators, blanks are not required around the symbol (but are allowed.)

Order of Operations
Operations within parentheses are performed first. If nested parentheses are encountered, the most
deeply nested operations are performed first. Within the same level of nesting, the order of operations
is as follows:

 powers are performed first

 multiplications and divisions are performed next

 additions and subtractions are performed last

Operations of equal priority are performed left to right.

Decimal Precision in Results
The final precision (number of decimal digits) of the result is, of course, determined by the definition
of the target field (the field where the computed result is placed.) However, for complex expressions,
z/Writer must often compute intermediate results while computing the final value. After divisions in
particular, it is not always possible to retain all of the decimal digits of the result. z/Writer determines
the number of decimal digits to retain in such intermediate results. It take into consideration the number
of decimal digits defined for the operators in the expression, and for the target. However, to prevent
overflow errors, z/Writer will not attempt to retain a very large number of decimal digits.

Note: if you are concerned about the precision of an intermediate calculation in a complex
computation, we recommend breaking the whole thing down into multiple, simple computations.
You can then control the precision of each intermediate result (via your definition of those target
fields.)

Note: when multiplication and division are performed at the same level within an expression, we
recommend putting the multiplications before the divisions. This usually results in the best
precision for the calculation. For example:

PERCENT = AMOUNT*100/TOTAL (recommended)
PERCENT = AMOUNT/TOTAL*100 (not recommended)

EXAMPLES

COMPUTE PERCENT-TAX = (TAX * 100) / (AMOUNT + TAX)
COMPUTE A=A+1
COMPUTE DOLLARS = #INT(AMOUNT) /* RETURN INTEGER PORTION */
COMPUTE ROUNDED-AMOUNT = #ROUND(AMOUNT,0) /* ROUND TO 0 DECIMALS */
COMPUTE FIRST-INITIAL = #SUBSTR(FIRST-NAME,1,1)

COMPUTE Statement

38 Chapter 5. z/Writer Control Statements

COMPUTE WHOLE-NAME = LAST-NAME + ‘, ‘ + FIRST-NAME
COMPUTE FORMATTED-NAME = #COMPRESS(FIRST-NAME, LAST-NAME)
COMPUTE NEW-DESC = #REPLACE(DESC,’THIS’,’THAT’)

COPY Statement

z/Writer Reference Manual 39

COPY Statement

PURPOSE

Causes control statements from a member of a PDS to be included in the program. Use this statement,
for example, to copy file definitions or common processing routines from a copy library.

SYNTAX

DISCUSSION

In addition to copying other z/Writer statements, if you are in the field definition portion of a program,
you may also copy COBOL or Assembler field definitions. z/Writer internally converts them to z/Writer
field definitions.

PARMS

member
Specifies library member to copy. This parm must be the 1-8 byte name of a member present in the PDS

identified by the SYSCOPY DD statement in the execution JCL.

COBOL / ASM
Specifies that the member to be copied contains field definitions written in COBOL (or Assembler).
These parms are only allowed on COPY statements that follow a FILE statement (and optionally one or
more FIELD statements.)

Note: when copying COBOL members, if the first field definition is at the 01 level, then the COBOL

copybook defines fields starting at the beginning of the whole file record area (even if earlier
FIELD statements were also processed). If the COBOL member begins at a higher level (05, 10, etc.)
then the field is defined at the current location within the file record area. That may be the
beginning of the record area or, if there were preceding FIELD statements, after the last field
defined.

Note: Initial values contained in the COBOL or ASM definitions are treated as comments.

COPY STATEMENT SYNTAX

COPY member
 [COBOL/ASM]

COPY Statement

40 Chapter 5. z/Writer Control Statements

EXAMPLES

COPY EMPLDEFS
COPY ACCT120C COBOL
COPY SALEREC ASM

CURSOR Statement

z/Writer Reference Manual 41

CURSOR Statement

PURPOSE

Requires z/Writer’s DB2 Option. Defines one DB2 input source to z/Writer. Before DB2 data can be
accessed in a run, it must first be defined using the CURSOR statement. The CURSOR statement defines
a DB2 “cursor,” which is used to create and fetch rows from a DB2 result table. (The CURSOR statement
is the DB2 equivalent of a FILE statement.)

SYNTAX

DISCUSSION

This statement by itself does not retrieve any DB2 data. This statement simply defines a DB2 input to
z/Writer so that subsequent control statements can refer to that input. After a DB2 input has been
defined using this statement, OPEN, FETCH and CLOSE statements may be used to perform I/O operations
on the DB2 input.

You may have more than one CURSOR statement in a run. Their order is not important — except in one
case. If you are producing a DB2 auto-cycle report (see page 9), be sure that the first CURSOR you define
is the cursor that z/Writer should read automatically.

The CURSOR statement does several things:

1. The CURSOR statement defines a cursor name, which serves a similar purpose as a file name in the
program code. The cursor name is the name that you will use in your OPEN, FETCH and CLOSE

statements for this DB2 input.

2. The CURSOR statement always specifies a DB2 query, in the form of a SQL SELECT statement. The
query defines a “result table” from DB2. The rows of this result table can be “fetched” later in the
program, using the FETCH statement.

3. Like files, cursor also have fields associated with them. These fields can be referenced in the program
code, just like fields defined for files, tables and workareas. However, you do not code FIELD statements
for these fields yourself. z/Writer automatically defines one new field for each result column that
appears in the result table. That is, one field for each column selected in the “select” clause of the SQL
Select statement (in the QUERY parm). Learn more about using the CURSOR statement in the section
titled "The CURSOR Statement - A Quick Look" on page 159.

CURSOR STATEMENT SYNTAX

CURSOR cursorname
 QUERY(SQL fullselect)
 [FLOATDEC(n/3]
 [SHOWFLDS]

CURSOR Statement

42 Chapter 5. z/Writer Control Statements

In additional to the fields defined for the result columns, z/Writer also maintains certain built-in fields
for each cursor. Some of these fields are “read-only.” Read-only means that you can examine the
contents of the field, but not modify it. The built-in fields available for a cursor are shown in the table
below. Note that if your program has more than one cursor or file, you will need to qualify these built-
in field names with the cursor name in order to uniquely reference them. (For example, PROJECT.#EOF).

PARMS

cursorname
An arbitrary name for the cursor being defined. All other control statements will use this name when
referring to this DB2 input. The cursorname is required.

 Example:

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

Built-In Fields Available for DB2 Cursors

FIELDNAME

TYPE &
LENGTH

READ
ONLY DESCRIPTION

#COUNT
4-byte
binary

Yes Number of successful fetches from the cursor.

#EOF

1-byte
charact

er
Yes

Indicates that the most recent operation attempted
to fetch past the last row in the cursor (“end of
file”).

Y = the last FETCH raised the end of file condition

N = the end of file condition has not been raised.

#RECSIZE
4-byte
binary

No
This field contains a constant value, which is the
sum of all the result columns (plus room for any
null indicators).

#SQLCODE
2-byte
binary

Yes

Indicates the SQLCODE from the more recent SQL
operation performed (OPEN, FETCH, etc.)

Check your SQL documentation for the meaning
of the SQL codes.

CURSOR Statement

z/Writer Reference Manual 43

You may assign any name you like, within the naming conventions in the box below.

QUERY(SQL fullselect)
This parm is required. Within the parentheses, you should specify a valid SQL “fullselect”. It will
always begin with the word SELECT. It may contain FROM, WHERE, ORDER BY, GROUP BY, HAVING

clauses. It may not include an INTO clause. (Fetches are always performed “into” the fields that z/Writer
automatically defines for the cursor.)

FLOATDEC(n/3)
This optional parm specifies how many decimal digits to keep when converting floating point DB2 data
to fixed decimal data.

Of course, by their nature floating point fields can hold varying number of decimal digits. All of those
digits are preserved when the floating point data is received by z/Writer from DB2. They are also
preserved when a floating point field is moved to another floating point field.

However for other processing (such as moving a floating point field to a decimal field, or when printing
the value of a floating point field in a report), z/Writer first converts the floating point value to a fixed
decimal format (in an internal, intermediate data area). The FLOATDEC parm tells z/Writer how many
decimal digits to preserve in this intermediate field.

By default, z/Writer keeps 3 decimal digits for such floating point conversions. Use this parm to change
this default for all floating point fields fetched from this DB2 input. (Or use the global FLOATDEC option
in an OPTION statement to change this default for floating point fields from all input sources.)

 Example:

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ) FLOATDEC(5)

SHOWFLDS
This optional parm causes z/Writer to list all of the fields that it creates for your cursor. The list of fields
(along with their z/Writer data type and length) appears in the control listing.

Requirements for Cursor Names

 cursor names may be from 1 to 70 characters long

 cursor names may contain alphanumeric characters, the “national” characters #, @, and $,
underscores (_) and dashes (-).

 cursor names must not begin with a numeric character

 cursor names are not case sensitive

 cursor names must not be the name of a file, workarea or table

 cursor names must not be a statement name

Examples

SALES
EMPLNUMS
EMP#
ACCOUNTING-DEPT-PROJECT-TABLE

CURSOR Statement

44 Chapter 5. z/Writer Control Statements

 Example:

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ) SHOWFLDS

DATA Statement

z/Writer Reference Manual 45

DATA Statement

PURPOSE

Denotes the end of the program statements (in the SYSIN stream) and the beginning of the data records
for the CARD input file.

SYNTAX

DISCUSSION

If you have defined an input file as a CARD type file, use the DATA statement to tell z/Writer where the
program ends and the data part of the SYSIN stream begins. Program parsing ends when the DATA

statement is encountered. All records following the DATA statement are data records. They are read
during program execution by using a READ statement for the CARD type input file.

PARMS

The DATA statement has no parms.

EXAMPLES

FILE STATUS-CODES TYPE(CARD)
CODE 2
DESC 10

READ STATUS-CODES
DOWHILE #STATUS = ‘Y’
 PRINT ‘CODE’ CODE ‘MEANS’ DESC
 READ STATUS-CODES
ENDDO
DATA
FTFULLTIME
PTPARTTIME

DATA STATEMENT SYNTAX

DATA

DELREC Statement

46 Chapter 5. z/Writer Control Statements

DELREC Statement

PURPOSE

Deletes the current record from a VSAM file that has been read for “update” processing. (A record must
have been successfully read from the file before using this statement.)

SYNTAX

DISCUSSION

When you specify UPDATE on a FILE statement, the records read from that file are available for update
processing. Each time a record is read from an update file, VSAM puts a lock on the record until you take
one of the following actions:

 you update that record by executing a REWRITE statement for the same file (normally after
changing the contents and/or length of the record)

 you delete that record by executing a DELREC statement for the same file

 you explicitly release the record by executing a RELEASE statement for the same file

 you READ a new record from the same file, which releases the lock on the current record (and
puts a lock on the newly read record)

After the DELREC statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. (If your phase has more than one file defined, you will need to qualify #STATUS by
preceding it with a filename and a period.)

The table below shows the possible values of #STATUS after a DELREC.

DELREC STATEMENT SYNTAX

DELREC filename

#STATUS Built-In Field Values After a DELREC Statement

Y - record successfully deleted
N - record not deleted.

DELREC Statement

z/Writer Reference Manual 47

PARMS

filename
Specifies the name of the file whose current record should be deleted. The file must have been
previously defined (in a FILE statement) as an UPDATE file. Also, a record must have been successfully
read from that file, and not yet rewritten or released.

EXAMPLE

FILE EMPL UPDATE TYPE(KSDS)
...

READ EMPL /* READ FIRST RECORD FOR UPDATE */

DOWHILE EMPL.#STATUS = ‘Y’
 IF EMPL.EMPL-NUM = ‘444’
 DELREC EMPL /* DELETE RECORD FROM FILE */
 ELSEIF EMPL.EMPL-NUM = ‘555’
 MOVE ‘I’ TO EMPL.STATUS /* MARK REC 555 AS INACTIVE */
 MOVE 40 TO EMPL.#LENGTH /* SHORTEN INACTIVE RECORD */
 REWRITE EMPL /* REWRITE SHORTER 555 RECORD */
 ELSE
 RELEASE EMPL /* LEAVE RECORD UNCHANGED ON FILE. */
 ENDIF
 ... /* OTHER PROCESSING */
 READ EMPL /* READ NEXT RECORD FOR UPDATE */
ENDDO

DELTABREC Statement

48 Chapter 5. z/Writer Control Statements

DELTABREC Statement

PURPOSE

Deletes the last record retrieved from a keyed table.

SYNTAX

DISCUSSION

This statement is only allowed with keyed tables. The last record retrieved from the table will be
removed from the table. The record to be deleted may have been retrieved either sequentially or directly
(with a key.) If no records have yet been retrieved from the table, this statement does not delete any
record from the table.

This statement does not change the current contents of the record area of the table. That is, even though
the record has been removed from the table itself, the copy that was moved to the record area for the
earlier retrieve remains there. The #ENTRY built-in function for the table also remains unchanged.

However, z/Writer’s internal “position” within the table is backed up to the record just before the record
that was deleted. (Or to the beginning of the table, when you delete the first record in the table.) This
allows you to resume performing sequential retrievals, if desired, from the same place in the table. That
is, if you perform a sequential RETRIEVE after a DELTAB statement, you will get the first record past the
deleted record.

Note: after the delete, the table remains a balanced binary tree, for efficient access.

After the DELTAB statement, you can check the result of the operation by examining the table’s #STATUS

built-in field. (Remember that you will need to qualify #STATUS with the tablename, if the phase has
definitions for multiple files and/or tables.) The table below shows the possible values of #STATUS after

a DELTAB.

DELTABREC STATEMENT SYNTAX

DELTAB tablename

Abbreviations Allowed:
DELTABREC - DELTAB

#STATUS Built-In Field Values After a DELTAB Statement

Y - record successfully deleted
N - record not deleted.

DELTABREC Statement

z/Writer Reference Manual 49

PARMS

tablename
Specifies the name of the table whose last record retrieved should be deleted. The table must have been
previously defined (in a TABLE statement) as a keyed table.

EXAMPLE

TABLE EMPL-TABLE
EMPNUM 5
INACTIVE 1
...

RETRIEVE EMPL-TABLE /* RETRIEVE FIRST RECORD FROM TABLE */

DOWHILE EMPL-TABLE.#STATUS = ‘Y’
 IF EMPL-TABLE.INACTIVE = ‘Y’
 DELTAB EMPL-TABLE /* DELETE INACTIVE RECORD FROM TABLE */
 RETRIEVE EMPL-TABLE /* RETRIEVE NEXT RECORD TO EXAMINE */
ENDDO

DOUNTIL Statement

50 Chapter 5. z/Writer Control Statements

DOUNTIL Statement

PURPOSE

The DOUNTIL statement begins an “iterative-structure.” The purpose of an iterative-structure is to
execute a set of “other statements” some variable (non-zero) number of times, depending on a logical
condition.

Unlike the similar DOWHILE statement, the “other statements” after a DOUNTIL statement are always
executed at least one time.

SYNTAX

DISCUSSION

The DOUNTIL structure begins with a DOUNTIL statement and ends with an ENDDO statement. Within the
structure any number (including zero) of other statements are allowed. Those statements may include
additional DOUNTIL structures. Such nesting is permitted to any level.

This is how the DOUNTIL structure is processed:

 When control reaches the DOUNTIL statement, the DOUNTIL statement itself does nothing and
the “other statements” after it are then executed.

 When the corresponding ENDDO statement is encountered, the conditional expression from
the DOUNTIL statement is evaluated.

 If the condition is true, the structure’s iterations are complete and control passes to the first
statement after the ENDDO statement

 If the expression is false, another iteration is performed; control passes back up to the DOUNTIL

statement and the statements following it are again executed.

The above process continues until the conditional expression from the DOUNTIL statement is found to be
true. (This of course means that the program will loop “forever” if the condition is never true.)

DOUNTIL STRUCTURE SYNTAX

DOUNTIL conditional-expression
 other statements

ENDDO

DOUNTIL Statement

z/Writer Reference Manual 51

EXAMPLE

READ SALES
DOUNTIL SALES.#STATUS <> ‘Y’
 TOTAL-SALES = TOTAL-SALES + AMOUNT
 READ SALES
ENDDO

J = 1
DOUNTIL J > 9
 NAME[J] = ID[J
 J=J+1
ENDDO

DOWHILE Statement

52 Chapter 5. z/Writer Control Statements

DOWHILE Statement

PURPOSE

The DOWHILE statement begins an “iterative-structure.” The purpose of an iterative-structure is to
execute a set of “other statements” some variable number of times (possibly zero), depending on a
logical condition.

Unlike the similar DOUNTIL statement, it is possible for the “other statements” after a DOWHILE statement
to not be executed at all.

SYNTAX

DISCUSSION

The DOWHILE structure begins with a DOWHILE statement and ends with an ENDDO statement. Within the
structure any number (including zero) of other statements are allowed. Those statements may include
additional DOWHILE structures. Such nesting is permitted to any level.

This is how the DOWHILE structure is processed:

 Whenever control reaches the DOWHILE statement, its conditional expression is evaluated.

 If the expression is false, the structure’s iterations (if any) are complete; control passes to the
first statement after the corresponding ENDDO statement.

 If the DOWHILE statement’s condition is true, the “other statements” after it are executed.

 When the ENDDO statement is reached, control is passed back up to the DOWHILE statement
(where the conditional expression is reevaluated.)

The above process continues until the conditional expression from the DOWHILE statement is found to
be false. (This of course means that the program will loop “forever” if the condition is never false.)

DOWHILE STRUCTURE SYNTAX

DOWHILE conditional-expression
 other statements

ENDDO

DOWHILE Statement

z/Writer Reference Manual 53

EXAMPLE

READ SALES
DOWHILE SALES.#STATUS = ‘Y’
 TOTAL-SALES = TOTAL-SALES + AMOUNT
 READ SALES
ENDDO

J = 1
DOWHILE J <= 10
 NAME[J] = ID[J
 J=J+1
ENDDO

ELSE Statement

54 Chapter 5. z/Writer Control Statements

ELSE Statement

PURPOSE

The ELSE statement is used within “if-structures” and “case-structures.” The purpose of both structures
is to conditionally execute (at most) one set of statements within the structure. The ELSE statement
introduces the optional, final default set of instructions to be executed when none of the structure’s
earlier clauses are executed.

SYNTAX

IF STRUCTURE SYNTAX

IF conditional-expression

other statements

[ELSEIF conditional-expression

other statements]

[ELSEIF conditional-expression

other statements]

...

[ELSE

other statements]

ENDIF

CASE STRUCTURE SYNTAX

CASE fieldname

[WHEN [NOT] value/range [value/range ...]
other statements]

[WHEN [NOT] value/range [value/range ...]
other statements]
...

[ELSE
other statements]

ENDCASE

ELSE Statement

z/Writer Reference Manual 55

DISCUSSION

A complete discussion of an “if-structure” can be found under the IF statement on page 86. A complete
discussion of a “case-structure” can be found under the CASE statement on page 32.

ELSEIF Statement

56 Chapter 5. z/Writer Control Statements

ELSEIF Statement

PURPOSE

The ELSEIF statement is used within an “if-structure”. The purpose of an if-structure is to conditionally
execute (at most) one set of statements within the structure. The ELSEIF statement introduces a new set
of instructions and the condition under which they should be executed, assuming that none of the if-
structure’s earlier clauses are true.

SYNTAX

DISCUSSION

A complete discussion can be found under the IF statement on page 86.

IF STRUCTURE SYNTAX

IF conditional-expression

other statements

[ELSEIF conditional-expression

other statements]

[ELSEIF conditional-expression

other statements]

...

[ELSE

other statements]

ENDIF

ENDCASE Statement

z/Writer Reference Manual 57

ENDCASE Statement

PURPOSE

The ENDCASE statement ends a “case-structure”. The purpose of a case-structure is to conditionally
execute (at most) one set of statements within the structure.

SYNTAX

DISCUSSION

A complete discussion can be found under the CASE statement on page 32.

CASE STRUCTURE SYNTAX

CASE fieldname

[WHEN [NOT] value/range [value/range ...]
other statements]

[WHEN [NOT] value/range [value/range ...]
other statements]
...

[ELSE
other statements]

ENDCASE

ENDDO Statement

58 Chapter 5. z/Writer Control Statements

ENDDO Statement

PURPOSE

The ENDDO statement ends an “iterative-structure” begun by an earlier DOUNTIL or DOWHILE statement.
The purpose of an iterative-structure is to conditionally execute a set of statements a variable number
of times, depending on a logical condition.

SYNTAX

DISCUSSION

A complete discussion can be found under the DOUNTIL statement (page 50) and the DOWHILE statement
(page 52).

DOUNTIL STRUCTURE SYNTAX

DOUNTIL conditional-expression
 other statements
ENDDO

DOWHILE STRUCTURE SYNTAX

DOWHILE conditional-expression
 other statements
ENDDO

ENDIF Statement

z/Writer Reference Manual 59

ENDIF Statement

PURPOSE

The ENDIF statement ends an “if-structure”. The purpose of an if-structure is to conditionally execute
(at most) one set of statements within the structure.

SYNTAX

DISCUSSION

A complete discussion can be found under the IF statement on page 86.

IF STRUCTURE SYNTAX

IF conditional-expression

other statements

[ELSEIF conditional-expression

other statements]

[ELSEIF conditional-expression

other statements]

...

[ELSE

other statements]

ENDIF

ENDREDEFINE Statement

60 Chapter 5. z/Writer Control Statements

ENDREDEFINE Statement

PURPOSE

Allowed only within record descriptions, this statement cancels the redefine in progress.

SYNTAX

DISCUSSION

The ENDREDEFINE statement terminates one or more redefines that are in progress and resets the current
location in the record area. It is not required to end each REDEFINE with an ENDREDEFINE statement. But,
if you do use this statement, then you must redefine all of the bytes in the field being redefined. The
purpose of the ENDREDEFINE statement is to let you “cancel” a redefinition early, without having to
redefine all of the bytes in the field being redefined.

After the ENDREDEFINE statement, the current location in the record area is set to the location
immediately after the field named in the ENDREDEFINE statement. (Or to the location immediately after
the last field named in a REDEFINE statement, if no name is used on the ENDREDEFINE statement.) Note
that if the redefined field was an array, the current location is set to the end of the whole array, not just
the end of the first element.

PARMS

[fieldname]
Specifies the name of the REDEFINE field being ended. Any nested REDEFINEs will be ended. When this
parm is omitted, the most REDEFINE statement is ended. You can use this parm to end more than one
REDEFINE statement at the same time.

EXAMPLE

FLD SALES-DATE 6
REDEFINE SALES-DATE
FLD SALES-DATE-YY 2
FLD SALES-DATE-MM 2

ENDREDEFINE STATEMENT SYNTAX

ENDREDEFINE [fieldname]

Abbreviations Allowed:
ENDREDEFINE - ENDREDEF

ENDREDEFINE Statement

z/Writer Reference Manual 61

FLD SALES-DATE-DD 2 /* COMPLETE REDEFINE. ENDREDEF IS OPTIONAL */

FLD CUSTOMER 15

FLD TELEPHONE N10
REDEFINE TELEPHONE
FLD AREA-CODE N3
ENDREDEF /* PARTIAL REDEFINE. ENDREDEF IS NEEDED */

EXCLUDE Statement

62 Chapter 5. z/Writer Control Statements

EXCLUDE Statement

PURPOSE

This statement (allowed only in auto cycle runs) “excludes” the current input record and terminates
execution of the program for that record. “Excludes” means that the fields in the record will not be

included in calculating the totals (printed at control breaks and at the end of the run.)

SYNTAX

DISCUSSION

This statement is allowed only in auto cycle runs (see page 9). When it is executed, the normal flow of
the user program ends (for the current record). That is, any statements following the EXCLUDE statement
are not executed for the current record. The auto cycle code reads the next input record and starts
program execution again for it without including the fields from the current record in any totals that are
being accumulated.

This statement is similar to the INCLUDE statement (see page 91). However, the INCLUDE statement does

include the current record in the totals before it terminates execution of the program for that record.

There are no parms for the EXCLUDE statement.

EXCLUDE STATEMENT SYNTAX

EXCLUDE

EXPORT Statement

z/Writer Reference Manual 63

EXPORT Statement

PURPOSE

This declarative statement can be used to specify that the primary “report” in this program phase should
be formatted as an export file (that is, a comma delimited file). Or, this statement can specify the name
of a new export file to be written in the current program phase (along with any override options to be
used for it).

SYNTAX

DISCUSSION

Only a single EXPORT statement is allowed per export file, but it may contain as many options as you
like.

The report name parm, if used, must be the first parm on the EXPORT statement. The report name must
be enclosed in parentheses. It specifies the name of a new export file to be written in the current phase.
(Program Phases are discussed on page 97.) After the report name, the other options may be specified
in any order. All are optional.

Primary Report
If you want your primary report to be a comma delimited file, you must specify an EXPORT statement
without a report name.

When the EXPORT statement does not begin with a report name (in parentheses), the statement applies
to the primary report for the phase. The primary report is the one that all PRINT statements without a
report name write to. (Output for the unnamed, primary report (or export file) goes to the ZWOUT001 DD

for the first phase, ZWOUT002 in the second phase, and so on.)

EXPORT STATEMENT SYNTAX

EXPORT

 [(reportname)]

 [COLSEP(‘xxx’/’,’)]

 [CURRCHAR(‘x’/’$’)]

 [FORMAT(display-format ...)]

 [NOCOLHDGS]

 [NOGRANDTOTALS]

 [QUOTECHAR(‘x’/’”’)]

Abbreviations Allowed:
NOCOLHDGS - NOCOLHDG
NOGRANDTOTALS - NOGRANDTOTAL, NOGRAND

EXPORT Statement

64 Chapter 5. z/Writer Control Statements

Additional Outputs
When the EXPORT statement does begin with a report name (in parentheses), the statement defines a new

export file for the current phase. You may have as many reports and/or export files in a single phase as
you like.

To write to the new export file, use the same report name parm (again, in parentheses) as the first item
in a PRINT statement. (TITLE statements are treated as comments for export files.)

The DDNAME used for the new export file will be the report name itself.

Note that automatic control break processing (using the BREAK statement) is only available for the
primary report/export file in each phase.

EXPORT Statement Location
As a declaratory (rather than executable) statement, the exact location of your EXPORT statement is not
critical. However, it is mandatory that it appear before the first PRINT statement for the export file.

Export File Record Length
You can choose the record length to use for your export file in either of two ways:

 specify DCB LRECL information in the output DD in your JCL

 write to an existing fixed length dataset

In either case, z/Writer will format your export file to that maximum length. If no DCB LRECL

information is specified for a new output file, z/Writer picks a default length of 133.

Differences Between Reports and Export Files
Please note the following differences between regular reports and reports that are formatted as export
files:

 TITLE statements are treated as comments for export files

 Column headings are written only one time, at the beginning of the export file. (Use the
NOCOLHDGS parm in the EXPORT statement if you wish to suppress them.)

 PRINT statements for export files may not use the ADVBEFORE and ADVAFTER parms

 no carriage control character is written for export files.

PARMS

(reportname)
This parm, when present, must be the first item on the EXPORT statement.

When a report name is not present, the EXPORT statement specifies that the first (and often only) report
in the current phase should be formatted as an export file. All PRINT statements that do not have a report
name parm write to this unnamed export file.

Use the report name parm if you are writing to more than one output during a single phase. The reports
and export files after the first one must have a name. You use this parm to specify the name you want

EXPORT Statement

z/Writer Reference Manual 65

to use for the export file. (The naming rules are like those for file names (page 78). However, the report
name must also be valid for use as a DDNAME.) The name may not be the name of a file, table or workarea
in the program. Use this same report name (again in parentheses) later in the PRINT statements for this
export file.

When using this parm, you must also supply a DD with this same report name in your execution JCL.
The export file will be written to that output DD.

COLSEP(‘xxx’/’,‘)
Specifies a separator text that should appear between each column of the export file. When not
specified, the default is to put a comma between columns in the export file.

For example, the following statement would cause the export file to be “tab-delimited” rather than
comma-delimited. (Microsoft Excel can import tab-delimited files.)

EXPORT (name) COLSEP(X’05’)

CURRCHAR(‘x’/’$’)
Specifies the character to use as the currency symbol in this export file. Items formatted with the
CURRENCY display format will use this character. (Display formats are listed on page 117.) You may
specify any 1-byte

FORMAT(display-format ...)
Specifies one or more default display formats to use in this export file. Normally, you should only
specify a date display format with this parm. z/Writer chooses the character and numeric display format
needed to make a comma delimited export file.

A complete list of the display formats available appears in the table on page 117.

Note that this parm only specifies the default display format(s) to use. Different display formats can still
be specified for individual fields or columns in the report. (Do that with a FORMAT parm directly in the
PRINT statement.)

NOCOLHDGS
Suppresses column headings in the export file. By default, export files get columns headings based on
the fields in the first PRINT statement (for that output) found in the program. (See page 14 for a
discussion of column headings.)

NOGRANDTOTALS
Suppresses grand totals from appearing at the end of an auto-cycle export file.

QUOTECHAR(‘x’/’”’)
Specifies the character to use as the quote character for this export file. Character and date fields in the
export file will be surrounded with this character. You may specify any 1-byte character or hex literal
here. The default quote character is the double quotation mark.

EXAMPLES

FILE EMPL TYPE(KSDS)
...

EXPORT FORMAT(YYYY-MM-DD)

EXPORT Statement

66 Chapter 5. z/Writer Control Statements

PRINT EMPL_NAME HIRE_DATE STATUS

EXPORT (PARTTIME)

PRINT (PARTTIME) EMPL_NAME STATUS

FETCH Statement

z/Writer Reference Manual 67

FETCH Statement

PURPOSE

Requires z/Writer’s DB2 Option. Fetches one row from the DB2 result table created by a DB2 cursor.
(The FETCH statement is the DB2 equivalent of a READ statement.)

SYNTAX

DISCUSSION

The FETCH statement, together with an earlier CURSOR statement, is how DB2 data is accessed in a
z/Writer program. The only parm, which is required, is the name of the cursor to fetch from. It must
have been defined in an earlier CURSOR statement.

Before the first FETCH from a cursor, z/Writer first opens the cursor (unless it has already been opened
with an explicit OPEN statement.)

Status of a Fetch Operation
After a FETCH statement, you can check the result of the operation by examining the cursor’s #STATUS

built-in field. (Remember that you will need to qualify #STATUS with the cursorname, if the phase has
definitions for multiple files, cursors and tables.) The table below shows the possible values of #STATUS

after a FETCH.

You can also test for “end of file” (no more rows) after a FETCH using the file’s #EOF built-in field. The

table below shows the possible values of #EOF after a FETCH.

FETCH STATEMENT SYNTAX

FETCH cursorname

#STATUS Built-In Field Values After a FETCH Statement

Y - file successfully read
N - no record read. For sequential reads, this normally indicates EOF; for keyed reads, this
normally indicates that no record matching the key (or partial key) was found.

#EOF Built-In Field Values After a FETCH Statement

Y - file has reached the end-of-file
N - file has not reached end-of-file

FETCH Statement

68 Chapter 5. z/Writer Control Statements

In addition, DB2 cursors also have a special #SQLCODE built-in field. This numeric field contains the
status code returned by SQL for the previous DB2 operation. Check your SQL documentation to find
the meaning of these codes.

PARMS

cursorname
Specifies the name of the DB2 cursor to fetch from. The cursor must have been previously defined using
a CURSOR statement.

FIELD Statement

z/Writer Reference Manual 69

FIELD Statement

PURPOSE

Defines the properties of one field in the record area of a file or table, or in a work area. Before a field
can be referred to in any other control statement, it must first be defined using a FIELD statement.

SYNTAX

Note: the statement name itself (“FIELD” or “FLD”) is optional. You may omit it if you prefer.
Both of the following statements are valid and accomplish the same thing (as long as they appear
after a FILE, WORKAREA or TABLE statement):

FIELD AMOUNT N5.2
AMOUNT N5.2

DISCUSSION

The FIELD statement provides certain essential information about a field, such as where it is located in
a record, how long it is and the type of raw data it contains. Optionally, the FIELD statement can also
specify certain reporting options to be used when the field appears in a report (using the PRINT

statement.) These options include the columns headings to use, how the raw data should be formatted,
and more.

FIELD STATEMENT SYNTAX

[FIELD] fieldname/FILLER

[n / tn / tn.n]

[LEN(n)]

[TYPE(datatype/CHAR)]

[COL/DISP(n or +/-n or fieldname)]

[CONTAINS(contains-type))]

[DEC(n/0)]

[DIM(n [,n] ...)]

[FORMAT(display-format)]

[HEADING(‘line1|line2|...’)]

[INDEX(indexfld [,indexfld] ...)]

[INIT(value)]

[LJ/CJ/RJ]

[REINIT(value)]

Abbreviations and Alternative Spellings Allowed:
FIELD - FLD
FORMAT - FMT
HEADING - HDG

FIELD Statement

70 Chapter 5. z/Writer Control Statements

FIELD statements must immediately follow the FILE, TABLE or WORKAREA statement to which they
pertain. You may have as many FIELD statements as you like.

FIELD statements are often kept in a copy library, and copied into reports as needed using a COPY

statement.

The name of the field being defined is the first item in the FIELD statement. The next item (and the only
other required item) must specify the field’s length. The length can be specified in one of two ways:

 using the special shorthand notation (page 71). Examples: 10 or N10 or P5.2

 using the LEN parm. Example: LEN(10)

If the data type is character, no other parms are required. For non-character fields, the data type must
be specified next. You can do this in the shorthand notation (page 71), together with the length. Or you
can do it immediately after the length in a TYPE parm.

After fieldname, length and data type, all other parms are optional and may appear in any order.

 Note that the presence or absence of decimal information determines whether numeric fields
are totalled in the report. If you want a numeric field to be totalled, be sure to specify the
number of decimal digits it contains, even if that number is zero (with a DEC(0) parm or a
shorthand notation such as N7.0).

PARMS

fieldname/FILLER
Specifies the name of the field being defined. All other control statements will use this name when
referring to the field. You may assign any name you like within the naming conventions in the box
below.

Note: you may also specify the special word FILLER as the fieldname. Fillers fields are not
actually defined and may not be referenced in the report.

Requirements for Field Names

 field names may be from 1 to 70 characters long

 field names may contain alphanumeric characters, the “national” characters #, @, and $,
underscores (_) and dashes (-).

 field names must not begin with a numeric character

 field names are not case sensitive

 field names must not be statement names or other reserved words

Examples
J

EMPL_NUM

EMP#

SMF30-ENCLAVE-CPU-TIME-IN-HUNDREDTHS-OF-SECONDS

FIELD Statement

z/Writer Reference Manual 71

n / Tn / Tn.n (shorthand specification of type/length/decimal)
You can specify the length (and optionally also a data type and decimal parm) using a special shorthand
notation. It is not required to use this shorthand notation-- you can also use explicit LEN (and TYPE and
DEC) parms as needed. Whichever syntax you choose, some parm specifying the field length must
immediately follow the fieldname.

The table below explains the three formats allowed in the shorthand notation.

LEN(nnn)

Specifies how many bytes the field occupies in the record or work area. Field length can be specified
either with this explicit parm, or using the shorthand notation described earlier. Whichever method is
used, some parm specifying the field length must immediately follow the fieldname. The lengths
allowed for a field depend on its data type. The table under the TYPE parm below shows the lengths
allowed for each data type.

Note: for FILLER fields only, a length of 0 is also allowed.

TYPE(datatype)

Specifies how the raw data is stored in the record or work area. The field’s data type can be specified
either with this explicit parm, or using the shorthand notation described earlier. When used, the explicit
TYPE parm should immediately follow the length specification.

The following table shows the complete list of data types, the abbreviations allowed, and their
acceptable lengths.

SHORTHAND NOTATION FOR DEFINING FIELDS

SYNTAX DESCRIPTION EXAMPLE

n Defines a character field of “n” bytes. FLD EMPLNAME 20

Tn
Specifies a “data type”, and the length of the field in
bytes. The field, if numeric, contains no decimal digits.

FLD EMPLNUM N3

FLD EMPLNAME C20

Tn.n

Specifies a (numeric) “data type”, the length of the field
in bytes, and the number of decimal digits that the field
is understood to contain. Note that the field length is
specified in bytes, while the decimal digits is the number
of digits.

FLD AMOUNT P5.2

Note: a complete list of “data types,” and the lengths allowed for each, can be found in the table
under the TYPE parm below.

DATA TYPES

DATA

TYPE DESCRIPTION

LENGTH

ALLOWED

COBOL
EQUIV.

C
CHAR

Character data. Each byte may contain any 8-bit
value. Specifying this type is optional. When no data
type is specified, character data is assumed.

1 to
2,147,483,6
47 bytes

PIC X

FIELD Statement

72 Chapter 5. z/Writer Control Statements

COL/DISP(n or +/-n or fieldname)

Specifies the field’s beginning column (or displacement) within the record or work area.

By default, the first field in a record or work area begins in column 1. And, by default, all other fields
are assumed to begin immediately after the previously defined field. Use one of these parms if you want
to override a field’s default starting location.

When specifying a fixed location (“n”), you may use either COL or DISP, whichever is more convenient
for you. The first byte of a record is COL(1) or DISP(0). (When using the “+/-n” or “fieldname” syntax,
the COL and DISP parms both yield the same result.)

Note: for variable length QSAM records (V or VB) the first four bytes of the record are called the
record descriptor word (RDW). Thus, the first actual data byte in such records is in column 5
(displacement 4).

Note: another way to specify the location of a field is with a REDEFINE statement.

N

NUM

Numeric data in “zoned” format. The first nibble of
the last byte contains the sign information.

1-31 bytes PIC 9

NE
NUMEDIT

Numeric data in “edited” numeric format. Leading
and trailing blanks are allowed; a single leading or
trailing + or - sign is allowed; embedded punctuation
is ignored; a single decimal point is allowed. An all-
blank field is treated as zero.

1-256 bytes none

P
PACK

Numeric data in signed, packed format. The last
nibble of the last byte contains the sign information.

1-16 bytes COMP-3

PU

Numeric data in unsigned packed (also called BCD)
format. The field does not contain sign information
and the value is always considered positive.

1-16 bytes none

B

BIN

Numeric data in signed, binary format. The first bit
of the first byte contains the sign information.

1-8 bytes
PIC 9 COMP
SIGNED

BU

Numeric data in unsigned binary format. The field
does not contain sign information and the value is
always considered positive.

1-8 bytes
PIC 9 COMP
UNSIGNED

F
FLOAT

Numeric value in IBM’s hexadecimal floating point
representation. These fields contain a sign in the
leading bit, a hexadecimal exponent in the next 7
bits, and the digits of a hexadecimal number in the
remaining bytes. Note that while lengths up to 16
bytes are accepted, z/Writer actually uses only the
first 8 bytes (14 hexadecimal digits) of the field. Any
additional trailing digits are truncated.

2-16 bytes
COMP-1

COMP-2

DATA TYPES

DATA

TYPE DESCRIPTION

LENGTH

ALLOWED

COBOL
EQUIV.

FIELD Statement

z/Writer Reference Manual 73

The table below explains the three ways that you can specify a field’s starting location within the COL

and DISP parms.

Note: You can use the COL/DISP parms to backup and redefine an earlier portion of the record.
However, there is an important difference between redefining an area with the COL/DISP parm as
compared to using a REDEFINE statement. If you use a REDEFINE statement to redefine an array
field or a field with indexes, the new fields that redefine the original field will also inherit its DIM

and INDEX parms. Those properties are not inherited when you use the COL/DISP parm to redefine
an earlier part of the record.

CONTAINS(contain-type))

This optional parm describes the contents of a CHAR or NUM field in more detail. That is, it provides
z/Writer a “hint” as to how the field is used in your program logic. Use this parm when defining fields
that contain date values, if you would like z/Writer to assist you with them. The valid values for this
parm are listed in the table below. Here is an example:

FIELD SALES-DATE C8 CONTAINS(YYYYMMDD)
FIELD HIRE-DATE N6 CONTAINS(YYMMDD)

Note: only CHAR and NUM fields may use the CONTAINS parm. The field length must also match
the implied length of the contains-type. For example, a C6 or N6 field may contain YYMMDD data.
And a C8 or N8 field can contain a YYYYMMDD date.

When you define a field that contains a date contains-type, z/Writer does these things differently.

 when you print the field in a report, z/Writer automatically formats it as a date for you. It uses
the default date display-format, which is MM/DD/YY. (You can change the date display-format
used as the default, by specifying a FORMAT parm in an OPTION or REPORT statement. For
example, if you would like all dates in your report to appear in DD/MM/YY format by default.
you could use this statement:

REPORT FORMAT(DD-MM-YY)
...
PRINT REGION START-DATE END-DATE

COL AND DISP PARM SYNTAX

SYNTAX DESCRIPTION EXAMPLE

n
The field starts in the column or displacement
specified.

FLD EMPLNAME 20 COL(11)
FLD EMPLNAME 20 DISP(10)

+/-n

The field will start ‘n‘ bytes before (-) or after (+)
its default starting position. Use this syntax if
you want to skip over (or back up and redefine)
a portion of the record.

FLD DATE-DD 2 COL(-2)

FLD NAME 20 COL(+35)

fieldname

The field starts in the same byte that the named
field starts in. (The named field must have
already been defined, within the same record.)

FLD DATE-YY 2 COL(DATE)

FIELD Statement

74 Chapter 5. z/Writer Control Statements

 you are also allowed to specific your own date display-format for the field. This can be done
using the FORMAT parm of the FIELD statement, or directly in a PRINT or TITLE statement. See
the table on page 117 for a complete list of display formats.

 for all statements other than the PRINT and TITLE statements, the fields with CONTAIN parms
are simply treated as any other character or numeric field. (For example, in MOVE statements,
IF statements, COMPUTE statements, etc.) The CONTAIN parm only affects how the field is
formatted in the report.

DEC(n/0)

Specifies how many of the digits in the numeric field are considered to be decimal digits. When not
specified, zero decimal digits is assumed. The number of decimal digits can be specified either with this
explicit parm, or using the shorthand notation described on page 71.

Note: the DEC parm has a slightly different meaning for fields with the FLOAT data type. By
definition, float fields have a floating “decimal” point (technically a “hexadecimal” point) in
their raw format, and thus a varying number of “decimal” digits. So for these fields, the DEC

parms does not specify the number of “decimal” digits in the raw data. Instead, the DEC parms
specifies how many decimal digits to preserve when the raw data is converted from floating point
to fixed point decimal (for internal processing or to display in the report).

Note: the presence or absence of decimal information determines whether numeric fields are
totalled in reports. If you want a numeric field to be totalled, be sure to specify the number of
decimal digits it contains, even if that number is zero.

CONTAIN-TYPES (ALLOWED IN THE CONTAINS PARM)

CONTAIN-
TYPE DESCRIPTION

REQUIRED

FIELD

LENGTH

YYYYMMDD
The field contains a date in YYYYMMDD format.
It does not include any delimiters.

8

YYMMDD

The field contains a date in YYMMDD format. It
does not include any delimiters.

If you display this field with a date display
format that shows 4 digits for the year, z/Writer
assigns the century bytes (either 19 or 20) for
you. It does this by comparing the YY portion of
the date to the century-cutoff value. (That value
is 50 by default, and can be overridden with a
CENTURY parm in an OPTIONS statement.)
When YY is greater than the cutoff value, ‘19’ is
assigned as the century digits. Otherwise, ‘20’
is assigned.

6

FIELD Statement

z/Writer Reference Manual 75

DIM(n [,n] ...)

The presence of this parm indicates that the field being defined is an array. Use this parm to specify the
number of elements in each dimension of the array. You must use numeric literals within this parm —
field names are not allowed. z/Writer allows you to specify up to 2,147,483,647 elements per
dimension, however memory constraints may limit this as a practical matter.

z/Writer supports up to 32,767 dimensions.

Subscript Notation for Arrays
In your program code, fields defined with the DIM parm normally must be referenced using a subscript.
Subscripts are placed in square brackets after the field name. (The subscript must not be separated from
the fieldname with a space.) Within the brackets, there must be one element specifier per defined
dimension of the field. The first element of each array dimension has subscript “1”. Each subscript may
be specified as either a numeric literal, a numeric field, or a numeric expression. A numeric field used
as a subscript may itself be subscripted.

Following is an example of defining a one-dimensional array, and using it in a MOVE statement:

FLD ADDR_LINE 30 DIM(4)
...
MOVE ADDR_LINE[3] TO OUT_ADDR

Inheritance of the DIM Parm
If you use a REDEFINE statement to redefine an array field, the new fields that redefine the original field
will also inherit its DIM parm. (This applies to all fields until either an ENDREDEF statement is
encountered, or until you have redefined up to the end of the original array field.) Thus, you will also
need to use subscripts when referencing any field that redefines a part of an array field.

For example:

FLD DATE 6 DIM(10)

REFEDINE DATE
FLD DATE-YY 2
FLD DATE-MM 2
FLD DATE-DD 2
ENDREDEFINE
...
MOVE DATE-MM[8] TO WORK2

FORMAT(display-format)

Specifies how the field’s raw data should be formatted (by default) when it is printed in a report (by a
PRINT or TITLE statement.) See the table on page 117 for a complete list of display formats. (This default
can still be overridden with a different display format specified directly in the PRINT or TITLE statement.)

 HEADING(‘line1|line2| ...’)

Specifies the default column headings to use when printing this field in a report (using the PRINT

statement.) (This default can still be overridden with different column headings directly in the PRINT

statement.)

Use one or more “|” characters within the text to indicate how the text should be broken onto multiple
column heading lines. Each column heading is centered over the column by default. So you do not need

FIELD Statement

76 Chapter 5. z/Writer Control Statements

to include pad characters in the text to help center it. (If you do not want centered headings, you can use
padding characters on the left or right of the heading text, as necessary.)

INDEX(indexfld [,indexfld] ...)

Specifies one or more “index fields” to use when locating the field within a record or workarea. In this
parm, you may name a previously defined numeric field. Or you can provide a valid fieldname that has
not yet been defined. In that case, z/Writer defines it for you as a new 4-byte binary field. Each time
you reference a field that was defined with an INDEX parm, the values of all of its index fields are
summed together and added to the field’s defined location (that is, the location defined by its COL or
DISP parm, if any.) This aggregate value determines the field’s location within the record or workarea
at that point in the program.

Note: one use of indexes is to work with arrays. In most cases, however, specifying the DIM parm
(and using array subscripts) is a much easier way to work with arrays.

Inheritance of the INDEX Parm
If you use the REDEFINE statement to redefine a field that has an INDEX parm, the new fields that redefine
the original field will also inherit that INDEX parm. (This continues until either an ENDREDEF statement
is encountered, or until you have redefined up to the end of the original indexed field.)

INIT(value)

Specifies an initial value to be placed in the field before the program begins execution. The value must
be a character literal for character fields, or a numeric literal for numeric fields. For arrays, (fields
defined with the DIM parm), all occurrences of the field will be initialized to the given value.

If no INIT or REINIT parm is specified, fields defined for a WORKAREA will automatically be initialized to:

 numeric zero, for all types of numeric fields

 blanks, for other fields

Files, DB2 cursors and tables all have their entire record area initialized to blanks once before program
execution. So, when no INIT or REINIT parm is specified, their fields will initially contain blanks
regardless of data type.

LJ / CJ / RJ

Specifies how the data should be justified (within its report column) when it is printed in a report (using
the PRINT statement.) The values mean left-justified, center-justified and right-justified, respectively.

REINIT(value)

Specifies an initial value to be placed in the field before the program begins execution, just like the INIT

parm.

This parm is only meaningful for auto-cycle reports. The difference from INIT is that the initial value is
again placed in the field at the start of each cycle of the report is performed. That is, just before the next
record is read from the primary input file and the program execution begins again. Read more details
under the INIT parm above.

FIELD Statement

z/Writer Reference Manual 77

EXAMPLES

FIELD EMPL-NUM 3 INIT(‘999’)
FIELD AMOUNT N5.2 INIT(0)
FLD LAST-NAME 20
FLD LAST-NAME C20 CJ
FLD LAST-INITIAL 1 COL(LAST-NAME)
FLD FILLER 19
FLD DEPT-NUM N3
FLD SALES-AMOUNT P8.2 FORMAT(PIC’$$$,$$9.99’)
FLD LOOP-COUNTER B2
FLD FLOAT-AMOUNT F4.2 HEADING(‘TRANSACTION|AMOUNT’)

FILE Statement

78 Chapter 5. z/Writer Control Statements

FILE Statement

PURPOSE

This non-executable statement simply defines the characteristics of a single file to z/Writer. Before a
file can be used in a run, it must first be defined using the FILE statement.

FEATURES

Use the FILE statement to:

 define the type of file (for example, whether it's VSAM or QSAM)

 specify whether the file is an input or output file, or whether it will be updated (used for both
input and output)

 tell how you want to access a VSAM file (for example, sequentially or randomly.)

 specify that the file should be pre-sorted before executing the user program

SYNTAX

DISCUSSION

This statement by itself does not perform any I/O operation on the file. This statement simply defines a
filename to z/Writer so that subsequent control statements can refer to that file. After a file has been
defined using this statement, READ, WRITE and various other statements may be used to perform I/O
operations on the file.

FILE STATEMENT SYNTAX

FILE filename
[INPUT/OUTPUT/UPDATE]
[TYPE(SAM/ESDS/KSDS/RRDS/TEMP/CARD)]
[F/FB/V/VB[(nnnnn)]]
[SEQ/DIR/SKIP] VSAM only

[PRESORT(fieldname[(ASC/DESC)] ... [#EQUALS])]
[UNIT(xxxxx/SYSDA] TEMP only
[SPACE(CYL/TRK/nnnnn, nnn [,nnn])] TEMP only

Abbreviations Allowed:
ASC - A

DESC - D

FILE Statement

z/Writer Reference Manual 79

You may have as many FILE statements as you like in a run. Their order is not important — except in
one case. If you are producing an auto-cycle report (see page 9), be sure that the first file you define is
the file that z/Writer should read automatically.

For most file definitions, you will need one DD statement in the JCL for each file that you define and use
in a run. However, CARD type files use the SYSIN DD (which is also used for the program control
statements.) And TEMP type files do not require any DD at all.

The fields for the file must be defined immediately after the FILE statement. Use FIELD statements to
define the fields. Often the FILE and FIELD statements for a file are kept together in a “copy library”
member. (Then simply use a COPY statement to copy them into programs as needed.)

The entire record area for files is initialized to blanks before program execution. However, individual
fields within the record area can be initialized to your own value, using the INIT parm in the FIELD

statement.

When a file is defined, z/Writer automatically creates a field by the same name (as the file). It is defined
as a character field whose length is the defined length of the file. You may use this field just like any
other character field (for example, in a MOVE statement.)

z/Writer also maintains certain built-in fields for each file automatically. Some of these fields are “read-
only.” Read-only means that you can examine the contents of the field, but not modify it. The built-in
fields for each file are shown in the table below. Note that if your program has more than one file, you
will need to qualify these built-in field names with the file name in order to uniquely reference them.
(For example, SALES.#EOF).

Built-In Fields Available for Files

FIELDNAME

TYPE &
LENGTH

READ
ONLY DESCRIPTION

#COUNT
4-byte
binary

Yes
Number of successful reads from an INPUT or
UPDATE file, or number of successful writes for an
OUTPUT file.

#EOF

1-byte
charact

er
Yes

Indicates that the most recent operation attempted
to read past the last record in the file (“end of file”).

Y = the last I/O operation was a POSITION or READ

statement which raised the end of file condition

N = the last I/O operation was not a POSITION or
READ statement which raised the end of file
condition

#RECSIZE
4-byte
binary

No

After a READ, this field contains the length of the
record just read.

Before a WRITE or an REWRITE, the user should
ensure that this field contains the (new) length of
the record.

FILE Statement

80 Chapter 5. z/Writer Control Statements

PARMS

filename
Specifies the name of the file being defined. All other control statements will use this name when
referring to this file.

Note: in most cases, the filename specified here must also be the DDNAME of a DD in the execution
JCL. Files of type CARD and TEMP are exceptions.

#RRN
4-byte
binary

Yes

Defined only for RRDS files. Stands for “relative
record number”. After a non-keyed READ to a
RSDS file, z/Writer places the RRN of the record
that it returns here. After a non-keyed WRITE,
z/Writer places the RRN of the record written here.

(For keyed reads and writes to RRDS files, the
user specifies the desired RRN using the KEY
parm of the relevant statement, not this built-in
field.)

#STATUS

1-byte
charact

er
Yes

Indicates the status of the file after each I/O
operation.

(blank) = uninitialized (no operations performed
on file yet)

Y = last operation on file was successful

N = last operation on file was unsuccessful. After
a keyed read, it usually indicates a missing record.
After a sequential read, it usually indicates EOF. Or
it can indicate that some other error occurred while
trying to perform the operation.

Built-In Fields Available for Files

FIELDNAME

TYPE &
LENGTH

READ
ONLY DESCRIPTION

FILE Statement

z/Writer Reference Manual 81

You may assign any name you like following the naming conventions in the box below.

INPUT/UPDATE/OUTPUT

Specifies the type of processing that will be performed on the file. If you will only be reading from the
file (whether sequentially or randomly) specify INPUT. INPUT is also the default if you omit this parm.

If you will only be writing new records to a file, specify OUTPUT. To read records, and then possibly
modify or delete those records, specify UPDATE.

TYPE(QSAM / ESDS/KSDS/RRDS/TEMP/CARD)

Specifies the type of access method to use when reading this file. If not specified, QSAM is assumed.
Valid file types are listed in the following table:

Requirements for File Names

 file names may be from 1 to 8 characters long

 file names may contain alphanumeric characters and the “national” characters #, @, and $

 file names must not begin with a numeric character

 file names are not case sensitive

 file names must not be statement names or other reserved words

 file names must not be the name of a workarea, table or DB2 cursor

Examples

SALESIN
SALESOUT
MERGE2

FILE TYPES ALLOWED IN THE TYPE PARM

FILE TYPE DESCRIPTION

QSAM/
SAM

Standard sequential files, including tapes and disk datasets.
The QSAM access method will be used. QSAM files may not be
used with UPDATE processing.

ESDS
A VSAM ESDS file. The IDCAMS access method will be used. The
file is always processed sequentially.

KSDS

A VSAM KSDS file. The IDCAMS access method will be used. The
file may processed sequentially, randomly, or a combination of
both of those (i.e., random access(es) followed by sequential
access(es).)

RRDS

A VSAM RRDS file. The IDCAMS access method will be used. The
file may processed sequentially, randomly, or a combination of
both of those (i.e., random access(es) followed by sequential
access(es).)

FILE Statement

82 Chapter 5. z/Writer Control Statements

F/FB/V/VB[(nnnnn)]

Specifies whether the records in the file are fixed (F/FB) or variable (V/VB) in length. If this parm is not
specified, fixed length records are assumed for QSAM files, while variable length is assumed for VSAM

files.

Optionally, you may also specify the record length in parentheses immediately after the format
character(s). For all variable length files, specify the length of the largest record that could be
encountered during the run. For variable length QSAM files, be sure that the length includes the 4 bytes
used as the "record descriptor word" (RDW) at the beginning of each record. When no length is specified,
the length implied by the fields defined after the FILE statement is used as the record length.

Note: when this parm is omitted, z/Writer assumes a fixed-length file whose records are the
length indicated by the field definitions that follow.

Note: for fixed length VSAM files, specifying “F” here will improve the efficiency of any sort
performed on that file.

Note: CARD files are always treated as fixed length files of record length 80. You can omit this
parm to default to this. However, you may not specify any different record length, nor the V or
VB format.

Note: it is not important to distinguish between F and FB, or between V and VB files. Both the F
and FB parms mean fixed record length; both the V and VB parms mean variable length. The
traditional “B“ formats are also allowed purely for convenience.

SEQ / DIR/SKIP (allowed only for VSAM files)

Specifies the manner in which a VSAM file will be accessed. The following table explains the meanings
of the values for this parm:

TEMP

Defines a temporary, sequential file to be accessed using
QSAM. Since z/Writer dynamically allocates TEMP files, you do
not need to supply a DD statement for these files in your JCL.
Typically, a FILE statement first defines an OUTPUT type TEMP
file. Records are written to the temporary file in that phase.
Then, a later phase in the same program specifies a REUSE

statement to define the same temporary file as an input file. That
phase will read the records written by the earlier phase.

CARD

The SYSIN file. The first records read from the SYIN file contain
the program statements. Once the DATA statement has been
reached in SYSIN, no more programming statements are read.
All records after the DATA statement are data records. They
are read as data when the program executes a READ to the
CARD file.

FILE TYPES ALLOWED IN THE TYPE PARM (CONTINUED)

FILE TYPE DESCRIPTION

FILE Statement

z/Writer Reference Manual 83

ACCESS TYPE PARM

FILE TYPE DESCRIPTION

Values Permitted for VSAM files defined as INPUT or UPDATE

SEQ

Files will be read in sequential order. This is the default and the
only value permitted for ESDS files. For KSDS and RRDS files,
specifying this parm implies that no keyed reads will be
performed to the file during the run.

DIR

For KSDS and RRDS files only. This is the default for KSDS and
RRDS files. It means that the file may be accessed directly (using
a key) and/or sequentially. Any keys specified in the READ

statement can be in random order.

A READ statement with a KEY parm results in a direct read, while
a READ statement without a KEY parm results in a sequential
read.

SKIP

For KSDS and RRDS files only. This parm means that any
keyed READ statement will use skip access. The keys specified
in the READ statement must be in key sequence order. This
access method can be more efficient when used correctly. But
it will result in an I/O error if keyed reads are attempted that are
not in key sequence.

Note that sequential reads (from the last record read) are also
permitted with this parm, and can be mixed among skip reads.
(A READ statement without a KEY parm results in a sequential
read.)

Values Permitted for VSAM files defined as OUTPUT

SEQ

Files will be written in sequential order. This is the default for all
output files. It is also the only value permitted for ESDS files.
When writing to (loading) empty VSAM files, this SEQ access
method must be used.

DIR

For KSDS and RRDS files only. This parm means that all writes
to the file will be performed using direct access. The keys
contained within the record being written can be in random
order. This parm must not be used to load an empty file.

SKIP

For KSDS and RRDS files only. This parm means that all writes
to the file will be performed using skip access. The keys
contained within the record being written must be in key
sequence order. This access method can be more efficient
when used correctly. But it will result in an I/O error if writes are
attempted that are not in key sequence. This parm must not be
used to load an empty file.

FILE Statement

84 Chapter 5. z/Writer Control Statements

UNIT(xxxxx/SYSDA)

Allowed only for file’s of type TEMP. Specifies the z/OS UNIT to use when allocating this temporary file.
The default is SYSDA.

SPACE(CYL/TRK/nnnnn nnn [,nnn])

Allowed only for file’s of type TEMP. Specifies the units and amount of disk space to request when
allocating this temporary file. The default units to request is CYL (cylinders). Other choices for unit are
TRK (tracks) and nnnnn (blocks of size nnnnn).

The next parm(s) specify how many such units to allocate for primary (and optionally secondary)
allocation.

If you know that a large number of records will be written to your temporary file, you should use this
parm to specify that a larger number of cylinders (than the default) be allocated.

PRESORT(fieldname[(ASC/DESC)] ... [#EQUALS])

When the PRESORT parm is specified, z/Writer presorts the whole file before beginning to execute the
user program. Thus, when the program reads records from the file, theose records are read in sorted
order. (The net effect is just the same as if you had sorted the input file in a separate, earlier job step.)
The PRESORT parm is allowed only for INPUT files.

Note: only one file per phase may be defined with a PRESORT parm.

The PRESORT parm can name any number of sort fields to use. (All fields must come from the file being
defined.) The field specified first is the primary sort field; the next field is the secondary sort field and
so on.

By default, the file will be sorted in ascending sequence on each field. You may specify DESC (or just
D) after a fieldname to sort that field into descending sequence. (You may also specify ASC or A for
ascending sequence, although that is the default.)

The final, optional #EQUALS parm indicates how to sort multiple records, all of whose sort fields contain
the same value. When #EQUALS is specified as the last item in the PRESORT parm, those duplicate-key
records will remain in the same relative order as in the unsorted file. When this parm is not specified,
the system Sort program will decide how to order such duplicate records.

EXAMPLES

FILE SALES
FILE SALES TYPE(ESDS)
FILE EMPL TYPE(KSDS) V(150) SKIP
FILE STATUS-CODES TYPE(CARD)
FILE JOBNUMS TYPE(TEMP)
FILE EMPL PRESORT(LAST_NAME FIRST_NAME #EQUALS)

GOTO Statement

z/Writer Reference Manual 85

GOTO Statement

PURPOSE

Unconditionally transfers execution of the program to the statement having the specified label.

SYNTAX

PARMS

label
Specifies the program statement to be executed next. (Labels are optional names, appended with a

colon, that precede a statement itself.) Labels must follow the naming conventions in the box below.

EXAMPLES

IF EMPL.#STATUS = ‘N’ GOTO WRAPUP
...
WRAPUP: PRINT ‘END OF RUN’

GOTO STATEMENT SYNTAX

GOTO label

Requirements for Statement Labels

 labels may be from 1 to 70 characters long

 labels may contain alphanumeric characters, the “national” characters #, @, and $,
underscores (_) and dashes (-).

 label names are not case sensitive

 label names must not begin with a numeric character

 labels must end with a colon (which is not part of the label name itself)

Examples
WRAPUP:

A-100-WRITE-OUTPUT:

A-100-WRITE-OUTPUT-EXIT:

IF Statement

86 Chapter 5. z/Writer Control Statements

IF Statement

PURPOSE

The IF statement begins an “if-structure”. The purpose of an if-structure is to conditionally execute (at
most) one set of statements within the structure.

SYNTAX

DISCUSSION

An if-structure always begins with an IF statement and ends with an ENDIF statement. Within the
structure, one or more optional ELSEIF statements are allowed. And a final, single ELSE statement may
also be used. IF statements may be nested to any level.

This is how if-structures are processed.

 The IF statement, as well as any ELSEIF statements contain a conditional expression.

 Those conditional expressions are evaluated in turn, until the first one is found that is true.

 When a conditional expression is “true”, the “other statements” that follow are then executed;
after that, control passes to the first statement after the ENDIF statement. (You are allowed to
have zero “other statements,” in which case control is immediately passed to the first
statement after the ENDIF statement.)

 If none of those conditional expressions is true, then one of the following occurs:

• if there is a final ELSE statement within the if-structure, the “other statements” following
it are executed; after that, control passes to the first statement after the ENDIF statement.

• otherwise, control simply passes to the first statement after the ENDIF statement.

Note: statement labels are not permitted within if-structures.

IF STRUCTURE SYNTAX

IF conditional-expression
other statements

[ELSEIF conditional-expression
other statements] ...

[ELSE
other statements]

ENDIF

IF Statement

z/Writer Reference Manual 87

Conditional Expressions
As mentioned, the IF statement, and any ELSEIF statements, simply contain a “conditional expression.”

A conditional expression is just one or more “tests” (or comparisons) between fields and/or literals.

If the conditional expression has more than one test, those tests must be connected using the keywords
AND and OR. Tests can also be grouped within parentheses, and nested to indicate the desired order of
evaluation. You may also negate either a single test or a parenthesized group of tests by preceding it
with the keyword NOT.

The use of “AND”, “OR”, “NOT” and parentheses is the same as in all common programming languages
(including COBOL and BASIC) and will not be elaborated upon here.

Test Syntax
Now let’s look at the syntax for the individual tests themselves. z/Writer supports a few syntactical
features that are not standard in other languages.

Syntax of a Simple Test
The syntax of a simple test is:

OPERAND1 COMPARATOR OPERAND2

Operand1 can be:

 a field name

 a numeric or character literal

 a built-in function

CONDITIONAL EXPRESSION SYNTAX

Conditional expressions take the form:

 [NOT] test [AND/OR [NOT] test] [AND/OR [NOT] test] ...

Parentheses can be used to group two or more tests (or parenthesized groups of tests)
together. Nesting is allowed to any level. When priority is not indicated by
parentheses, “AND”ed tests are performed before “OR”ed tests at the same level.

TEST SYNTAXES

OPERAND1 COMPARATOR OPERAND2

OPERAND1 COMPARATOR OPERAND2 THRU OPERAND3

OPERAND1 COMPARATOR OPERAND2 [OPERAND3] [OPERAND4] ...

IF Statement

88 Chapter 5. z/Writer Control Statements

 a computational expression, as long as it does not begin with an open parenthesis

Operand2 can be:

 a field name

 a numeric or character literal

 a built-in function

 a computational expression (which may begin with an open parenthesis)

The comparator can be any symbol from the following table.

Here is an example of a simple test in an IF statement:

IF AMOUNT = SELECT-AMOUNT
IF AMOUNT GT 100.00

Data Types of Operands
Normally, both of the operands involved in a test will be of the same general data type. That is, both
will be character data or both will be numeric data. (With numeric comparisons, you are allowed to mix
different specific numeric data types. For example, you may compare a binary numeric field with a
packed numeric field, etc.)

However, z/Writer will also allow you to compare a numeric field with a character field. In this case, a
character-by character comparison of the fields is performed (as if both operands were character data).

This can be useful when checking for special values in numeric fields. For example:

COMPARATORS ALLOWED IN CONDITIONAL EXPRESSIONS

SYMBOL MEANING

=

EQ
Equal to

¬=
<>

NE

Not equal to

<

LT
Less than

<=

LE

¬>
Less than or equal to

>

GT
Greater than

>=

GE

¬<
Greater than or equal to

IF Statement

z/Writer Reference Manual 89

IF PACKED-AMOUNT = X’FFFFFFFF’

Comparing an Operand to a Range of Values
Conditional expressions may also contain tests in this format:

OPERAND1 =/¬= OPERAND2 THRU OPERAND3

This syntax compares operand1 to a range of values. For example:

IF AMOUNT = 100 THRU 199.99

The above test is true when the AMOUNT field contains any value between 100.00 and 199.99, inclusive.

Each of the operands can be either a field or a literal.

The comparator must be either “equals” (‘=’, EQ) or “not equals” (‘¬=‘, ‘<>’, NE). The other
comparators may not be used with ranges. When “not equal” is used, the test is true as long as operand1
does not fall within the inclusive range specified.

Comparing an Operand to a List of Values
Conditional expressions may also contain tests in this format:

OPERAND1 =/¬= OPERAND2 [OPERAND3] [OPERAND4] ...

This syntax compares operand1 to a list of values. You may separate the operands in the list with spaces
and/or commas. For example:

IF AMOUNT = 0, 100, 9999999

The above test is true when the AMOUNT field contains any of these three values: zero, one hundred, or
9999999.

Each of the operands can be either a field or a literal.

The comparator must be either “equals” (‘=’, EQ) or “not equals” (‘¬=‘, ‘<>’, NE). The other
comparators may not be used with operand lists. When “not equal” is used, the test is true as long as
operand1 does not equal any of the operands in the list.

Combining Ranges and Lists
You may also combine lists and ranges within a single test. For example:

IF AMOUNT = 0, 5, 10, 100 THRU 199.99, 500, 1000 THRU 1999.99

Keyword Tests
z/Writer also supports one keyword test: NUMERIC. The format of this test is:

IF field NUMERIC

This test returns true if the tested field contains only: zero or more leading spaces, followed only by the
characters ‘0’ through ‘9’. It returns false: if any other character occurs within the field; if any spaces
other than leading spaces are found; or if the field contains all spaces.

IF Statement

90 Chapter 5. z/Writer Control Statements

For example:

IF AMOUNT NUMERIC
 PRINT ‘VALID AMOUNT FIELD’
ELSE
 PRINT ‘INVALID AMOUNT FIELD’
ENDIF

Keyword Tests
You may also use the special keywords SPACE (SPACES) and ZERO (ZEROES, ZEROS) as “operand2” in
your test. The keyword SPACES causes operand1 to be tested for all blanks, regardless of operand1’s
data type. The keyword ZEROS tests for a value of zero in operand1’s data type. For character operand1,
it is compared to all character 0’s. For numeric operand1’s, it is compared to a zero numeric value.

EXAMPLES

IF AMOUNT = TEST-AMOUNT
 PRINT ‘EQUALS TEST AMOUNT’
ELSEIF AMOUNT = 400
 PRINT ‘EQUALS 400’
ELSEIF AMOUNT = 500 THRU 599
 PRINT ‘BETWEEN 500 AND 599 (INCLUSIVE)’
ELSEIF AMOUNT = 2, 4, 6
 PRINT ‘EQUALS 2, 4 OR 6’
ELSEIF AMOUNT = 1, 3, 5, 700-799, 1000-1099, 9999
 PRINT ‘1, 3, 5, SEVEN HUNDRED SOMETHING, ONE THOUSAND SOMETHING OR 9999’
ELSE
 PRINT ‘DID NOT EQUAL ANY OF THE ABOVE’
ENDIF

IF DEPT-NUM = ‘2’ THRU ‘4’ AND (AMOUNT < 100 OR AMOUNT > 5000)
 MOVE ‘2’ TO STATUS-FLAG
 PRINT ‘STATUS 2’ EMPL-NUM
ENDIF

INCLUDE Statement

z/Writer Reference Manual 91

INCLUDE Statement

PURPOSE

This statement (allowed only in auto cycle runs) “includes” the current input record and terminates
execution of the program for that record. “Includes” means that the fields in the record will be included
in calculating the totals (printed at control breaks and at the end of the run.)

SYNTAX

DISCUSSION

This statement is allowed only in auto cycle runs (see page 9). When it is executed, the normal flow of
the user program ends (for the current record). That is, any statements following the INCLUDE statement
are not executed for the current record. Before reading the next input record, the auto cycle code will

add the fields from this record to any totals that are being accumulated. Then it reads the next record
and begins program execution from the beginning for that record.

This statement is similar to the EXCLUDE statement (page 62). However, the EXCLUDE statement
terminates execution of the program for the current record without including the record in the totals.

There are no parms for the INCLUDE statement.

INCLUDE STATEMENT SYNTAX

INCLUDE

LISTOFF Statement

92 Chapter 5. z/Writer Control Statements

LISTOFF Statement

PURPOSE

Stops the listing of control statements (to the SYSPRINT DD) as they are read and processed. By default,
control statements are listed as they are processed.

SYNTAX

EXAMPLES

FILE SALES
LISTOFF
COPY SALESDEF
LISTON
...

LISTOFF STATEMENT SYNTAX

LISTOFF

LISTON Statement

z/Writer Reference Manual 93

LISTON Statement

PURPOSE

Resumes the listing of control statements (to the SYSPRINT DD) as they are read and processed. (This is
also the initial, default mode.)

Note: listing resumes with the next statement after the LISTON statement.

SYNTAX

EXAMPLES

FILE SALES
LISTOFF
COPY SALESDEF
LISTON
...

LISTON STATEMENT SYNTAX

LISTON

MACRO Statement

94 Chapter 5. z/Writer Control Statements

MACRO Statement

PURPOSE

Specifies character strings that should replace “macros” wherever they appear in the program code (and
any instream data.) This statement is often used to pass variable data (such as selection criteria) into
“model” programs.

SYNTAX

DISCUSSION

You may choose any name you like for a macro, as long as it follows these rules:

 macro names always begin with a percent sign (%)

 the remaining characters should follow the same naming rules as for fieldnames (see page 70)

The value that should replace all occurrences of the macro name is specified after the equals sign (=).
You may specify your value in quotes or ticks. To embed that same character (quote or tick) within the
string, use two of those characters together (just as with regular character literals). Note that the exterior
quotes or ticks are not part of the value that will replace the macro name.

If your value is a simple one-word alphanumeric string, it is not necessary to enclose it in quotes or
ticks.

After the MACRO statement for a given macro name, all future occurrences of that macro name in the
SYSIN stream will be replaced by the value specified for it. This applies to all program statements,
comments, quoted literal texts as well as any instream data that may follow the program (associated
with a CARD file.) In the control listing, both the “before” and the “after” versions of the statement are
listed.

MACRO statements are normally placed near the top of a program.

EXAMPLES

MACRO %SELECT-DATE = 20140101

MACRO %RATE = 0.00186

MACRO %NAME = “JONES, JR”

MACRO STATEMENT SYNTAX

 MACRO %name = value1

MOVE Statement

z/Writer Reference Manual 95

MOVE Statement

PURPOSE

Moves the contents of one field to another field, changing its data representation if required. When
moving numeric fields, the number of decimal digits in the source field may also be altered to conform
to the defined decimal digits of the target field.

SYNTAX

DISCUSSION

You can use the MOVE statement in two ways:

 to move data from a single literal or field to a single target field

 to move data from all like-named fields in one record area (or workarea) to the correspondly
named fields in another record area (or workarea)

Simple MOVEs
Use the first syntax above to move data from a single source to a single target. When moving numeric
data to numeric field, z/Writer converts the data, if necessary, to the target format. (For example from
a binary field to a packed field.) It also adjusts decimal digits (with rounding), if necessary, to match
the target field’s precision. When data conversion is performed, the source field is first validity-
checked, to prevent S0C7’s, etc. However, when the source and target field are the data type, the same
length and have the same number of decimal digits, an simple “as-is” move is performed. In this case,
source field data is not validity-checked.

If either the source or target field is character, then no data conversion is performed, even if the other
field is numeric. For character moves, data is truncated or right-padded with blanks when the two fields
are of different lengths.

You may use a single MOVE statement to assign a common value to all elements of an array. Just name
the array as the target field without using any subscripts. (Of course, you can also move to just a single
element of an array, by using a subscripted array as the target field.)

MOVE STATEMENT SYNTAX

 MOVE fieldname/literal TO fieldname

or

 MOVE CORR[ESPONDING] recordname TO recordname

MOVE Statement

96 Chapter 5. z/Writer Control Statements

Note that you may also use this syntax to move to and/or from whole record areas. When a file is
defined (with the FILE statement), z/Writer automatically creates a field by the same name (as the file).
It is defined as a character field whose length is the defined length of the file. You may use this field
just like any other character field in a MOVE statement.

In addition to standard numeric and character literals, you may also use these two special keywords as
your source literal:

 SPACE or SPACES: The target field is completely filled with blanks, regardless of its data type.

 ZERO, ZEROS or ZEROES: sets the target field to the zero value appropriate for it data type. For
character and character-numeric targets, the target is filled with character 0’s. For packed or
floating point targets, the field is set to a packed or floating point zero. For other numeric data
types, the target field is filled with hex zeros.

MOVE CORRESPONDING
This syntax allows you to move a large number of fields from one record area to another record area.
(A record name is the name of a defined field, table or WORKAREA.) Each field in the source record is
moved to the like-named field in the target area, if such a field exists. Fields in the target record that do
not have a corresponding field in the source record will not be changed.

EXAMPLES

MOVE LAST-NAME TO FIRST-NAME
MOVE ‘JONES’ TO LAST-NAME
MOVE BIN-AMOUNT TO PACK-AMOUNT
MOVE SPACES TO OUTPUT-RECORD
MOVE O TO AMOUNT-ARRAY
MOVE 999 TO AMOUNT-ARRAY[2,3]

MOVE CORR INPUT-RECORD TO OUTPUT-RECORD

NEWPHASE Statement

z/Writer Reference Manual 97

NEWPHASE Statement

PURPOSE

Specifies that a new z/Writer phase follows. This statement marks the end of the previous phase and the
beginning of a new one.

SYNTAX

DISCUSSION

Most z/Writer programs do not require multiple phases. For example, you can produce multiple reports
in a single phase. (See "Printing Multiple Reports" on page 13.)

The main reason for a multi-phase program is when you need to use the output from one phase as the
input to a subsequent phase. For example, if you need to print percent of total, you will need an earlier
phase to compute the totals and pass that (in a temporary file) to the next phase. The second phase will
then be able to calculate percent of total for each detail record as it is read again.

When you begin a new phase, everything from the previous z/Writer is forgotten (except for global
OPTION statement options.) None of the fields or files from the previous phase(s) are automatically
available. You must define new files, work areas, etc. However, if you do need to use the same file as
was defined for a previous phase, you can easily define it again for the current phase with the REUSE

statement.

The report for each report is written to a separate DD, which must be present in the execution JCL. The
first report (for which there is no NEWPHASE statement) is written to the ZWOUT001 DD. If you then code
a NEWPHASE statement to begin the program code of a second phase, its report will be written to
ZWOUT002. The next NEW PHASE statement would produce a report written to ZWOUT003, and so on. (Of
course, within each phase you are allowed to produce additional reports, specifying your own DD for
those.)

NEWPHASE STATEMENT SYNTAX

 NEWPHASE
 [CENTURY(nn/50)]
 [DATEDELIM(’x’,‘/’)]
 [FORMAT(display-format ...)]
 [PICBASE2(‘x’/’@’)]
 [PICBASE10(‘x’/’#’)]

NEWPHASE Statement

98 Chapter 5. z/Writer Control Statements

PARMS

The parms on this statement are the same parms that are available in the OPTION statement. See a
description of those parms beginning on page 106.

EXAMPLE

FILE SALES FB(80)

FLD REGION 5 COL(17)

FLD AMOUNT N6.2

FILE TOTALS TYPE(TEMP) OUTPUT

REGION 5

REGTOT N8.2 INIT(0)

WORKAREA

PREVREG 5 INIT(' ')

SORT SALES USING REGION

**************** PROCEDURE ************************

READ SALES

DOWHILE SALES.#STATUS = 'Y'

 IF SALES.REGION <> PREVREG

 IF PREVREG NOT = SPACES

 MOVE PREVREG TO TOTALS.REGION

 WRITE TOTALS

 ENDIF

 MOVE SALES.REGION TO PREVREG

 MOVE 0 TO REGTOT

 ENDIF

 REGTOT = REGTOT + SALES.AMOUNT

 READ SALES

ENDDO

MOVE PREVREG TO TOTALS.REGION

WRITE TOTALS

NEWPHASE

REUSE TOTALS

READ TOTALS

DOWHILE #STATUS = 'Y'

 PRINT 'TOTAL FOR' REGION '=' REGTOT

 READ TOTALS

ENDDO

ONERROR Statement

z/Writer Reference Manual 99

ONERROR Statement

PURPOSE

Specifies how z/Writer should handle certain error situations if they arise. You may also specify the
completion code to use for the job step if an error occurs.

SYNTAX

DISCUSSION

You may specify any number of error conditions on a single ONERROR statement. The error handling
settings for all conditions not specified in the statement is not be affected.

For each error condition, specify one of the handling options allowed for that parm. Optionally, you
may also specify a job step completion code to be used if the error does occur. (Otherwise, each error
handling option implies its own default completion code setting, as shown in the tables below.)

The completion code affected is the final program completion code that z/Writer passes to z/OS at the
end of its execution. This completion code is maintained in the #RETCODE built-in field. Note that an
error only raises the completion code to the setting that you specify in this statement (or to the default
setting.) An error never lowers the completion code if it already contains a higher setting.

This is an executable statement, meaning that it takes effect only after it has been executed. Errors will
be handled according to the most recent ONERROR statement executed (for the applicable error
condition.) By using multiple statements, you can handle the same error in different ways for different
parts of your program.

You may also specify an error condition with empty parentheses after it; this resets the error condition
back to its default setting

If this statement is not used, z/Writer handles errors with the default action and completion code as
explained below.

ONERROR STATEMENT SYNTAX

ONERROR
[PRTSIZE[(BESTFIT/TRUNCATE/WARN/STOP [n])]
[INVDATA[(ZERO/WARN/WARNALL/STOP [n])]
[OVERFLOW[(ZERO/WARN/WARNALL/STOP [n])]
[DIVBYZERO[(ZERO/WARN/WARNALL/STOP [n])]

ONERROR Statement

100 Chapter 5. z/Writer Control Statements

PARMS

PRTSIZE[(BESTFIT / TRUNCATE / WARN / STOP [n])]

This condition can arise when z/Writer is preparing numeric data to put in a report line (or in a title,
total line, etc.) The PRTSIZE condition is raised when there is not enough room to show all of a numeric
field’s significant digits (and a negative sign if necessary) in the report column.

By default, z/Writer uses the BESTFIT handling. That means that, rather than showing a misleading
number with missing leading digits, an approximate value is shown for the field. For example, if there
is not room to show the full value 99.234, just 99 may be shown instead. Or if there is not room to show
the full value 123,456, just 123K may be shown instead. If the report column is too small to show even
that, then z/Writer indicates this error by putting *S* in the report line. (The S is an error code and
indicates a “size” error.)

By default, the PRTSIZE error does not change the completion code of the job step.

The following table shows the settings you can choose for the PRTSIZE condition if you do not want this
default handling.

OPTIONS FOR THE PRTSIZE ERROR

OPTION MEANING

DEFAULT
COMP CODE

BESTFIT

z/Writer shows the value of the field to the greatest precision
that fits in the report column. It tries in turn each of the
following, until it finds one that fits in the column: a) just the
whole portion of the value (rounding out any decimal digits; b)
the value rounded to thousands (nnnK); the value rounded to
millions (nnnM); and so on. If no fit is found, it prints asterisks
in the column with an error code of S (“size”). This best fit logic
is the default handling for the PRTSIZE error.

When this option is chosen, the default is not to change the
completion code if the PRTSIZE errors occur. However, you
can specify your own completion code after this option, if
desired.

0

TRUNCATE

z/Writer shows as many digits as will fit, truncating one or
more leading digits (and/or possibly a leading negative sign.)
This handling, while it can produce very misleading results,
does mimic the handling of certain other widely used
reporting tools.

When this option is chosen, the default is not to change the
completion code if the PRTSIZE errors occur. However, you
can specify your own completion code after this option, if
desired.

0

ONERROR Statement

z/Writer Reference Manual 101

INVDATA[(ZERO / WARN / WARNALL / STOP [n])

This condition arises when the raw data being processed contains an invalid value. (For example, a field
defined as packed actually contains hex zeros; or a field defined as NUM contains a non-numeric
character.)

By default, z/Writer prints a warning message (once per field) and shows the actual raw data found.
(This is printed in the control listing, not in the report.) z/Writer then proceeds as though a valid value
of zero had been found for the field. The completion code of the job step is raised to 4.

The following table shows the settings you can choose for this error condition (as well as two others),
if you do not want this default handling.

WARN

z/Writer prints a message when a value does not fit within its
report column. (Only one message is printed per field that
experiences this error condition.) The report will show a size
error indicator (**S**) in this column.

When this option is chosen, the default is to raise the
completion code to 4 if the PRTSIZE errors occur. However,
you can specify your own completion code after this option, if
desired.

4

STOP

A message will be printed when a value does not fit within its
report column, and the program will be halted.

When this option is chosen, the default is to raise the
completion code to 12 if the PRTSIZE errors occur. However,
you can specify your own completion code after this option, if
desired.

12

n

This optional parm (allowed after any of the keyword parms
above) specifies the completion code to use if the PRTSIZE

errors occur. If z/Writer encounters a PRTSIZE error at any
time during the run, it will use this completion code when it
exits back to the operating system.

N/A

OPTIONS FOR THE PRTSIZE ERROR

OPTION MEANING

DEFAULT
COMP CODE

OPTIONS FOR THE INVDATA, OVERFLOW AND DIVBYZERO ERRORS

OPTION MEANING

DEFAULT
COMP CODE

ZERO

z/Writer uses a value of zero for the field. No message is
printed.

When this option is chosen, the default is not to change the
completion code if the error occurs. However, you can specify
your own completion code after this option, if desired.

0

ONERROR Statement

102 Chapter 5. z/Writer Control Statements

OVERFLOW[(ZERO / WARN / WARNALL / STOP [n])

This condition arises when a numeric overflow occurs during processing. Overflows can arise when
converting very large numbers, multiplying large numbers, dividing large numbers by very small
numbers and in other situations.

By default, z/Writer prints a message and halts the execution of the program. The completion code of
the job step is raised to 12.

The table above (under INVDATA) shows the settings you can choose for this condition if you do not want
the default handling.

DIVBYZERO[(ZERO / WARN / WARNALL / STOP [n])

This condition arises when a division by zero is attempted during processing.

By default, z/Writer prints a message and halts the execution of the program. The completion code of
the job step is raised to 12.

The table above (under INVDATA) shows the settings you can choose for this condition if you do not want
the default handling.

WARN

z/Writer uses a value of zero for the field. One message is
printed per field that experiences this error condition.

When this option is chosen, the default is to raise the
completion code to 4 if the error occurs. However, you can
specify your own completion code after this option, if desired.

4

WARNALL

z/Writer uses a value of zero for the field. A message is
printed each time that this error occurs (rather than just once
per field.)

When this option is chosen, the default is to raise the
completion code to 4 if the error occurs. However, you can
specify your own completion code after this option, if desired.

4

STOP

A message will be printed when this error occurs, and the
program will be halted.

When this option is chosen, the default is to raise the
completion code to 12 if the error occurs. However, you can
specify your own completion code after this option, if desired.

12

n

This optional parm (allowed after any of the keyword parms
above) specifies the completion code to use if the specified
error occurs. If z/Writer encounters the error at any time
during the run, it will use this completion code when it exits
back to the operating system.

N/A

OPTIONS FOR THE INVDATA, OVERFLOW AND DIVBYZERO ERRORS

OPTION MEANING

DEFAULT
COMP CODE

ONERROR Statement

z/Writer Reference Manual 103

EXAMPLES

ONERROR PRTSIZE(TRUNCATE) INVDATA(WARN 0) OVERFLOW(ZERO 8)
ONERROR INVDATA() /* REVERT TO DEFAULT */
ONERROR DIVBYZERO(0) /* DEFAULT ACTION, BUT DO NOT RAISE COMPLETION CODE */

OPEN Statement

104 Chapter 5. z/Writer Control Statements

OPEN Statement

PURPOSE

Opens one file or DB2 cursor for subsequent processing. The OPEN statement does not cause a record
to be read from (or written to) the file, or a row to be retrieved from a cursor.

SYNTAX

DISCUSSION

You do not normally need to code an explicit OPEN statement. z/Writer handles file OPENs for you
automatically. However, this statement (along with the CLOSE statement) is useful if you wish to read
through a file, or DB2 cursor, more than one time in the same phase.

After an OPEN statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. The table below shows its possible values after the operation.

PARMS

filename/cursorname
Specifies the name of the file or DB2 cursor to open. The file or cursor must have been previously
defined using a FILE or CURSOR statement. This parm is required.

EXAMPLES

OPEN EMPL
READ EMPL
DOWHILE #EOF <> ‘Y’

OPEN STATEMENT SYNTAX

OPEN filename/cursorname

#STATUS Built-In Field Values After an OPEN Statement

Y - file successfully opened
N - file not opened

OPEN Statement

z/Writer Reference Manual 105

PRINT EMPL_NUM EMPL_NAME
READ EMPL

ENDDO
CLOSE EMPL

OPEN EMPL /* READ 2ND PASS */
...

OPTION Statement

106 Chapter 5. z/Writer Control Statements

OPTION Statement

PURPOSE

Specifies one or more special options for the run as a whole. (That is, options that apply to all phases.)

SYNTAX

DISCUSSION

You may specify as many options as you like on a single OPTION statement. In addition, you may have
as many separate OPTION statements as you like.

OPTION statements should normally appear before all other control statements.

PARMS

CENTURY(nn/50)
Specifies the “century cutoff” year. This value is used when assigning a century to date fields that only
have 2 bytes for the year (for example, YYMMDD dates). The value defines a 100-year window across
the current and the previous century. The default value of 50 sets that window from 1951 to 2050. Date
fields whose YY is greater than 50 are assigned to the previous century. All other dates are assigned to
the current century. Use this option if you would like to specify a different window to use with your YY

date fields.

 DATEDELIM(‘x’,‘/’)
Specifies one character to be used when formatting dates in the report (to separate the MM, DD and YYYY

parts.) The default is to use a diagonal slash. European users may prefer to use a dash or a dot to format
their dates:

OPTION DATEDELIM(‘-’)

FORMAT(display-format ...)
Specifies one or more display formats to use as the default for all reports in the run. (Use the identical
FORMAT parm in a REPORT statement if you just want to set default formats for a single report.)

OPTION STATEMENT SYNTAX

OPTION
 [CENTURY(nn/50)]
 [DATEDELIM(’x’,‘/’)]
 [FORMAT(display-format ...)]
 [PICBASE2(‘x’/’@’)]
 [PICBASE10(‘x’/’#’)]
 [VERIFY]

OPTION Statement

z/Writer Reference Manual 107

You may specify one display format for each data type. That is: one numeric display format, one date
display format and one character display format. The order of the display formats is not important. For
example:

OPTION FORMAT(DOTSEP DD-MM-YY)

The above statement sets two default display format that are very useful for making reports in many
countries other than the USA. It specifies that dates should be formatted as DD/MM/YY and that numeric
values should be formatted using dots instead of commas (for example, 123.456,78).

A complete list of the display formats available appears in the table on page 117. That table also shows
the standard default display formats used when this FORMAT parm is not specified.

Note that this parm only specifies the default display format(s) to use. Different display formats can still
be specified for individual fields in the report. (Do that with the FORMAT parm of the FIELD statement,
or directly in a PRINT or TITLE statement.)

PICBASE2(‘x’/’@’)
Specifies the character to be interpreted in PICTUREs as the Base 2 scaling character. (See a description
of this in Appendix C, "Syntax of PICTURE Display Formats" on page 195.) You may specify any 1-
byte character or hex literal here. The default character is the “at” sign.

PICBASE10(‘x’/’#’)
Specifies the character to be interpreted in PICTUREs as the Base 10 scaling character. (See a description
of this in Appendix C, "Syntax of PICTURE Display Formats" on page 195.) You may specify any 1-
byte character or hex literal here. The default character is the “number” or “pound” sign.

VERIFY
Specifies that the control statements should only be verified and any error messages printed. The
program will not be executed. This is a global option and applies to all program phases in the run.

EXAMPLES

OPTION VERIFY

PERFORM Statement

108 Chapter 5. z/Writer Control Statements

PERFORM Statement

PURPOSE

Unconditionally executes one or more consecutive paragraphs of the program. Afterward, execution
resumes with the statement following the PERFORM statement.

SYNTAX

DISCUSSION

Within the performed paragraphs, it is permitted to branch outside of the range of those paragraphs.
However, this is not usually a good coding practice. If you do branch out of the paragraphs being
performed, it is strongly recommended that you branch back into them to complete execution of the
performed paragraphs. That allows the processing of the PERFORM statement to wrap up cleanly.

The paragraphs performed must be within the same phase that executes the PERFORM. (Phases are
delimited by the NEWPHASE statement.)

Within the code being performed, you are allowed to have additional PERFORM statements. Such
nesting of PERFORMs is allowed to any level.

A paragraph of code begins with a label and ends at the last statement before the next label (or the last
statement of the program.) (The syntax rules for labels can be found on page 85.)

Empty paragraphs are permitted. (That is, two consecutive labels with no statements between them.)
You may want to use an empty paragraph as the “thru” label in a PERFORM.

PARMS

label
Specifies the label of the first (and optionally the last) paragraph to be performed. When only this first
label is present, that single paragraph is executed.

[THRU label]
When the THRU parm is also present, it specifies the final paragraph to perform. This paragraph must
be located somewhere after the first paragraph in your program code. All paragraphs from the first
paragraph up to and including the final “thru” paragraph are performed.

PERFORM STATEMENT SYNTAX

PERFORM label [THRU label]

PERFORM Statement

z/Writer Reference Manual 109

EXAMPLE

PERFORM SWAP-FIELDS
PERFORM A-WRITE-100 THRU A-WRITE-100-EXIT
...

SWAP-FIELDS:
X=A
A=B
B=X

A-WRITE-100:
WRITE OUT01
TOTW=TOTW+1

A-WRITE-100-EXIT:

B-100-READ:
READ EMPL
...

POSITION Statement

110 Chapter 5. z/Writer Control Statements

POSITION Statement

PURPOSE

Positions a logical “pointer” in a random access VSAM file so that sequential reads can begin from that
point. This statement does not perform an actual read, so the file’s record area remains unchanged by it.

SYNTAX

DISCUSSION

After a POSITION statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. The table below shows its possible values after a POSITION statement.

A record meets the POSITION criteria by having a key which either:

1) exactly matches the key (or partial key, if GEN specified) in the statement’s KEY parm, or

2) is the first key with a value greater than the key (or partial key) in the statement’s KEY parm,
if KGE is also specified.

After a successful POSITION, the next sequential READ statement returns the first record whose key meets
the criteria specified above. (You may then perform additional sequential reads to see if other records
exist which also meet your requirements.)

Note: if the POSITION is not successful, do not attempt to perform a sequential READ at that point.
This can result in a VSAM logical error and the program will end.

Note: other ways to position a keyed VSAM file for sequential reads are:

POSITION STATEMENT SYNTAX

POSITIONfilename

KEY(fieldname/’literal’)

[GEN]

[KEQ/KGE]

#STATUS Built-In Field Values After a POSITION Statement

Y - file positioned successfully (a record meeting the specified key criteria exists in the file,
but has not been read yet)
N - file not positioned successfully (no matching record exists in the file -- do not perform
a sequential (non-keyed) read until successfully establishing a position within the file.)

POSITION Statement

z/Writer Reference Manual 111

1) before any I/O operation are performed for a file, the file is positioned at the first record
of the file. You can read from the beginning of the file with sequential READ statements.

2) After a (successful) keyed read, the file is left positioned after the record read. You can
then read subsequent records with sequential READ statements.

Note: (A sequential READ statement is one that does not have a KEY parm.)

PARMS

filename
Specifies the name of the file to position. The file must have been previously defined using a FILE

statement. It must have been defined as either a KSDS or RRDS file. This parm is required.

KEY(fieldname/’literal’)
This parm is required. It specifies a field (or literal) with the key value that you want to position the file
at. You may specify a key value that is shorter than the VSAM file’s defined key length; in that case you
must also specify the GEN parm.

Note: no data conversion is performed on the key field. Byte-by-byte comparisons are used to
match the KEY parm with the key values stored in the file.

After a successful POSITION statement, the file will be positioned so that the next sequential READ

statement will return the first record with a matching key (or partial key when GEN is used). If no such
match exists, and the KGE parm was also specified on the POSITION statement, the sequential READ will
return the record with the next higher key (or partial key).

[GEN]
Indicates that the KEY parm contains a “generic” key. A generic (or partial) key is shorter than the full
key length defined for the file. Use this parm to position a file using only some leading portion of a key
value.

[KEQ/KGE]
Specifies the key matching criteria to use with the KEY parm.

 KEQ (“key equal”), the default, indicates that a record is considered a match if it’s key (or
partial key when GEN is used) value exactly matches the KEY parm.

 KGE (“key greater than or equal to”) indicates that a record is considered a match if it’s key
(or partial key when GEN is used) value is greater than or equal to the KEY parm.

EXAMPLES

POSITION DEPT KEY(TEST-DEPT-PREFIX) GEN
IF DEPT.#STATUS = ‘Y’
 READ DEPT
 DOWHILE DEPT.#STATUS = ‘Y’ AND EMPL.DEPT-PREFIX = TEST-DEPT-PREFIX
 PRINT DEPT-NUM DESCRIPTION
 READ DEPT
 ENDDO
ENDIF

PRINT Statement

112 Chapter 5. z/Writer Control Statements

PRINT Statement

PURPOSE

Prints one line to the report output. The same syntax is also used for the PRINTMODEL statement
(page 121).

SYNTAX

PRINT AND PRINTMODEL STATEMENT SYNTAX

 PRINT/PRINTMODEL

 [(reportname)]

 [item1[(parms)] item2[(parms)] ...]

 [ADVBEFORE(n/1/PAGE)]

 [ADVAFTER(n/0/PAGE)]

Each item can be:

• a fieldname, including built-in fields (ex: AMOUNT)

• a built-in function (ex: #MAX(SALES_QTR1, SALES_QTR2))

• a numeric literal (ex: 1000)

• a literal text (ex: ‘DONE: _____’)

The syntax of the parms available for the items is:

fieldname/function[(
[+n/@n/@fldname]
[n]
[‘hdg1|hdg2|...’]
[display–format]
[LJ/CJ/RJ]
[BIZ]
[BIR]
[BRK/BRKSUM/BRKLAST/NOBRK])]

literal[(
[+n/@n/@fldname]
[n]
[‘hdg1|hdg2|...’]
[display–format]
[BRK/BRKSUM/BRKLAST/NOBRK])]

PRINT Statement

z/Writer Reference Manual 113

DISCUSSION

Use the PRINT statement to:

 specify the fields (and any literal texts) to print in the body of your report (or your export file)

 specify where to place each item on the report line

 specify the column headings for each column in the report

 specify the desired display format to use for each item on the report line

 specify whether or not a field should be included in the total line, and optionally specify what
value should appear for that field in the total line

 specify how to advance the “carriage” before and/or after the report line is printed

Only the first PRINT (or PRINTMODEL) statement in the program code is used for the customization of
column headings and total lines. For this reason, you should ensure that all miscellaneous PRINT

statements (that print lines only on special occasions, such as during breaks or on errors) are located
after the PRINT statement for the main report body. The first PRINT statement is called the primary PRINT

statement.

The REPORT and EXPORT statements have options to suppress column headings and/or grand totals from
a report, if you do not want them.

Empty PRINT statements are allowed. An empty PRINT statements prints a blank line in your report.

PARMS

(reportname)
This parm is optional. When used, this parm must be the first item on the PRINT statement. The report
name must be enclosed in parentheses.

When report name is not present, the PRINT statement prints a line to the primary (and often only) report
in the current phase.

Use this parm if you are printing to more than one report during a single phase. This parm names the
report that you want this PRINT statement to print a line to. Reports are defined and named using the
REPORT (or EXPORT) statement (page 128).

fieldname/function/literal[(parms)]
Specifies one item to include in the report line. Fieldnames indicate that the contents of that field should
appear in the report line. You may also print the contents of a built-in function. Numeric literals appear
as formatted numbers in the report line. Literal texts (in apostrophes or quotes) print “as is” in the report
line.

Optionally, you can specify one or more parms in parentheses after the fieldname, function or literal.
(There must be no space before the open parenthesis.) The parms let you customize the location and/or
appearance of an item in the report line.

PRINT Statement

114 Chapter 5. z/Writer Control Statements

Parms Available After a Field Name or Literal
The following table shows the parms that can be specified for each item. All parms are optional and
they may be specified in any order, separated by spaces and/or commas. Note that some of these parms
are irrelevant for literal items and will be ignored.

PARMS ALLOWED FOR ITEMS IN THE PRINT STATEMENT

SYNTAX DESCRIPTION EXAMPLE

Parms Affecting an Item’s Location in the Print Line

These parms specify where to begin the item’s data in the report line. By default, z/Writer begins the first
item in column 1, and each subsequent item one space past the end of the previous item. Only one of these
parms may be used for an item.

+n

Means begin this column “n” bytes after the end of the
previous column. For example, you can specify +0 if
no spaces are wanted after the previous column.

Note: the “+” is required here in order to
distinguish this parm from the width parm (“n”).

 z/Writer’s default is to leave 1 space between report
columns. (You can change this default with the
COLSPACE parm in the REPORT statement.)

PRINT ‘NAME=’ NAME(+0)

@n
Means begin the data in column “n” of the report line.
Columns are numbered beginning with 1.

PRINT NAME(@125)

@fieldname

Means that the report column should begin in the
same location as the named field began (in the first
PRINT statement for the same report.) This parm can
help you align columns in various report lines.

PRINT TOT-AMOUNT(@AMOUNT)

Parms Affecting an Item’s Appearance in the Report

n

Specifies an override width (in bytes) to use for this
report column. When omitted, z/Writer picks a default
width to use.

This parm is useful for shortening columns that would
otherwise use up too much space in the report line.

Note that this parm is ignored if a date type display
format is used to display the item.

PRINT DESCRIPTION(10)

PRINT Statement

z/Writer Reference Manual 115

‘hdg1|hdg2|...’

Specifies the column heading to use for this field. You
can use one or more “|” characters within the text to
indicate how the heading text should be broken onto
multiple column heading lines. z/Writer does not limit
the number of column heading lines you may specify.

When omitted, z/Writer uses the column heading text
from the HEADING parm of the FIELD statement, if any.
Otherwise the fieldname itself (broken apart at each
dash and underscore) is used as the column heading.

Note: column headings are discussed on page 14.

PRINT SEX(‘S|E|X’)

LJ/CJ/RJ

Specifies how the data should be justified within the
area reserved for that column in the report line. The
values mean left-justified, center-justified and right-
justified, respectively.

Note: that this parm determines how data is
justified within the item’s actual data area in the
report. If the column heading for the item is
larger than the data area, your data may not
appear to be justified under the column
headings. In such cases, try embedding leading
or trailing blanks within your column heading
texts to achieve the result you want.

PRINT DEPT-NUM(LJ)

display-format

You may specify the name of any of z/Writer’s
“display formats” that are valid for the data type of the
item. The display format determines how the data will
be formatted in the report line. (The table on page 117
lists all of z/Writer’s display formats.)

When omitted, z/Writer uses: 1) the display format
from the FORMAT parm of the FIELD statement, if any,
or 2) a default display format.

PRINT AMOUNT(CURRENCY)

PRINT SSN(PIC’999-99-9999’)

PRINT TEL(PIC’(999) 999-9999’)

BIZ

(“Blank-if-zero”). Use this with a numeric field if you
want the report column to be left blank for zero
values. In reports where most instances of a field are
zero, this parm can help make significant data stand
our better. It can also reduce clutter in a busy report.

PRINT ERROR-COUNT(BIZ)

BIR

(“Blank-if-repeat”). Specifies that this report column
should be left blank if its contents would be a repeat
of its contents in the previous instance of this report
line.

PRINT REGION(BIR)

PARMS ALLOWED FOR ITEMS IN THE PRINT STATEMENT

SYNTAX DESCRIPTION EXAMPLE

PRINT Statement

116 Chapter 5. z/Writer Control Statements

Parms Affecting the Data Shown in Total LInes

Meaningful only when used in the first PRINT statement of the program. Ignored

otherwise. This parm does not affect the value printed when the PRINT statement

is executed in the program. It only affects the total lines that z/Writer prints for

you at control breaks and at the end of the report. Only one of these parms may

be used for an item.

BRK

This parm indicates that this field should appear in
total lines. If the field is a quantitative numeric field, its
total value (SUM) will print in the total line. For other
types of fields, the value of the field from the last
record in the control group (LAST) will print in the total
line.

Note: this parm alone does not create a control
break for a field. Use the BREAK statement to do
that.

PRINT EMPL_NUM(BRK)

NOBRK

This parm indicates that this field should not appear
in total lines. Normally, all quantitative numeric fields,
and all control break fields that were constant for the
control group appear in the total line. Use this parm to
keep such a field out of the total line.

PRINT EMPL_NUM(NOBRK)

BRKSUM

This parm indicates that the total value (SUM) of this
field for the relevant control group should print in total
lines. That is, the sum of the values of this field for all
records included in the control group just ended.
Naturally, this parm is only allowed for numeric fields.
(But the numeric field does not have to be
quantitative.)

READ SALES
PRINT EMPL_NUM(BRKLAST)

 REGION(BRKLAST)

 EMPL_COUNT(BRKSUM)

BRKLAST

This parm indicates that the value of this field from the
last record in the control group (LAST) should print in
total lines.

READ SALES
PRINT EMPL_NUM(BRKLAST)
 REGION(BRKLAST)

 EMPL_COUNT(BRKSUM)

PARMS ALLOWED FOR ITEMS IN THE PRINT STATEMENT

SYNTAX DESCRIPTION EXAMPLE

PRINT Statement

z/Writer Reference Manual 117

Display Formats
The following table shows the complete list of display formats. These can be used in several statements,
not just the PRINT statement. For example, display formats can be used in FIELD, OPTION, REPORT and
TITLE statements.

DISPLAY FORMATS

DISPLAY

FORMAT DESCRIPTION EXAMPLE

Display Formats That Can Be Used With Any Type Of Data

ASIS

No formatting is done–– data is printed "as is." This is normally used
only for character fields, but is allowed for any type of field.

This is the default display format for character fields (unless changed
with a FORMAT parm in an OPTION or REPORT statement.)

ABC

QCHAR

The data is enclosed within quotation marks. Otherwise, the data is not
reformatted at all. This format is useful for formatting character fields
in comma-delimited files.

Note: you can use the QCHAR parm of the REPORT statement to choose
a character other than the double quotation mark to use with this display
format.

“ABC”

HEX

Each byte of data is expanded into two bytes to show the hexadecimal
representation of the data. This format is useful when investigating
fields that contain invalid data (such as hex zeros.) And for displaying
status or flag fields containing non-printable values.

C1C2C3

BITS

Each byte of data is expanded into an 8-byte character string of 0’s and
1’s, showing the individual bits within the data. This format is useful for
displaying the individual bits within status or flag fields.

11000001

Display Formats That Can Be Used Only With Numeric Data

EDIT

The numeric value is edited according to common American
presentation conventions. Formatting includes suppression of leading
zeros, the use of commas as thousands separators and a decimal point
before any decimal digits. A floating negative sign precedes negative
numbers.

This is the default display format for all numeric fields (unless
changed with a FORMAT parm in an OPTION or REPORT statement.)

 1,234.56

–1,234.56

DOTSEP

The numeric value is edited according to presentation conventions
common in Europe and other international areas.

Formatting includes suppression of leading zeros, the use of “dots” as
thousands separators and a comma before any decimal digits. A
floating negative sign precedes negative numbers.

 1.234,56

–1.234,56

PRINT Statement

118 Chapter 5. z/Writer Control Statements

NOCOMMA

Same as EDIT, except that commas are not inserted among the digits.
This format is useful for formatting numeric fields in comma-delimited
files.

 1234.56

–1234.56

CURRENCY

DOLLAR

Same as EDIT, but a floating currency sign will precede the first
significant digit. The currency sign is a dollar sign by default. (Use the
CURRCHAR parm of the REPORT statement to choose a character other
than the dollar sign to use with this display format.)

 $1,234.56

–$1,234.56

DISP
DISPLAY

Numbers are displayed without any punctuation (other than a decimal
point, if necessary). Leading zeros are not suppressed. The "zone"
portion of the last digit contains the sign.

0001234.567

0001234.56P

PIC

PICTURE

A "picture" is used to describe exactly how the numeric value should be
formatted. This is useful for formatting special purpose numbers, such
as telephone numbers, social security numbers, numbers of Kb, Mb,
Gb and etc. The details of z/Writer’s PICTURE syntax are explained in
Appendix C, "Syntax of PICTURE Display Formats" on page 195.

(800) 555–1212

123–45–6789
1.29MB

Display Formats That Can Be Used Only With Fields Containing a Date

(See page 73)

MM-DD-YY

MM/DD/YY

This is the default display format for all fields defined as containing a
date.

2/1/98
12/31/00

MM-DD-YYYY MM/DD/YYYY

2/1/1998
12/31/2000

DD-MM-YY DD/MM/YY

1/2/98
31/12/00

DD-MM-YYYY DD/MM/YYYY

1/2/1998
31/12/2000

YY-MM-DD YY/MM/DD

98/1/2
00/12/31

YYYY-MM-DD YYYY/MM/DD

1998/1/2
2000/12/31

SHORTEURO DD MMM YY 31 DEC 10

DISPLAY FORMATS

DISPLAY

FORMAT DESCRIPTION EXAMPLE

PRINT Statement

z/Writer Reference Manual 119

ADVBEFORE(n/1/PAGE)
This “advance before” parm specifies that special spacing is desired before printing the report line.
When this parm is omitted, the report line is printed after advancing a single “line feed.” (This results
in a standard, single spaced report.)

A numeric literal “n” specifies the number of line feeds to advance before printing the report line. For
example, a value of 2 would produce a double-spaced report. A value of 0 can be used to overprint the
previous report line, if the printer hardware supports this.

Specifying PAGE means to advance to a new page before printing the report line.

Note: this parm is ignored in the PRINTMODEL statement. It is also ignored when used for an
export file.

ADVAFTER(n/0/PAGE)
This “advance after” parm specifies that special spacing is desired after printing the report line. When
this parm is omitted, z/Writer does not advance the printer immediately after printing the report line.

A numeric literal “n” specifies the number of line feeds to advance after printing the report line. For
example, a value of 1 would result in a blank line following the report line.

Specifying PAGE means advance to a new page after printing the report line.

Note: if possible, we recommend using only the ADVBEFORE parm to obtain any special spacing
that your report may require.

Note: this parm is ignored in the PRINTMODEL statement. It is also ignored when used for an
export file.

EXAMPLES

PRINT EMPL-NUM AMOUNT(‘SALES|AMOUNT’ DOTSEP)
PRINT SSN(PIC’999-99-9999’)
PRINT SMF73FG1(HEX) ADVBEFORE(PAGE)
PRINT AMOUNT(NOCOMMAS) ‘,’ LAST_NAME(QCHAR) ‘,’ FIRST_NAME(QCHAR) /* COMMA DELIMITED */
PRINT FIRST_NAME(‘FIRST|INITIAL’, +2, 1)
PRINT (ERRORS) ‘BAD DATE FOUND FOR’ EMPL-NUM

SHORTEURO4 DD MMM YYYY 31 DEC 2010

SHORTUSA MMM DD, YYYY DEC 31, 2010

LONGEURO DD MMMMMMMMM YY 31 DECECMBER 10

LONGEURO4 DD MMMMMMMMM YYYY 31 DECECMBER 2010

LONGUSA MMMMMMMMM , DD YYYY DECECMBER 31, 2010

DISPLAY FORMATS

DISPLAY

FORMAT DESCRIPTION EXAMPLE

PRINT Statement

120 Chapter 5. z/Writer Control Statements

PRINT ‘SALES’ ‘SALES’
PRINT ‘DATE ‘ ‘TIME ‘
PRINT ‘_____’ ‘_____’ ADVBEFORE(0) /* UNDERLINE HEADINGS */

FILE EMPL TYPE(KSDS)
...

REPORT LINES(55)
REPORT (PARTTIME) LINES(55)

PRINT EMPL_NAME HIRE_DATE STATUS

IF STATUS = ‘P’
 PRINT (PARTTIME) EMPL_NAME HIRE_DATE STATUS
ENDIF

TITLE ‘LIST OF ALL EMPLOYEES’
TITLE (PARTTIME) ‘LIST OF PART TIME EMPLOYEES’

PRINTMODEL Statement

z/Writer Reference Manual 121

PRINTMODEL Statement

PURPOSE

This statement is identical to the PRINT statement, except for one thing: it is a declaratory (rather than
executable) statement and does not cause a line to be printed in the report. It is useful for formatting
summary reports which do not show the detail data from the input records.

SYNTAX

The syntax of this statement is identical to the syntax of the PRINT statement shown on page 112. All of
the PRINT statement keywords and parms are allowed in the PRINTMODEL statement. However, some of
the parms (for example, ADVBEFORE) are not meaningful and are ignored.

DISCUSSION

When making a summary report, use this statement the way you would use a PRINT statement for a
regular detail report. The fields listed on the PRINTMODEL statement will determine:

 the column headings to use for the report

 the fields that will appear in the total lines (at control breaks and at the end of the report)

 the layout (order and spacing) of the total line columns

Remember, in order to have any effect, this declaratory statement must precede any PRINT statements.
z/Writer uses the first PRINT or PRINTMODEL statement of the program to determine column headings
and total line layout.

READ Statement

122 Chapter 5. z/Writer Control Statements

READ Statement

PURPOSE

Reads one record from an INPUT or UPDATE file.

SYNTAX

DISCUSSION

Depending on the file type and the parms present on this statement, either a sequential or a direct
(“keyed“) read will be performed.

Sequential Reads
If the READ statement does not have a KEY parm, a sequential read is performed. This reads the next
record at the file’s current position. (That will be the record after the previous record read, or the first
record in the file if there were no previous read attempts.) Sequential reads are allowed for all file types.

Note: a program error will occur if you attempt to perform a sequential read on a keyed VSAM

file when the file is not “positioned” at any record. This can happen after an unsuccessful READ

or POSITION statement.

A file is correctly “positioned” in these cases:

1) when the program starts execution (it is positioned before the first record in the file),

2) after a successful keyed READ or POSITION statement, and

3) after a successful sequential read.

Direct Reads
If the READ statement does have a KEY parm, a direct read is attempted. Direct reads are allowed only
to VSAM files defined as KSDS or RRDS. (The key for a RRDS file must be a 4-byte binary field.) You may
specify either a full key or a partial (“generic”) key.

Note: after a successful keyed READ, you can follow it with one or more sequential READs to read
successive records after that file record.

READ STATEMENT SYNTAX

READ filename

[KEY(fieldname/’literal’)

[GEN]

[KEQ/KGE]

READ Statement

z/Writer Reference Manual 123

Record Length
After a successful read, the file’s record area contains the new record. The length of that record is
available in the file’s #LENGTH built-in field. Here are more details about an INPUT file’s #LENGTH built-
in field.

For fixed-length files, z/Writer initializes #LENGTH one time to the file’s fixed record length (from the
ACB at open time.). You can examine this field, but you should not change it.

For variable-length VSAM files, z/Writer initializes the #LENGTH built-in field to the maximum defined
record length from the ACB at open time. Then, after each successful READ, the length of the newly read
record is put in #LENGTH for you.

RRN
For RRDS files, the RRN of the record read is available in the file’s #RRN built-in field.

Status of a Read Operation
After a READ statement, you can check the result of the operation by examining the file’s #STATUS built-
in field. (Remember that you will need to qualify #STATUS with the filename, if the phase has definitions

for multiple files and/or tables.) The table below shows the possible values of #STATUS after a READ.

You can also test for end of file after a READ using the file’s #EOF built-in field. The table below shows

the possible values of #EOF after a READ.

PARMS

filename
Specifies the name of the file to read. The file must have been previously defined using a FILE statement.
It must have been defined as either an INPUT or an UPDATE file.

[KEY(fieldname/’literal’)]
Specifies the field (or literal) containing the key value of the record you want to read. You may specify
a key value that is shorter than the VSAM file’s defined key length; in that case you must also specify the
GEN parm.

Note: no data conversion is performed on the key field. Byte-by-byte comparisons are used to
match the KEY parm with the key values stored in the file.

#STATUS Built-In Field Values After a READ Statement

Y - file successfully read
N - no record read. For sequential reads, this normally indicates EOF; for keyed reads, this
normally indicates that no record matching the key (or partial key) was found.

#EOF Built-In Field Values After a READ Statement

Y - file has reached the end-of-file
N - file has not reached end-of-file

READ Statement

124 Chapter 5. z/Writer Control Statements

 [GEN]
Indicates that the KEY parm contains a “generic” key. A generic key is shorter than the full key length
defined for the file. Use this parm to read a record when you only want to match some leading portion
of the key.

[KEQ/KGE]
Specifies the key matching criteria desired:

 KEQ (“key equal”), the default, indicates that a record is considered a match if it’s key value
(or partial key, if GEN is specified) exactly matches the KEY parm.

 KGE (“key greater than or equal to”) indicates that a record is considered a match if it’s key
value (or partial key, if GEN is specified) is greater than or equal to the KEY parm.

EXAMPLES

FILE SALES TYPE(ESDS)
FILE EMPL TYPE(KSDS)
...
READ SALES
READ EMPL KEY(‘040’)
READ EMPL KEY(SALES.EMPL-NUM)
READ EMPL KEY(SHORT-KEY) GEN KGE
READ EMPL KEY(‘2’) GEN
READ EMPL

REDEFINE Statement

z/Writer Reference Manual 125

REDEFINE Statement

PURPOSE

The REDEFINE statement allows you to “back up” and redefine an earlier field. The REDEFINE statement
may be used only within field definitions. That is, it may appear only among the FIELD statements that
immediately follow FILE, TABLE and WORKAREA statements.

SYNTAX

DISCUSSION

After a REDEFINE statement, the next field defined will begin in the same byte of the record as the field
named on the REDEFINE statement. After that next FIELD statement, you may continue defining
additional fields there, each beginning immediately after the previous field. Or you can skip directly to
the first byte after the original field being redefined by coding an ENDREDEFINE statement.

PARMS

fIeldname
Specifies the name of a previously defined field in the same record area (or work area). FIELD statements
after this REDEFINE will begin in the starting column of the named field. This parm is required.

EXAMPLE

FLD SALES-DATE 6
REDEFINE SALES-DATE
FLD SALES-DATE-YY 2
FLD SALES-DATE-MM 2
FLD SALES-DATE-DD 2 /* COMPLETE REDEFINE. ENDREDEF IS OPTIONAL */

FLD CUSTOMER 15

FLD TELEPHONE N10
REDEFINE TELEPHONE
FLD AREA-CODE N3
ENDREDEF /* PARTIAL REDEFINE. ENDREDEF IS NEEDED */

FLD TAX N4.2

REDEFINE STATEMENT SYNTAX

REDEFINEfieldname

Alternate Spellings:
REDEFINE - REDEF

RELEASE Statement

126 Chapter 5. z/Writer Control Statements

RELEASE Statement

PURPOSE

Releases (unlocks) a VSAM record that has been read for update, without actually updating (or deleting)
it. (A record must have been successfully read from an UPDATE file before this statement is executed.)

SYNTAX

DISCUSSION

You are never required to use this statement. However, for performance reasons, you might wish to use
it. The RELEASE statement releases a record that you have read from an UPDATE file, once you know that
you will not need to delete or rewrite that record. That releases VSAM’s “lock” on the record so that other
users can access it. The record’s data remains in the record area for your program to continue to use.

When you specify UPDATE on a FILE statement, the records read from that file are available for update
processing. Each time a record is read from an update file, VSAM puts a lock on the record until you take
one of the following actions:

 you update that record by executing a REWRITE statement for the same file (normally after
changing the contents and/or length of the record)

 you delete that record by executing a DELREC statement for the same file

 you explicitly release the record by executing a RELEASE statement for the same file

 you READ a new record from the same file, which releases the lock on the current record (and
puts a lock on the newly read record)

Status of a Release Operation
After the RELEASE statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. (Remember that you will need to qualify #STATUS with the filename, if the phase has

RELEASE STATEMENT SYNTAX

RELEASE filename

RELEASE Statement

z/Writer Reference Manual 127

definitions for multiple files and/or tables.) The table below shows the possible values of #STATUS after

a RELEASE.

PARMS

filename
Specifies the name of the file whose outstanding record should be released. The file must have been
previously defined (in a FILE statement) as an UPDATE file. Also, a record must have been successfully
read from that file, and not yet rewritten or deleted.

EXAMPLE

FILE EMPL UPDATE TYPE(KSDS)
...

READ EMPL /* READ FIRST RECORD FOR UPDATE */

DOWHILE EMPL.#STATUS = ‘Y’
 IF EMPL.EMPL-NUM = ‘444’
 DELREC EMPL /* DELETE RECORD FROM FILE */
 ELSEIF EMPL.EMPL-NUM = ‘555’
 MOVE ‘I’ TO EMPL.STATUS /* MARK REC 555 AS INACTIVE */
 MOVE 40 TO EMPL.#LENGTH /* SHORTEN INACTIVE RECORD */
 REWRITE EMPL /* REWRITE SHORTER 555 RECORD */
 ELSE
 RELEASE EMPL /* LEAVE RECORD UNCHANGED ON FILE. */
 ENDIF
 ... /* OTHER PROCESSING */
 READ EMPL /* READ NEXT RECORD FOR UPDATE */
ENDDO

#STATUS Built-In Field Values After a RELEASE Statement

Y - record successfully released
N - record not released.

REPORT Statement

128 Chapter 5. z/Writer Control Statements

REPORT Statement

PURPOSE

This declarative statement overrides one or more default options for the primary report. Or, this
statement can specify the name of a new report to be written in the current program phase (along with
any options to use).

SYNTAX

DISCUSSION

Only a single REPORT statement is allowed per report, but it may contain as many options as you like.

The report name parm, if used, must be the first parm on the REPORT statement. The report name must
be enclosed in parentheses. It specifies the name of a new report to be written in the current phase.
(Program phases are discussed on page 97.) After the report name, the other options may be specified
in any order.

Primary Report
When the REPORT statement does not begin with a report name (in parentheses), the statement applies
to the primary report. The primary report is the one that all PRINT statements without a report name
write to. (Reports for the unnamed, primary report go to the ZWOUT001 DD for the first phase, ZWOUT002

for the primary report in the second phase, and so on.)

REPORT STATEMENT SYNTAX

REPORT

 [(reportname)]

 [COLSEP(‘xxx’/’ ‘)]

 [COLSPACE(N/1)]

 [CURRCHAR(‘x’/’$’)]

 [FORMAT(display-format ...)]

 [LINES(NN/60)]

 [NOCC]

 [NOCOLHDGS]

 [NODATE]

 [NOGRANDTOTALS]

 [NOPAGE]

 [NOUNDER]

 [QUOTECHAR(‘x’/’”’)]

Abbreviations Allowed:
NOCOLHDGS - NOCOLHDG
NOGRANDTOTALS - NOGRANDTOTAL, NOGRAND

REPORT Statement

z/Writer Reference Manual 129

A REPORT statement is not required for the primary report. But you can use one to override the defaults
options for the primary report.

Additional Reports
When the REPORT statement begins with a report name (in parentheses), the statement defines a new

report for the current phase. You may have as many reports (and/or export files) in a single phase as
you like.

To write to the new report, use the same report name parm (again, in parentheses) as the first item in a
PRINT statement. Also use this report name as the first parm in any TITLE statements for the report.

The DDNAME used for the new report will be the report name itself.

Note that automatic control break processing (using the BREAK statement) is only available for the
primary report in each phase.

REPORT Statement Location
As a declaratory (rather than executable) statement, the exact location of your REPORT statement is not
critical. However, when used, it is mandatory that it appear before the first PRINT or TITLE statement for
that report.

Record Length of Report
You can choose the record length to use for your report file in either of two ways:

 specify DCB LRECL information in the output DD in your JCL

 write the report to an existing fixed length dataset

In either case, z/Writer will format your report lines to that maximum length. If no DCB LRECL or dataset
label information is specified, z/Writer picks a default length of 133.

PARMS

(reportname)
This parm is not allowed for the primary REPORT statement in a phase. When present, this must be the
first item on the REPORT statement.

When a report name is not present, the REPORT statement specifies options for the first (and often only)
report in the current phase. All PRINT and TITLE statements that do not have a report name parm apply
to this unnamed REPORT statement.

Use this parm if you are printing to more than one report output during a single phase. The reports after
the first one must have a name. You use this parm to specify the name you want to use for the report.
(The naming rules are like those for file names (page 78). However, the report name must also be valid
for use as a DDNAME.) The name may not be the name of a file, table or workarea in the program. Use
this same report name (again in parentheses) later in the PRINT and TITLE statements for this report.

When using this parm, you must also supply a DD with this same report name in your execution JCL.
The report will be written to that output DD.

REPORT Statement

130 Chapter 5. z/Writer Control Statements

COLSEP(‘xxx’/’ ‘)
Specifies a separator text that should appear between each column of the report. When not specified,
the default is to put one space between report columns. If the COLSPACE parm is also used in the
statement, its value must be consistent with the size of the separator text.

COLSPACE(n/1)
Specifies the default number of spaces to leave between each column in the report. When not specified,
the default is to put one space between report columns. If the COLSEP parm is also used in the statement,
this value must be consistent with the size of the separator text.

CURRCHAR(‘x’/’$’)

Specifies the character to use as the currency symbol. Items formatted with the CURRENCY display
format will use this character. (Display formats are listed on page 117.) You may specify any 1-
byte

FORMAT(display-format ...)
Specifies one or more default display formats to use in this report. (Use the identical FORMAT parm in
the OPTIONS statement if you want to set default formats for all reports in the run.)

You may specify one display format for each data type. That is: one numeric display format, one date
display format and one character display format. The order of the display formats is not important. For
example:

REPORT FORMAT(DOTSEP DD-MM-YY)

The above statement sets two default display format that are very useful for making reports in many
countries other than the USA. It specifies that dates should be formatted as DD/MM/YY and that numeric
values should be formatted using dots instead of commas (for example, 123.456,78).

A complete list of the display formats available appears in the table on page 117. That table also shows
the standard default display formats used when this FORMAT parm is not specified.

Note that this parm only specifies the default display format(s) to use. Different display formats can still
be specified for individual fields or columns in the report. (Do that with the FORMAT parm of the FIELD

statement, or directly in a PRINT or TITLE statement.)

LINES(nn/60)
Specifies the number of lines to print on each page of the report.

NOCC
Normally z/Writer puts a “carriage control” character (‘ ‘, ‘0’, ‘-’ or ‘1’) at the beginning of each line
printed to a report. (This character is actually before “column 1” of the report line.) Use this option to
suppress the carriage control character from your report lines. For example, you might want to do this
when writing your report output to a file for further processing.

NOCOLHDGS/NOCOLHDG
Suppresses column headings in the report. By default, reports get columns headings based on the fields
in the first PRINT statement (for that report) found in the program. (See page 14 for a discussion of
column headings.)

REPORT Statement

z/Writer Reference Manual 131

NODATE
Normally z/Writer inserts the current date at column 1 of the first title line. Use this option to suppress
this date.

NOGRANDTOTALS/NOGRANDTOTAL/NOGRAND
Suppresses grand totals from printing at the end of an auto-cycle report.

NOPAGE
Normally z/Writer inserts the page number in the right-hand columns of the first title line. Use this
option to suppress this page number.

NOUNDER
Normally z/Writer underscores the report’s column headings. Use this option to suppress the
underscores and print only the column heading texts.

QUOTECHAR(‘x’/’”’)
Specifies the character to use as the quote character. Items formatted with the QCHAR display format
will be surrounded with this character. (Display formats are listed on page 117.) You may specify any
1-byte character or hex literal here. The default quote character is the double quotation mark.

EXAMPLES

FILE EMPL TYPE(KSDS)
...

REPORT LINES(55)
REPORT (PARTTIME) LINES(55)

PRINT EMPL_NAME HIRE_DATE STATUS

IF STATUS = ‘P’
 PRINT (PARTTIME) EMPL_NAME HIRE_DATE STATUS
ENDIF

TITLE ‘LIST OF ALL EMPLOYEES’
TITLE (PARTTIME) ‘LIST OF PART TIME EMPLOYEES’

RETRIEVE Statement

132 Chapter 5. z/Writer Control Statements

RETRIEVE Statement

PURPOSE

Retrieves one record from a table. When a record is “retrieved” it is copied from the table’s internal
storage area into the record area that was defined for it (with FIELD statements immediately following
the TABLE statement.)

SYNTAX

DISCUSSION

z/Writer supports two types of tables.

 Sequential tables. Tables defined without the KEY parm are sequential tables. Records are
maintained in the order in which they are “stored”.

 Keyed tables. Tables defined with the KEY parm are keyed tables. z/Writer maintains keyed
tables in key order as balanced binary trees.

The type of table and the keyword parm used on this statement determine which record will be retrieved
from the table.

Status of a Retrieve Operation
After the RETRIEVE statement, you can check the result of the operation by examining the table’s
#STATUS built-in field. (Remember that you will need to qualify #STATUS with the tablename, if the

RETRIEVE STATEMENT SYNTAX

(FOR NON-KEYED TABLES)

 RETRIEVE tablename
 [NEXT/FIRST/ENTRY(numeric-literal/field)]

RETRIEVE STATEMENT SYNTAX

(FOR KEYED TABLES)

 RETRIEVE tablename
 [NEXT/FIRST/KEY(fieldname/’literal’)]

RETRIEVE Statement

z/Writer Reference Manual 133

phase has definitions for multiple files and/or tables.) The table below shows the possible values of

#STATUS after a RETRIEVE.

PARMS

tablename
Specifies the name of the table to retrieve a record from. The table must have been previously defined
using a TABLE statement.

NEXT / FIRST/ENTRY(numeric-literal / field)
NEXT / FIRST/KEY(fieldname / ‘literal’)

Specifies which record to retrieve from the table. If this parm is omitted, the default is to retrieve the
“next” record from the table. Note that the KEY parm may only be specified for tables whose definition
included the KEY parm. The ENTRY parm is only allowed for sequential tables.

The following table explains the meaning of each value for this parm.

#STATUS Built-In Field Values After a RETRIEVE Statement

Y - record successfully retrieved. The table’s record area contains the new record.
N - no record retrieved. For sequential retrievals, this indicates end-of-table. For retrievals
by key or entry number, this indicates that no matching record was found (or that there was
an error in the key/entry value). The table’s record area remains unchanged.

TABLE RETRIEVAL OPTIONS

OPTION MEANING

NEXT

Allowed for any table. Retrieves the next record from the table. That is
the record after the previous record retrieved from the table. (Or the first
record if there have been no prior retrievals.)

For keyed tables, the “next record” is the record with the next higher key
value. For sequential tables, the “next record” is the record that was
added after the previous record retrieved.

FIRST

Allowed for any table. Retrieves the first record from the table. For
keyed tables, this is the record with the lowest key value. For sequential
tables, this is the first record that was added to the table.

RETRIEVE Statement

134 Chapter 5. z/Writer Control Statements

EXAMPLES

RETRIEVE MY-SEQ-TABLE FIRST
RETRIEVE MY-SEQ-TABLE
RETRIEVE MY-SEQ-TABLE ENTRY(PART-NUM)
RETRIEVE MY-KEY-TABLE FIRST
RETRIEVE MY-KEY-TABLE
RETRIEVE MY-KEY-TABLE KEY(‘123’)
RETRIEVE MY-KEY-TABLE KEY(WORKKEY)

KEY(fieldname/’literal’) Allowed only for keyed files (those defined with the KEY parm in the
TABLE statement.)

Retrieves the record whose key field matches the KEY parm’s value.

If no matching record is found, the contents of the table’s record area
is not changed, and the table’s #STATUS field is set to ‘N’.

Note: no data conversion is performed on the key field. Byte-by-byte
comparisons are used to match the KEY parm with the key values stored
in the table. The literal or field specified here must be the same length
as the key length defined for the table.

ENTRY(numeric-
literal/field)

Allowed only for sequential (non-keyed) files (those defined without the
KEY parm in the TABLE statement.)

Retrieves a record according to the order in which it was added to the
table. Thus, ENTRY(1) would return the first record that was added to
the table; ENTRY(2) would return the second record that was added to
the table, and so on. And ENTRY(tablename.#COUNT) would return the
last record added to the table.

The value specified here can be either a numeric literal, or the name of
a numeric field.

If no record is found for the entry specified, the contents of the table’s
record area is not changed and the table’s #STATUS field is set to ‘N’.
#STATUS is also set to ‘N’ if the entry value is a field whose value is not
numeric at execution time.

TABLE RETRIEVAL OPTIONS

OPTION MEANING

REUSE Statement

z/Writer Reference Manual 135

REUSE Statement

PURPOSE

Specifies that a file or table defined in an earlier report phase also be defined for the current phase.

SYNTAX

DISCUSSION

By specifying the REUSE statement, you can avoid retyping the FILE and FIELD statements for a file all
over again in the current phase.

Most aspects of the file definition are copied from the original FILE statement for a reused file. However,
the access type always defaults to INPUT for the reused file. (You can override this on the REUSE

statement, if desired.) And any PRESORT parm specified in the original FILE statement is ignored. (You
can, however, specify a new PRESORT parm on the REUSE statement.)

The REUSE statement is often used in conjunction with TEMP type files. Values are computed and
written to the TEMP file in one phase. A later phase then “reuses” the same file as an input file, reading
the records back in.

Note: z/Writer closes the reused file at the end of the earlier phase(s) where it is used. When used
in the current report, it will be opened anew. That means that if you use a file as an OUTPUT file
in multiple phases, any records written by the earlier phase will be overwritten when the file is
reopened in a later phase.

PARMS

filename
Specifies the name of a file defined in an earlier phase.

REUSE STATEMENT SYNTAX

REUSE filename

[INPUT/OUTPUT/UPDATE]
[PRESORT(fieldname[(ASC/DESC)] ... [#EQUALS])]

REUSE tablename

REUSE Statement

136 Chapter 5. z/Writer Control Statements

INPUT/OUTPUT/UPDATE
Specifies the type of process that will be performed on the file in this phase. Refer to the description
under the FILE statement (page 81).)

PRESORT(fieldname[(ASC/DESC)] ... [#EQUALS])

Specifies that z/Writer should presort the whole file before beginning to execute the user program.
Refer to the description under the FILE statement (page 84).)

tablename
Specifies the name of a table defined in an earlier phase.

EXAMPLE

FILE SALES FB(80)
FLD REGION 5 COL(17)
FLD AMOUNT N6.2

FILE TOTALS TYPE(TEMP) OUTPUT
REGION 5
REGTOT N8.2 INIT(0)

WORKAREA
PREVREG 5 INIT(' ')

SORT SALES USING REGION

**************** PROCEDURE ************************
READ SALES
DOWHILE SALES.#STATUS = 'Y'

 IF SALES.REGION <> PREVREG
 IF PREVREG NOT = SPACES
 MOVE PREVREG TO TOTALS.REGION
 WRITE TOTALS
 ENDIF
 MOVE SALES.REGION TO PREVREG
 MOVE 0 TO REGTOT
 ENDIF

 REGTOT = REGTOT + SALES.AMOUNT
 READ SALES
ENDDO

MOVE PREVREG TO TOTALS.REGION
WRITE TOTALS

NEWPHASE
REUSE TOTALS

READ TOTALS
DOWHILE #STATUS = 'Y'
 PRINT 'TOTAL FOR' REGION '=' REGTOT
 READ TOTALS
ENDDO

REWRITE Statement

z/Writer Reference Manual 137

REWRITE Statement

PURPOSE

Rewrites a VSAM record that has been read for update, replacing the record in the VSAM file with the
current contents of the file’s record area. (A record must have been successfully read from an UPDATE

file before this statement is executed.)

SYNTAX

DISCUSSION

When you specify UPDATE on a FILE statement, the records read from that file are available for update
processing. Each time a record is read from an update file, VSAM puts a lock on the record until you take
one of the following actions:

 you update that record by executing a REWRITE statement for the same file (normally after
changing the contents and/or length of the record)

 you delete that record by executing a DELREC statement for the same file

 you explicitly release the record by executing a RELEASE statement for the same file

 you READ a new record from the same file, which releases the lock on the current record (and
puts a lock on the newly read record)

Record Lengths
Here is how an UPDATE file’s #LENGTH built-in field is used.

For fixed-length files, z/Writer initializes #LENGTH one time to the file’s fixed record length (from the
ACB at open time.). You can examine this field, but you should not change it.

For variable-length VSAM files, z/Writer initializes the #LENGTH built-in field to the maximum defined
record length from the ACB at open time. Then, after each successful READ, the length of the newly read
record is put in #LENGTH for you. If you then rewrite the record, you must move the correct length to
#LENGTH (if the new record has a different length.)

Status of a Rewrite Operation
After the REWRITE statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. (Remember that you will need to qualify #STATUS with the filename, if the phase has

REWRITE STATEMENT SYNTAX

REWRITE filename

REWRITE Statement

138 Chapter 5. z/Writer Control Statements

definitions for multiple files and/or tables.) The table below shows the possible values of #STATUS after

a REWRITE.

PARMS

filename
Specifies the name of the file whose current record should be rewritten. The file must have been
previously defined (in a FILE statement) as an UPDATE file. Also, a record must have been successfully
read from that file, and not yet deleted or released.

EXAMPLE

FILE EMPL UPDATE TYPE(KSDS)
...

READ EMPL /* READ FIRST RECORD FOR UPDATE */

DOWHILE EMPL.#STATUS = ‘Y’
 IF EMPL.EMPL-NUM = ‘444’
 DELREC EMPL /* DELETE RECORD FROM FILE */
 ELSEIF EMPL.EMPL-NUM = ‘555’
 MOVE ‘I’ TO EMPL.STATUS /* MARK REC 555 AS INACTIVE */
 MOVE 40 TO EMPL.#LENGTH /* SHORTEN INACTIVE RECORD */
 REWRITE EMPL /* REWRITE SHORTER 555 RECORD */
 ELSE
 RELEASE EMPL /* LEAVE RECORD UNCHANGED ON FILE. */
 ENDIF
 ... /* OTHER PROCESSING */
 READ EMPL /* READ NEXT RECORD FOR UPDATE */
ENDDO

#STATUS Built-In Field Values After a REWRITE Statement

Y - record successfully rewritten
N - record not rewritten.

SHOW Statement

z/Writer Reference Manual 139

SHOW Statement

PURPOSE

Prints a literal text or the contents of a field in the control listing (not in the report). This statement (often
used along with the TRACEON statement) can be very useful when debugging new programs.

SYNTAX

DISCUSSION

Only a single field or literal may be specified on the SHOW statement.

When a fieldname is specified, both the name of that field and its formatted contents are printed in the
control listing (SYSPRINT).

When a literal text is specified, just that text itself prints in the control listing.

Note: use the SHOWHEX statement if you need to see the contents of the field in hex format.

PARMS

fieldname/’literal’
Specifies a field or literal to show in the control listing.

EXAMPLE

SHOW ‘AT HEADING ROUTINE’
SHOW LAST-NAME

SHOW STATEMENT SYNTAX

SHOW fieldname/’literal’

SHOWHEX Statement

140 Chapter 5. z/Writer Control Statements

SHOWHEX Statement

PURPOSE

Like the SHOW statement, this statement prints the contents of a field in the control listing (not in the
report). However this statement prints the raw contents of the field in character and hex format.

SYNTAX

DISCUSSION

Only a single field or literal maybe specified on the SHOWHEX statement.

When a fieldname is specified, both the name of that field and its raw contents are printed in both
character and hex format in the control listing (SYSPRINT).

When a literal text is specified, just that text itself prints in the control listing (in character and hex
format.)

PARMS

fieldname/’literal’
Specifies a field or literal to show in hex format in the control listing.

EXAMPLE

SHOW ‘FOLLOWING AMOUNT IS CORRUPTED:’
SHOWHEX AMOUNT

SHOWHEX STATEMENT SYNTAX

 SHOWHEX fieldname/’literal’

STOP Statement

z/Writer Reference Manual 141

STOP Statement

PURPOSE

Stops execution of the program.

SYNTAX

DISCUSSION

You are not required to use a STOP statement in your program.

The run will end normally when:

 an auto-cycle run reaches EOF on the primary input, or

 when control reaches the last statement in your program, for standard (non auto-cycle) runs.

You can use this statement to stop the run at some other point during the processing of your code.

EXAMPLE

IF CODE <> 1 THRU 99
SHOW ‘INVALID CODE FOUND’
SHOW CODE
STOP

ENDIF

STOP STATEMENT SYNTAX

STOP

STORE Statement

142 Chapter 5. z/Writer Control Statements

STORE Statement

PURPOSE

Stores a new record in a sequential table, or stores a new or modified record in a keyed table.

SYNTAX

DISCUSSION

The STORE statement copies the current contents of the table’s record area (the FIELD statements
immediately following the TABLE statement) into the table’s internal storage area. This is handled a little
differently for sequential and keyed tables.

As a reminder, z/Writer supports two types of tables.

 Sequential tables. Tables defined without the KEY parm are sequential tables. For sequential
tables, the record being stored is always added at the end of the table.

 Keyed tables. Tables defined with the KEY parm are keyed tables. Internally, z/Writer
maintains keyed tables in key order as balanced binary trees. The STORE statement causes the
record to be inserted into the tree according to the value of its key. If the table already has a
record with that key, then the contents of the record are replaced with the table’s current
record area.

Status of a Store Operation
After the STORE statement, you can check the result of the operation by examining the table’s #STATUS

built-in fie. (Remember that you will need to qualify #STATUS with the tablename, if the phase has
definitions for multiple files and/or tables.) The table below shows the possible values of #STATUS after

a STORE.

STORE STATEMENT SYNTAX

 STORE tablename

#STATUS Built-In Field Values After a STORE Statement

Y - record successfully stored. The table’s internal structure contains the new record (or
updated) record.
N - no record stored. For keyed tables, this indicates that there was an error with the key
value. The internal table remains unchanged.

STORE Statement

z/Writer Reference Manual 143

PARMS

tablename
Specifies the name of the table to store a record in. The table must have been previously defined using
a TABLE statement.

EXAMPLES

STORE MY-SEQ-TABLE

STORE MY-KEY-TABLE
IF MY-KEY-TABLE.#STATUS <> ‘Y’

SHOW ‘ERROR ADDING RECORD TO TABLE’
STOP

ENDIF

TABLE Statement

144 Chapter 5. z/Writer Control Statements

TABLE Statement

PURPOSE

Defines a table to z/Writer.

SYNTAX

DISCUSSION

A table can be thought of as a sort of “in-memory file.” z/Writer supports two types of tables.

 Sequential tables. Tables defined without the KEY parm are sequential tables. When storing
records in sequential tables, each record is simply added to the end of table, after all of the
existing records. When retrieving records from a sequential table, you normally start at the
beginning of the table and read through it sequentially. Thus, a sequential table is similar to
an in-memory “flat file.” (Unlike a flat file, however, it is also possible to directly access any
record in a sequential table by referencing its “entry number”.)

 Keyed tables. Keyed tables are tables defined with the KEY parm. z/Writer maintains keyed
tables as balanced binary trees. Such structures are very efficient and easy to process. When
storing records in a keyed table, z/Writer inserts them directly into the correct location based
on their key value. Thus, one advantage of a binary table is that it is always sorted in key
order, even while you are still adding new records to it. Therefore there is no need to sort the
table before doing a “binary search.” All retrievals from keyed tables are efficient binary
searches. These table are easy to use since you can mix retrievals and stores without needing
a sort command to get the table in order. All of the housekeeping associated with binary tables
is automatically handled for you. A keyed table is similar to an in-memory “VSAM file.”
Records can be directly retrieved with their unique key value. (They can also be read
sequentially, in order of their keys.)

The fields for the table must be defined immediately after the TABLE statement. Use FIELD statements to
define the fields.

Note: use the STORE statement to add a record to a table, or to change a record in a keyed table.
Use the RETRIEVE statement to retreive a record from a table. The DELTABREC statement can be
used to delete a record from a keyed table.

TABLE STATEMENT SYNTAX

 TABLE TABLENAME
 [KEY(fieldname/nn,nn)]

TABLE Statement

z/Writer Reference Manual 145

Both types of table have some built-in fields available to examine. These are shown in the table below.

PARMS

tablename
Specifies the name of the table being defined. All other control statements will use this name when
referring to this file.

Built-In Fields Available for Tables

FIELDNAME

TYPE &
LENGTH

READ
ONLY DESCRIPTION

#EOF

1-byte
charact

er
Yes

Indicates whether an attempt was made to
sequentially retrieve a record past the last
record in the table.

(Keyed retrievals do not set the #EOF built-
in field, even when the desired key is
higher than any key in the table.)

Y - the last operation was a sequential
RETRIEVE statement which raised the end
of file condition

N - the last operation was not a sequential
RETRIEVE statement which raised the end
of file condition

#STATUS

1-byte
charact
er

Yes

Status of the most recent STORE/RETRIEVE

operation.

(blank) - uninitialized (no operations have
been performed on table yet)

Y - last STORE/RETRIEVE operation was
successful

N - last STORE/RETRIEVE operation was
unsuccessful. Indicates missing record or
end-of-table after RETRIEVE statements, or
duplicate key after a STORE statement.

#COUNT
4-byte
binary

Yes Number of entries in the table.

TABLE Statement

146 Chapter 5. z/Writer Control Statements

You may assign any name you like following the naming conventions in the box below.

KEY(field/nn,nn)

The presence of this parm indicates that the table is a keyed table. This parm specifies where the key is
located within the table records. (Tables defined without this parm are sequential tables.)

In this parm, you may specify a single fieldname (which must be defined somewhere among the FIELD

statements that follow the TABLE statement.

Or you can specify two numeric literals, instead. The first number specifies the column that the key
begins in. (Columns are numbered starting with “1”). The second number specifies the length, in bytes,
of the key in the record.

EXAMPLES

TABLE MY-SEQ-TABLE
TABLE MY-KEY-TABLE KEY(1,3)

TABLE MY-KEY-TABLE KEY(EMPL_NUM)
FLD EMPL_NUM 3
FLD EMPL_NAME 10
FLD HIRE_DATE 8 CONTAINS(YYYYMMDD)

Requirements for Table Names

 table names may be from 1 to 70 characters long

 table names may contain alphanumeric characters, the “national” characters #, @, and $,
underscores (_) and dashes (-).

 table names must not begin with a numeric character

 table names are not case sensitive

 table names must not be statement names or other reserved words

Examples

SALES_TABLE

ACCOUNTS

TITLE Statement

z/Writer Reference Manual 147

TITLE Statement

PURPOSE

This is a declaratory statement that specifies how one title line will look in a report. TITLE statements
can also be used to build your own column heading lines.

SYNTAX

DISCUSSION

How Titles Are Printed
You may have as many TITLE statements for a report as you like. Each TITLE statement results in one
title line at the top of the report. (TITLE statements are treated as comments for EXPORT outputs. Export
files do not contain titles.)

TITLE STATEMENT SYNTAX

TITLE:

[(reportname)]

[item1[(parms)] item2[(parms)] ...]

[/ item1[(parms)] item2[(parms)] ...]

[/ item1[(parms)] item2[(parms)] ...]

Each item can be:

• a fieldname, including built-in fields (ex: AMOUNT)

• a built-in function (ex: #MAX(SALES_QTR1, SALES_QTR2))

• a numeric literal (ex: 1000)

• a literal text (ex: ‘INITIAL WHEN READ: _____’)

The syntax of the parms available within parentheses for fieldnames and literals is:

fieldname/function[(
[+n/@n]
[n]
[display–format]
[LJ/CJ/RJ]
[BIZ])]

'literal'[(
[+n/@n]
[n])]

TITLE Statement

148 Chapter 5. z/Writer Control Statements

As a declaratory (rather than executable) statement, the exact location of your TITLE statements is not
critical. However, they must appear after the first PRINT statement. (This allows the titles to be centered
correctly over the body of the report.)

The relative order of the TITLE statements is important. Title lines are printed in the same order in which
they are found in the control statements.

z/Writer performs a “page eject” before printing the first title line, which puts it at the top of a new page.
Before each remaining title line, a single “line feed” is performed before printing. An extra blank line
is printed after the final title line. (This separates the titles from whatever follows next — the column
headings or the report body.)

Empty TITLE statements are also allowed and result in a blank title line.

The TITLE statement consists of zero to three print expressions, separated with slashes. A “print
expression” is just a list of fieldnames and/or literal texts to print, along with any optional parms for
them. Fieldnames indicate that the contents of that field should appear in the title. Literal texts (in
apostrophes or quotes) print “as is” in the title.

Optional parms (in parentheses after a fieldname or literal) let you customize the location and/or
appearance of an item within the title line.

How to Justify Parts of a Title
Report titles are commonly divided into three parts: a left-hand part, a centered part, and a right-hand
part. Counting out the columns by hand to format titles this way is tedious. And it must be redone each
time you make any change to the title text or the report columns.

z/Writer lets you use slashes to greatly simplify this alignment of your title lines over the report. If a
TITLE statement has no slashes, the single print expression will be centered over the report. If there is
one slash in the TITLE statement, the print expression before the slash will be left aligned and the print
expression after the slash will be right aligned. If there are two slashes in the statement, the first print
expression will be left aligned, the second one will be centered, and the third one will be right aligned.
It is okay for one or more of the print expressions to be empty (that is, to have two consecutive slashes.)

Auto-Completion of Titles
In many cases, z/Writer also helps you complete the first title line. If that first title contains only a single
print expression (no slashes), that print expression will be centered across the report for you. z/Writer
then adds the system date to the title, starting in column 1. And it adds the page number, aligned with
the right margin of the report.

Note: you can suppress either or both of these auto completions by using the NODATE and/or
NOPAGE parms in the REPORT statement. Also, if you use a “@n” parm or a slash in the first TITLE

statement, this completion logic is not performed (to avoid possibly overlapping your title
layout.)

Built-In Fields Available for Titles
z/Writer has a number of built-in fields that are often used in titles. The most obvious ones are fields
containing the current date and the page number. You can see a complete list of z/Writer’s built-in fields

TITLE Statement

z/Writer Reference Manual 149

in Appendix A, "Built-In Fields" on page 182. A few of the most useful ones for titles are listed in the
box below.

PARMS

(reportname)
This parm is optional. When used, this must be the first parm on the TITLE statement. The report name
must be enclosed in parentheses.

When report name is not present, the TITLE statement defines a title line for the primary (and often only)
report in the current phase.

Use this optional parm if you are printing to more than one report output during a single phase. This
parm names the report that you want this TITLE statement to be used for. (Reports are defined and named
using the REPORT statement. See page 128.)

fieldname/’literal’[(parms)]
Specifies one item to include in the title line. Fieldnames indicate that the contents of that field should
appear in the title. Literal texts (in apostrophes or quotes) print “as is” in the title.

Optionally, you can specify one or more parms in parentheses after the fieldname or literal. (There must
be no space before the open parenthesis.) The parms let you customize the location and/or appearance
of an item in the title line. The following table shows the parms that can be specified for each item. All
parms are optional and they may be specified in any order, separated by spaces and/or commas. Note
that some of these parms are irrelevant for literal items and will be ignored.

Z/WRITER BUILT-IN FIELDS FOR TITLES

FIELD NAME DESCRIPTION

#DATE
An 8-byte character field containing the system date in
MM/DD/YY format.

#DAYNAME
A 9-byte character field containing the day of the week
("MONDAY")

#TIME

#TIME12

An 8-byte character field containing the system time in
12-hour format (ex: "12:45 PM").

#TIME24
An 8-byte character field containing the system time in
24-hour format (ex: "13:45:59").

#PAGENUM
#PAGE

A numeric field containing the current page number of
the report. (Learn more about this built-in field on
page 182.)

TITLE Statement

150 Chapter 5. z/Writer Control Statements

PARMS ALLOWED FOR ITEMS IN THE TITLE STATEMENT

SYNTAX DESCRIPTION EXAMPLE

Parms Affecting an Item’s Location in the Title

+n

Means begin this item “n” bytes after the end of the previous
item in the title. For example, you can specify +0 if no spaces
are wanted after the previous item.

Note: the “+” is required here in order to distinguish this
parm from the width parm (“n”).

 z/Writer’s default is to leave 1 space between items in the
title.

TITLE ‘NAME=’ NAME(+0)

@n

@n means begin the data in column ”n” of the title. Columns
are numbered starting with 1.

Note: use of this parm on the first TITLE statement
prevents the auto completion of the title line (see
page 148).

TITLE ‘JOB REPORT’(@40)
 ‘PAGE’(@125) #PAGENUM

Parms Affecting an Item’s Appearance in the Title

n
Specifies an override width (in bytes) to use for this title item.
When omitted, z/Writer picks a default width for each item.

TITLE DESCRIPTION(10)

LJ/CJ/RJ

Specifies how the contents of the item should be justified
(within the area reserved for it in the title line). The values
mean left-justified, center-justified and right-justified,
respectively.

Note: you can use slashes in the TITLE statement to
justify whole sections of the title.

TITLE DEPT-NUM(LJ)

display-

format

You may specify the name of any of z/Writer’s “display
formats” that are valid for the data type of the item. The
display format determines how the data is formatted in the
title line. (The table on page 117 lists all of the display
formats.)

When omitted, z/Writer uses: 1), the display format from the
FORMAT parm of the FIELD statement, if any, or 2) a default
display format.

TITLE AMOUNT(CURRENCY)

BIZ

(Stands for “blank-if-zero”). Use this with a numeric field if you
want the area reserved for it in the title line to be left blank for
zero values.

TITLE ERROR-COUNT(BIZ)

TITLE Statement

z/Writer Reference Manual 151

EXAMPLES

TITLE ‘SALES REPORT’
TITLE #DATE / ‘FOR STORE’ STORE-NUM / ‘PAGE’ #PAGENUM(PIC’ZZ9’)
TITLE ‘COST CENTER: 1123’ / ‘ACCOUNTING DEPT’ / ‘GROUP’ ACCT-GROUP
TITLE ‘ JOB’(@1) ‘SALES’(@10) ‘SALES’(@20) ‘EMPL’(@30)
TITLE ‘NAME’(@1) ‘ DATE’(@10) ‘ TIME’(@20) ‘NAME’(@30) ‘DESRIPTION’(@40)

FILE EMPL TYPE(KSDS)
...

REPORT LINES(55)
REPORT (PARTTIME) LINES(55)

PRINT EMPL_NAME HIRE_DATE STATUS

IF STATUS = ‘P’
 PRINT (PARTTIME) EMPL_NAME HIRE_DATE STATUS
ENDIF

TITLE ‘LIST OF ALL EMPLOYEES’
TITLE (PARTTIME) ‘LIST OF PART TIME EMPLOYEES’

TRACEOFF STATEMENT6

152 Chapter 5. z/Writer Control Statements

TRACEOFF STATEMENT6

PURPOSE

Turns program flow tracing off.

SYNTAX

DISCUSSION

Program flow tracing causes the program’s statements to be printed (in the control listing) as they are
executed. This feature can be useful in debugging new programs. Program flow tracing is off by default.

This is an executable (not declaratory) statement. Tracing begins when the program executes a
TRACEON and ends when it executes a TRACEOFF statement. You can use these statement to activate
tracing only for selected sections of a program.

EXAMPLES

READ SALES

TRACEON
IF #STATUS = ‘Y’

GOTO READ-OK
ELSE
 SHOW ‘READ ERROR’
 STOP
ENDIF
TRACEOFF

PRINT EMPL-NUM EMPL-NAME
...

TRACEOFF STATEMENT SYNTAX

TRACEOFF

TRACEON STATEMENT

z/Writer Reference Manual 153

TRACEON STATEMENT

PURPOSE

Turns program flow tracing on.

SYNTAX

DISCUSSION

Program flow tracing causes the program’s statements to be printed (in the control listing) as they are
executed. This feature can be useful in debugging new programs. Program flow tracing is off by default.

This is an executable (not declaratory) statement. Tracing begins when the program executes a
TRACEON and ends when it executes a TRACEOFF statement. You can use these statement to activate
tracing only for selected sections of a program.

EXAMPLES

READ SALES

TRACEON
IF #STATUS = ‘Y’

GOTO READ-OK
ELSE
 SHOW ‘READ ERROR’
 STOP
ENDIF
TRACEOFF

PRINT EMPL-NUM EMPL-NAME
...

TRACEON STATEMENT SYNTAX

TRACEON

Alternate Spellings:
TRACEON - TRACE

WHEN Statement

154 Chapter 5. z/Writer Control Statements

WHEN Statement

PURPOSE

The WHEN statement is used within a “case-structure”. The purpose of a case-structure is to
conditionally execute (at most) one set of statements within the structure.

SYNTAX

DISCUSSION

The WHEN statement presents one set of values to compare to the test field (named in the CASE

statement.) It is followed by any number of “other statements” to be executed if a match is found among
its values. A complete discussion of the “case-structure” can be found under the CASE statement on
page 32.

CASE STRUCTURE SYNTAX

CASE fieldname

[WHEN [NOT] value/range [value/range ...]
other statements]

[WHEN [NOT] value/range [value/range ...]
other statements]
...

[ELSE
other statements]

ENDCASE

WORKAREA Statement

z/Writer Reference Manual 155

WORKAREA Statement

PURPOSE

Allows you to define fields in working storage.

SYNTAX

DISCUSSION

The WORKAREA statement has one optional parm, the NAME parm (described below.)

This statement should be immediately followed by one or more FIELD statements. These fields are not
located within any file or table record area. They may be used to store any “working storage” values
required by your program logic.

You may have multiple WORKAREA statements if you like. Most programs will use a single WORKAREA

statement to define all necessary working variables. It is normally located just after all file and table
definitions, near the beginning of a program.

Initial Values
Here is how z/Writer initializes the contents of a workarea. First, the entire workarea is cleared to
blanks. Then, for each numeric field defined in the workarea, that field is initialized to zero if both of
the following conditions are met:

 the field was not defined with its own INIT or REINIT value

 the field was not redefined by other fields (that is, it was not named in a REDEFINE statement)

PARMS

name
This optional parm assigns a name to the workarea being defined. When present, the name parm must

be on the same line as WORKAREA. (Unlike most z/Writer statements, the WORKAREA statement may not
be continued onto additional lines.) The naming rules for workareas are the same as for file names
(page 78)

WORKAREA STATEMENT SYNTAX

WORKAREA [name]

WORKAREA Statement

156 Chapter 5. z/Writer Control Statements

Use the workarea name when you need to qualify fieldnames defined within that workarea. (For
example, if a field by the same name also exists in a file definition, or in another workarea.) For
example:

WORKAREA COUNTERS
FLD ERRORS P3 INIT(0)
...
COUNTERS.ERRORS = COUNTERS.ERRORS +1

When a workarea name is not specified, the fields within that workarea can not be qualified.

EXAMPLES

WORKAREA MYWORK

FLD COUNTER P3 INIT(0)

FLD WORKKEY 5

REDEFINE WORKKEY

FLD WORKKEY-DEPT 1

FLD WORKKEY-SEQ N4

WORKAREA

BUILD-DATE 8

REDEFINE BUILD-DATE

BUILD-YYYY 4

BUILD-MM 2

BUILD-DD 2

WRITE Statement

z/Writer Reference Manual 157

WRITE Statement

PURPOSE

Writes a new record to an OUTPUT or UPDATE file.

SYNTAX

DISCUSSION

For QSAM, ESDS and RRDS files, WRITE appends a new record to the end of the file.

For KSDS files, WRITE attempts to add a new record to the file using the key value contained in the key
field in the file’s record area. An error will occur if the file already contains a record with the same key
value.

Note: do not use the WRITE statement to rewrite a record that has been read for update. Use the
REWRITE statement for that. You may perform WRITEs to an UPDATE file, but only for adding new
records to the file.

Note: after a WRITE to an RRDS file, the RRN of the newly written record can be found in the file’s
#RRN built-in field.

Record Lengths
Here is how an OUTPUT or UPDATE file’s #LENGTH built-in field is used.

For fixed-length files, z/Writer initializes #LENGTH one time to the file’s fixed record length (from the
DCB or ACB at open time.). You can examine this field, but you should not change it.

For variable-length files (including variable length VSAM files), z/Writer initializes the #LENGTH built-
in field one time to the maximum defined record length (from the DCB or ACB at open time.) After that,
you are responsible for maintaining the correct value in #LENGTH. Specifically, before a WRITE to a
variable-length file, you must ensure that the file’s #LENGTH built-in field contains the correct length of
the record being added.

Status of a Write Operation
After the WRITE statement, you can check the result of the operation by examining the file’s #STATUS

built-in field. (Remember that you will need to qualify #STATUS with the filename, if the phase has

WRITE STATEMENT SYNTAX

WRITE filename

WRITE Statement

158 Chapter 5. z/Writer Control Statements

definitions for multiple files and/or tables.) The table below shows the possible values of #STATUS after

a WRITE.

PARMS

filename
Specifies the name of the file to write a new record to. The file must have been previously defined as
an OUTPUT or UPDATE file.

EXAMPLE

FILE EMPL UPDATE TYPE(KSDS)
...

READ EMPL KEY(‘400’) /* MODIFY REC 400 */
IF EMPL.#STATUS = ‘Y’
 MOVE ‘I’ TO EMPL.STATUS /* MARK 400 AS INACTIVE */
 MOVE 40 TO EMPL.#LENGTH /* SHORTEN INACTIVE RECORD */
 REWRITE EMPL /* REWRITE SHORTER 400 RECORD */
ENDIF

READ EMPL KEY(‘500’) /* CHANGE REC 500’S KEY */
IF EMPL.#STATUS = ‘Y’
 DELREC EMPL /* REMOVE KEY 500 FROM FILE */
 MOVE ‘599’ TO EMPL.KEY /* USE SAME REC WITH DIFF KEY */
 WRITE EMPL /* ADD A NEW 599 REC TO FILE */
ENDIF

STOP

#STATUS Built-In Field Values After a WRITE Statement

Y - record successfully written
N - record not written. This may indicate no space left in the file, or some other error.

What Is z/Writer’s DB2 Option?

z/Writer Reference Manual 159

Chapter 6. z/Writer’s DB2 Option

This chapter explains how to use z/Writer’s available DB2 Option to access DB2 data.

What Is z/Writer’s DB2 Option?
z/Writer’s DB2 Option enables z/Writer to access data from any of your shop’s DB2 tables. With the DB2

Option, you can easily report on all of your DB2 data, using the same powerful, easy z/Writer language
that you already know! And z/Writer lets you combine DB2 data with other data from flat files and VSAM

files -- all in one report.

And, because z/Writer handles the interface to DB2 for you dynamically, there is no need for pre-
compiles or any other extra steps. You just code DB2 reports and run them as quickly and easily as you
do now with regular files.

How It Works
The DB2 Option adds two new z/Writer statements for you to use. (It also extends the use of several
existing statements.)

New Statements Just for DB2

 The new CURSOR statement defines one DB2 input source. The CURSOR statement is required
for any run that accesses DB2 data.

 The new FETCH statement fetches one row from a DB2 input source. The FETCH statement is
not required. You can omit it and let z/Writer’s auto-cycle logic handle the fetches for you
automatically.

You can think of DB2 tables as being almost like regular files. You just code a CURSOR statement to
describe the DB2 data that you want to access. This is the equivalent of the FILE statement for regular
files. Then you use FETCH statements to retrieve one row at a time of data from your cursor. That is
similar to a READ statement for a regular file. Also available (but not required) are the OPEN and CLOSE

statements, which work for both files and DB2 cursors.

Now let’s just take a quick look at each of the two new statement. Afterwards, we will go into more of
the details.

The CURSOR Statement - A Quick Look
The CURSOR statement is the key to using DB2 data in your z/Writer program. You might think of it as
a very powerful FILE statement. It not only names a DB2 input, but can also specify selection criteria and
sort order, compute statistics, summarize data -- even merge data from other tables!

The QUERY Parm of the CURSOR Statement
In short, the CURSOR statement has all the power of a SQL “query.” That is because you will actually
include an SQL “query” (or “full select” statement) right in your CURSOR statement (in the QUERY parm.)
Your query will begin with the word “SELECT” and can contain any number of WHERE conditions, as
well as ORDER BY, HAVING, GROUP BY clauses, etc. It may include sub-select clauses. In general, any

The CURSOR Statement - A Quick Look

160 Chapter 6. z/Writer’s DB2 Option

query that could be specified in an SQL DECLARE CURSOR statement is allowed in the QUERY parm of
z/Writer’s CURSOR statement.

Note: the query may not include an INTO clause. (Fetches are always performed “into” the fields
that z/Writer automatically defines for the cursor. See page 164 for more details.)

Your QUERY parm must be written as a valid SQL query. However, z/Writer does not attempt to syntax-
check the contents of your QUERY parm. Any errors in it will be detected later by DB2. Some of them
are detected while the CURSOR statement is first being examined. Other errors are only detected by DB2

when the cursor is actually opened, after your program has begun execution.

z/Writer’s CURSOR statement, in fact, establishes an actual SQL cursor (internally), which z/Writer later
uses to fetch data from your DB2 table.

For example, here is a CURSOR statement with a very simple QUERY parm:

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

This simple query selects all of the columns from the sample IBM project table named DSN81110.PROJ.
(This table also exists at your own shop, in case you would like to try these examples yourself. It may
have a slightly different name depending on your version of DB2.)

Note that, like the FILE statement, the non-executable CURSOR statement does not actually return any
data to the program. It simply defines the data that will be returned later (with FETCH statements.)
Technically, the CURSOR statement (when later opened) creates a DB2 “result table.” This result table
contains rows of data columns that match the specifications in your QUERY parm. These rows will later
be returned (“fetched“), one at a time, to your program. You may do this with explicit FETCH statements
in your code. Or you can let z/Writer fetch the rows for you automatically in an auto-cycle report.

DB2 Report Example
Here is a complete z/Writer program that uses the above CURSOR statement to print a report from the
DB2 project table.

OPTION DB2SSID('DBBG')

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

PRINT
 PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTAFF
 PRSTDATE
 PRENDATE
 MAJPROJ

TITLE 'CONTENTS OF PROJ DB2 TABLE'

Looks examine this short program in more detail.

The first line, OPTION DB2SSID(‘DBBG’), specifies which of your shop’s DB2 subsystems should be used
for the run. This option is always required for runs that use DB2 data. It should be coded early in the
program. This parm is required so that z/Writer can find the DB2 data that you want. This parm also

The CURSOR Statement - A Quick Look

z/Writer Reference Manual 161

allows you to run your program first on a test system, and then easily switch it over to a production
system.

The second line is the simple CURSOR statement that we saw earlier. It selects all columns of data from
all rows of IBM’s sample project DB2 table. The cursor name that we provided (PROJECT) is an arbitrary
name. You can choose any name for the cursor. This same name will be used later in any OPEN, FETCH

and CLOSE statements for this cursor. There are some other optional parms that can also be used on the
CURSOR statement. But the cursor name and the QUERY parm are always required.

Figure 9. A report produced with just three control statements

Figure 9. A complete DB2 auto-cycle report

These Control Statements:

OPTION DB2SSID('DBBG')

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

PRINT
 PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTAFF
 PRSTDATE
 PRENDATE
 MAJPROJ

TITLE 'CONTENTS OF PROJECT DB2 TABLE'

Produce this Report:

 09/04/12 CONTENTS OF PROJECT DB2 TABLE PAGE 1

 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

 AD3100 ADMIN SERVICES D01 000010 6.50 1982-01-01 1983-02-01
 AD3110 GENERAL AD SYSTEMS D21 000070 6.00 1982-01-01 1983-02-01 AD3100
 AD3111 PAYROLL PROGRAMMING D21 000230 2.00 1982-01-01 1983-02-01 AD3110
 AD3112 PERSONNEL PROGRAMMG D21 000250 1.00 1982-01-01 1983-02-01 AD3110
 AD3113 ACCOUNT.PROGRAMMING D21 000270 2.00 1982-01-01 1983-02-01 AD3110
 IF1000 QUERY SERVICES C01 000030 2.00 1982-01-01 1983-02-01
 IF2000 USER EDUCATION C01 000030 1.00 1982-01-01 1983-02-01
 MA2100 WELD LINE AUTOMATION D01 000010 12.00 1982-01-01 1983-02-01
 MA2110 W L PROGRAMMING D11 000060 9.00 1982-01-01 1983-02-01 MA2100
 MA2111 W L PROGRAM DESIGN D11 000220 2.00 1982-01-01 1982-12-01 MA2110
 MA2112 W L ROBOT DESIGN D11 000150 3.00 1982-01-01 1982-12-01 MA2110
 MA2113 W L PROD CONT PROGS D11 000160 3.00 1982-02-15 1982-12-01 MA2110
 OP1000 OPERATION SUPPORT E01 000050 6.00 1982-01-01 1983-02-01
 OP1010 OPERATION E11 000090 5.00 1982-01-01 1983-02-01 OP1000
 OP2000 GEN SYSTEMS SERVICES E01 000050 5.00 1982-01-01 1983-02-01
 OP2010 SYSTEMS SUPPORT E21 000100 4.00 1982-01-01 1983-02-01 OP2000
 OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 1982-01-01 1983-02-01 OP2010
 OP2012 APPLICATIONS SUPPORT E21 000330 1.00 1982-01-01 1983-02-01 OP2010
 OP2013 DB/DC SUPPORT E21 000340 1.00 1982-01-01 1983-02-01 OP2010
 PL2100 WELD LINE PLANNING B01 000020 1.00 1982-01-01 1982-09-15 MA2100

 GRAND TOTAL 73.50

The FETCH Statement -- A Quick Look

162 Chapter 6. z/Writer’s DB2 Option

The last two statements are just the regular PRINT and TITLE statements that you are already familiar
with.

The PRINT statement prints each of the columns from the project table. Note that we did not need to
define any of those columns (or “fields” in z/Writer terms.) z/Writer obtained the name of each result
column from DB2 and defined a like-named z/Writer field for each one. During a fetch operation, data
is returned from DB2 and loaded into these z/Writer fields for your program to use. If you would like to
see all of the fields created for your CURSOR statement (along with their length and type), just add the
SHOWFLDS parm to your CURSOR statement:

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ) SHOWFLDS

Note that this is an auto-cycle report, since there are no explicit FETCH statements for the primary input.
The primary (and only) input in this program is the DB2 cursor for PROJECT.

The output from this simple program is shown in Figure 9 (page 161).

The FETCH Statement -- A Quick Look
The sample DB2 report in Figure 9 (page 161) did not use the FETCH statement. That caused z/Writer to
perform an auto-cycle report. That is, it fetched each row from our primary input (the DB2 cursor) until
it reached “end of file” (no more rows). For each row fetched, it performed the single executable
program statement -- the PRINT statement. It also printed a grand total line, which is the default.

If you prefer, you can code explicit FETCH statements in your program. That way you are free to code
any kind of program flow that you want.

The FETCH statement simply names a previously defined DB2 cursor. It has no other parms. Its function
is to fetch the next row from the result table defined by the cursor. The rows’ data columns are loaded
into the fields defined for your cursor by z/Writer (see page 164).

The status of the FETCH operation can be determined in several ways:

 you can check the standard #STATUS built-in field, just as for a file. (“Y” means successful;
“N” means not successful.)

 you can explicitly check for EOF by looking at the #EOF built-in field, as for a file. (“Y” means
no more rows; “N” means another row was returned.)

 or, you can check the special #SQLCODE built-in field, which exists only for DB2 cursors. This
is a 2-byte binary numeric field containing the actual SQL code returned by DB2 to z/Writer.

Figure 10 (page 163) shows the same short program that we saw earlier in Figure 9 (page 161). But this
time the program uses explicit FETCH statements. (Note that while you may also use the OPEN and
CLOSE statements if you like, they are not required. z/Writer performs them by default when they are
needed.)

In this program, we first do a single FETCH to “prime the pump.” Then we enter a do-while loop for as
long as the #EOF built-in field is not “Y.” In the loop we print the current contents of the DB2 cursor’s
fields and then do another FETCH. When EOF is reached, the do-while loop ends and the program ends.

Note that the only difference between this report and the report on page 161 is the absence of grand
totals. Auto-cycle reports print grand totals automatically. In non-auto-cycle reports, any desired
totalling logic must be coded by the programmer.

The CURSOR Statement -- More Details

z/Writer Reference Manual 163

The CURSOR Statement -- More Details
We have learned the basic functions of the new CURSOR and FETCH statements for DB2 reports. Now
let’s look at the CURSOR statement a little more closely. This powerful statement will be the heart of
your z/Writer runs that use DB2 data.

Figure 10. A report produced with just three control statements

Figure 10. A complete DB2 report using explicit FETCHs (not auto-cycle)

These Control Statements:

OPTION DB2SSID('DBBG')
CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

FETCH PROJECT
DOWHILE #EOF <> 'Y'
 PRINT
 PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTAFF
 PRSTDATE
 PRENDATE
 MAJPROJ
 FETCH PROJECT
ENDDO

TITLE 'CONTENTS OF PROJECT DB2 TABLE'

Produce this Report:

 09/04/12 CONTENTS OF PROJECT DB2 TABLE PAGE 1

 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

 AD3100 ADMIN SERVICES D01 000010 6.50 1982-01-01 1983-02-01
 AD3110 GENERAL AD SYSTEMS D21 000070 6.00 1982-01-01 1983-02-01 AD3100
 AD3111 PAYROLL PROGRAMMING D21 000230 2.00 1982-01-01 1983-02-01 AD3110
 AD3112 PERSONNEL PROGRAMMG D21 000250 1.00 1982-01-01 1983-02-01 AD3110
 AD3113 ACCOUNT.PROGRAMMING D21 000270 2.00 1982-01-01 1983-02-01 AD3110
 IF1000 QUERY SERVICES C01 000030 2.00 1982-01-01 1983-02-01
 IF2000 USER EDUCATION C01 000030 1.00 1982-01-01 1983-02-01
 MA2100 WELD LINE AUTOMATION D01 000010 12.00 1982-01-01 1983-02-01
 MA2110 W L PROGRAMMING D11 000060 9.00 1982-01-01 1983-02-01 MA2100
 MA2111 W L PROGRAM DESIGN D11 000220 2.00 1982-01-01 1982-12-01 MA2110
 MA2112 W L ROBOT DESIGN D11 000150 3.00 1982-01-01 1982-12-01 MA2110
 MA2113 W L PROD CONT PROGS D11 000160 3.00 1982-02-15 1982-12-01 MA2110
 OP1000 OPERATION SUPPORT E01 000050 6.00 1982-01-01 1983-02-01
 OP1010 OPERATION E11 000090 5.00 1982-01-01 1983-02-01 OP1000
 OP2000 GEN SYSTEMS SERVICES E01 000050 5.00 1982-01-01 1983-02-01
 OP2010 SYSTEMS SUPPORT E21 000100 4.00 1982-01-01 1983-02-01 OP2000
 OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 1982-01-01 1983-02-01 OP2010
 OP2012 APPLICATIONS SUPPORT E21 000330 1.00 1982-01-01 1983-02-01 OP2010
 OP2013 DB/DC SUPPORT E21 000340 1.00 1982-01-01 1983-02-01 OP2010
 PL2100 WELD LINE PLANNING B01 000020 1.00 1982-01-01 1982-09-15 MA2100

The CURSOR Statement -- More Details

164 Chapter 6. z/Writer’s DB2 Option

Where Does z/Writer Put the Data It Fetches from DB2?
After a FILE statement you normally code a number of FIELD statements. These describe the data fields
that will be filled in after a record has been read from the file.

But after a CURSOR statement, FIELD statements are not allowed. Instead, z/Writer queries the DB2

subsystem as to what columns of data will be returned by the select statement in your QUERY parm.
z/Writer then automatically defines one field for each column that DB2 will return.

The fields that z/Writer defines for you have these characteristics:

 the field name is the same as the DB2 column name, if it has one.

Some result columns do not come directly from a DB2 column and do not have an SQL “name.”
For example, if you select AVG(AMOUNT), that result column is not given a name by SQL. In such
cases, z/Writer assigns its own field name of the form CALC_nn. That is, the first unnamed column
will be put in a field named CALC_01, the next one in CALC_02, and so on. (See an example of this
on page 173.)

 for DB2 columns defined with packed, binary, float or character SQL data types, the z/Writer
field will have the corresponding z/Writer data type. For all other types of DB2 columns, the
z/Writer field is just defined as a character field.

 the length of the z/Writer field is the same as the SQL length of the column, except for decimal
fields. For decimal fields, z/Writer uses the “scale” value from the SQL length parm to
determine the corresponding length in bytes for the field. It also uses SQL’s “precision” value
to set the DECIMAL parm for the z/Writer field.

Queries That Only Return Certain DB2 Columns; the SELECT Clause
The sample run on page 170 showed a very basic CURSOR statement. It returned all columns of all rows
in the table. Now let’s make a report that only returns to us a few columns that we actually need for a
report. To limit the columns returned, just name specific columns in the SELECT clause of your QUERY

parm (instead of using “*” which means all columns).

For example, Figure 11 below only uses two columns from the DB2 project table:

Note that returning unnecessary columns in the result table does not harm your final report at all. But
when CPU efficiency is a prime concern, you will probably want to limit the columns returned to just
those that you actually need for your run.

Using the ORDER BY Clause
We also added an ORDER BY clause to our QUERY parm in Figure 11. That ensures that the rows that we
fetch are passed to us in project number order.

The CURSOR Statement -- More Details

z/Writer Reference Manual 165

Figure 11. A report produced with just three control statements

Figure 11. A DB2 report with a SELECT and ORDER BY clause

These Control Statements:

OPTION DB2SSID('DBBG')
CURSOR PROJECT QUERY(SELECT PROJNO, PROJNAME FROM DSN81110.PROJ
 ORDER BY PROJNO)
PRINT
 PROJNO
 PROJNAME

TITLE 'PROJNO’’S WITH DESCRIPTIONS'

Produce this Report:

 09/04/12 PROJNO'S WITH DESCRIPTIONS PAGE 1

PROJNO PROJNAME

AD3100 ADMIN SERVICES
AD3110 GENERAL AD SYSTEMS
AD3111 PAYROLL PROGRAMMING
AD3112 PERSONNEL PROGRAMMG
AD3113 ACCOUNT.PROGRAMMING
IF1000 QUERY SERVICES
IF2000 USER EDUCATION
MA2100 WELD LINE AUTOMATION
MA2110 W L PROGRAMMING
MA2111 W L PROGRAM DESIGN
MA2112 W L ROBOT DESIGN
MA2113 W L PROD CONT PROGS
OP1000 OPERATION SUPPORT
OP1010 OPERATION
OP2000 GEN SYSTEMS SERVICES
OP2010 SYSTEMS SUPPORT
OP2011 SCP SYSTEMS SUPPORT
OP2012 APPLICATIONS SUPPORT
OP2013 DB/DC SUPPORT
PL2100 WELD LINE PLANNING

GRAND TOTAL

The CURSOR Statement -- More Details

166 Chapter 6. z/Writer’s DB2 Option

Using the WHERE Clause to Return Selected Rows from a DB2 Table
The sample run on page 170 showed a very basic CURSOR statement. It returned all columns of all rows

in the table.

Often, you will not want to retrieve every row of a DB2 table. In those cases, SQL offers the WHERE

clause for use in your QUERY. The SQL WHERE clause allows you to narrow down the rows that will later
be retrieved.

Figure 12 shows an example of a QUERY parm with a WHERE clause.

This query is similar to the earlier one in Figure 9 (page 161). But this time the cursor contains a WHERE

clause to select only the rows whose PRSTAFF column is greater than 1. The resulting report shows only

the rows from the table that meet this WHERE condition.

Figure 12. A report produced with just three control statements

Figure 12. Using the WHERE clause to select only certain rows from a DB2 table

These Control Statements:

OPTION DB2SSID('DBBG')

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ
 WHERE PRSTAFF > 1)

PRINT
 PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTAFF
 MAJPROJ

TITLE 'PRSTAFF GREATER THAN 1'

Produce this Report:

09/05/12 PRSTAFF GREATER THAN 1 PAGE 1

PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF MAJPROJ
AD3100 ADMIN SERVICES D01 000010 6.50
AD3110 GENERAL AD SYSTEMS D21 000070 6.00 AD3100
AD3111 PAYROLL PROGRAMMING D21 000230 2.00 AD3110
AD3113 ACCOUNT.PROGRAMMING D21 000270 2.00 AD3110
IF1000 QUERY SERVICES C01 000030 2.00
MA2100 WELD LINE AUTOMATION D01 000010 12.00
MA2110 W L PROGRAMMING D11 000060 9.00 MA2100
MA2111 W L PROGRAM DESIGN D11 000220 2.00 MA2110
MA2112 W L ROBOT DESIGN D11 000150 3.00 MA2110
MA2113 W L PROD CONT PROGS D11 000160 3.00 MA2110
OP1000 OPERATION SUPPORT E01 000050 6.00
OP1010 OPERATION E11 000090 5.00 OP1000
OP2000 GEN SYSTEMS SERVICES E01 000050 5.00
OP2010 SYSTEMS SUPPORT E21 000100 4.00 OP2000

GRAND TOTAL 67.50

The CURSOR Statement -- More Details

z/Writer Reference Manual 167

Note also that while we selected all columns from the PROJ table, we did not print all of them in this
report. (We did not print the PRSTDATE and PRENDATE columns.) You can just print the columns that
you need.

Using Working Storage Fields in Your Query
Many WHERE clauses simply compare a DB2 column to a constant, literal value (as we did in Figure 12).
But sometimes you will not know the selection criteria until the program execution begins. For
example, you might read a control card into your program which specifies a date range to report on.

For these cases, the WHERE clause is allowed to refer to working storage fields within your z/Writer
program. For example, you may want to select rows where a certain DB2 column’s value matches a
value in a workarea field of your program. In your WHERE clause you may refer to any previously

defined field from a file, table, workarea or even from an earlier DB2 cursor. Just prefix the field name
with a colon (:) when using it in your QUERY parm. Do not leave a space between the colon and the
field name.

For example, in Figure 13 we compare the DB2 PRSTAFF column to the contents of a working storage

field named TEST-STAFF.

Our report program assigned a value of “3” to TEST-STAFF before performing the first FETCH. Therefore,
the report contains only the rows of the PROJ table with PRSTAFF greater than 3.

When is the DB2 Result Table Created?
In Figure 13 notice that we set the value in TEST-STAFF before we did any fetches. That is important.

When the first FETCH is needed, z/Writer first opens the cursor, and then performs that first fetch. The
result table defined by the cursor is actually created by DB2 when the cursor is opened. The value in your
working storage fields at open time is the value that DB2 will use to select rows for the result table. If
you later change the value in such working storage fields, it will not affect the existing result table.

On the other hand, if you change the value in a working storage field and then close and re-open the
cursor, the previous result table will no longer exist. Instead, a new result table is created for the cursor,
using the current value in any referenced working storage fields.

How z/Writer Fields Are Passed to DB2
The following types of data are recognized by both z/Writer and SQL:

 character

 decimal (packed)

 binary

 float (hexadecimal floating point)

When you refer to a working storage field with one of these data types (in your QUERY parm), z/Writer
passes its value to DB2 using the corresponding SQL data type. Data from a working storage field of any

other type (namely z/Writer’s character-numeric data types N and NE) is passed to DB2 as character
data. That is because DB2 does not have a data type for such character-numeric fields.

The CURSOR Statement -- More Details

168 Chapter 6. z/Writer’s DB2 Option

Passing Exotic SQL Data Types in Your Query
SQL defines many more types of data than z/Writer. (For example, dates, times, and timestamps.)
z/Writer provides a special method to allow you to pass such “exotic” SQL data types to DB2 in your
query.

Let’s assume that you have a 10-byte character working storage field. In this field you plan to store a
date in the standard SQL format. How can you pass this character field to DB2 as a “date” type field?
The answer is to add the special SQLTYPE and SQLLEN parms to the FIELD statement that defines your
10-byte character field:

FLD MY-DATE 10 SQLTYPE(384) SQLLEN(10)

Figure 13. A report produced with just three control statements

Figure 13. A WHERE clause that refers to a working storage field in the program

These Control Statements:

OPTION DB2SSID('DBBG')

WORKAREA
TEST-STAFF P6.1 INIT(3)

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ
 WHERE PRSTAFF > :TEST-STAFF)

PRINT
 PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTAFF
 PRSTDATE
 PRENDATE
 MAJPROJ

TITLE 'PRSTAFF GREATER THAN CUTOFF VALUE'

Produce this Report:

 09/05/12 PRSTAFF GREATER THAN CUTOFF VALUE PAGE 1

 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ
 AD3100 ADMIN SERVICES D01 000010 6.50 1982-01-01 1983-02-01
 AD3110 GENERAL AD SYSTEMS D21 000070 6.00 1982-01-01 1983-02-01 AD3100
 MA2100 WELD LINE AUTOMATION D01 000010 12.00 1982-01-01 1983-02-01
 MA2110 W L PROGRAMMING D11 000060 9.00 1982-01-01 1983-02-01 MA2100
 OP1000 OPERATION SUPPORT E01 000050 6.00 1982-01-01 1983-02-01
 OP1010 OPERATION E11 000090 5.00 1982-01-01 1983-02-01 OP1000
 OP2000 GEN SYSTEMS SERVICES E01 000050 5.00 1982-01-01 1983-02-01
 OP2010 SYSTEMS SUPPORT E21 000100 4.00 1982-01-01 1983-02-01 OP2000

 GRAND TOTAL 53.50

The CURSOR Statement -- More Details

z/Writer Reference Manual 169

The statement above defines a field call MY-DATE that is a 10-byte character field. In addition, it specifies
a SQLTYPE and SQLLEN parm. These parms are only used when MY-DATE is passed to DB2 in a CURSOR

statement’s QUERY parm.

As z/Writer executes all of the program’s regular (non-DB2) statements, MY-DATE is treated as a regular
10-byte character field. However, if you refer to :MY-DATE within the CURSOR statement’s QUERY parm,
z/Writer will pass that 10-byte area to DB2 as a type 384 field (an SQL date). The length passed to DB2

will be 10 (from the SQLLEN parm, not from the z/Writer field’s length). If we had not specified the
SQLTYPE and SQLLEN parms on the FIELD statement, z/Writer would have just passed the data to DB2 as
a 10-byte character field.

Here are some points to keep in mind about the SQLTYPE and SQLLEN parms:

 SQLLEN will usually have the same length as the regular z/Writer field. When this is the case,
it is not necessary to specify the SQLLEN parm on your FIELD statement.

However, some SQL types require that the length parm be specified as a 1-byte binary scale
(number of digit positions) followed by a 1-byte binary precision (number of decimal digits).
In such case, you will use SQLLEN to specify a single halfword size value that SQL will re-
interpret as two, 1-byte binary values. You can compute this value by multiplying the scale
value by 256, and then adding the precision value. Remember that for decimal (packed)
fields, the scale (digits) is not the same as the length (in bytes) of the field.

 the SQLTYPE and SQLLEN parms can also be used to pass “null” values to DB2 for a working
storage value. See "Passing Null Values to SQL in Your Query" on page 174 for the details
and an example.

Opening the Cursor Multiple Times
Many runs just define a single DB2 cursor and then fetch all of its rows to print a report. For these kinds
of runs, you do not need to OPEN nor CLOSE the DB2 cursor yourself. z/Writer will do that for you (just

before the first row is fetched, and at the end of the run.)

However, there are some occasions when you need to open a DB2 cursor over and over during the same
run. Each time the DB2 cursor is opened, a new result table is prepared for it. When the query involves
working storage fields, the values in those fields may have changed since the previous open. Each time
you open the cursor, you can potentially get a different result table. It is in these cases that you will need
to perform OPENs and CLOSEs to the cursor yourself.

For example, in Figure 14 we defined two DB2 cursors. One cursor is for the Project table and the other
is for the Department table. Since we defined the Project cursor first, that becomes the primary input
for the report. z/Writer will read through the Project table sequentially during its auto-cycle logic.
z/Writer will not perform any fetches to the second, Department, cursor on its own. Accessing that
cursor is entirely up to the program code.

In our auto-cycle program, each time z/Writer fetches the next row from the primary input (PROJECT),
our code opens the DEPT cursor and FETCHes one row from it. We then CLOSE that cursor, so that it can
be opened again for the next primary input row. This single FETCH from the Department table uses the
DEPTNO column from the PROJECT cursor to look up the Department table’s row for that department
number. The selected row contains the complete department name. So now our report includes data
from the Project table, plus the department name taken from the Department table.

The CURSOR Statement -- More Details

170 Chapter 6. z/Writer’s DB2 Option

Figure 14. A report produced with just three control statements

Figure 14. Opening a DB2 Cursor Multiple Times; Using Two DB2 Tables

These Control Statements:

OPTION DB2SSID('DBBG')

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

CURSOR DEPT QUERY(SELECT * FROM DSN81110.DEPT
 WHERE DEPTNO = :DEPTNO)
*
********* READ DEPT RECORD FOR PROJECT’S DEPT ************
OPEN DEPT /* CREATE FRESH RESULT TABLE */
FETCH DEPT /* FETCH SINGLE ROW */
CLOSE DEPT /* CLOSE CURSOR FOR NEXT USE */

PRINT
 PROJNO
 PROJNAME
 PROJECT.DEPTNO /* DEPTNO IS IN BOTH CURSORS. QUALIFY IT */
 DEPTNAME /* DEPT NAME COMES FROM 2ND CURSOR */
 RESPEMP
 PRSTAFF

TITLE 'PROJECTS LISTING'
TITLE 'WITH DEPARTMENT INFO'

Produce this Report:

 09/08/12 PROJECTS LISTING PAGE 1
 WITH DEPARTMENT INFO

 PROJNO PROJNAME DEPTNO DEPTNAME RESPEMP PRSTAFF
 AD3100 ADMIN SERVICES D01 DEVELOPMENT CENTER 000010 6.50
 AD3110 GENERAL AD SYSTEMS D21 ADMINISTRATION SYSTEMS 000070 6.00
 AD3111 PAYROLL PROGRAMMING D21 ADMINISTRATION SYSTEMS 000230 2.00
 AD3112 PERSONNEL PROGRAMMG D21 ADMINISTRATION SYSTEMS 000250 1.00
 AD3113 ACCOUNT.PROGRAMMING D21 ADMINISTRATION SYSTEMS 000270 2.00
 IF1000 QUERY SERVICES C01 INFORMATION CENTER 000030 2.00
 IF2000 USER EDUCATION C01 INFORMATION CENTER 000030 1.00
 MA2100 WELD LINE AUTOMATION D01 DEVELOPMENT CENTER 000010 12.00
 MA2110 W L PROGRAMMING D11 MANUFACTURING SYSTEMS 000060 9.00
 MA2111 W L PROGRAM DESIGN D11 MANUFACTURING SYSTEMS 000220 2.00
 MA2112 W L ROBOT DESIGN D11 MANUFACTURING SYSTEMS 000150 3.00
 MA2113 W L PROD CONT PROGS D11 MANUFACTURING SYSTEMS 000160 3.00
 OP1000 OPERATION SUPPORT E01 SUPPORT SERVICES 000050 6.00
 OP1010 OPERATION E11 OPERATIONS 000090 5.00
 OP2000 GEN SYSTEMS SERVICES E01 SUPPORT SERVICES 000050 5.00
 OP2010 SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000100 4.00
 OP2011 SCP SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000320 1.00
 OP2012 APPLICATIONS SUPPORT E21 SOFTWARE SUPPORT 000330 1.00
 OP2013 DB/DC SUPPORT E21 SOFTWARE SUPPORT 000340 1.00
 PL2100 WELD LINE PLANNING B01 PLANNING 000020 1.00

 GRAND TOTAL 73.50

The CURSOR Statement -- More Details

z/Writer Reference Manual 171

Note that there is a column named DEPTNO in two of our cursors (PROJECT and DEPT). For that reason,
we were required to qualify DEPTNO when we included it in the PRINT statement. Without the
qualification, z/Writer would not know which of the two fields to print.

However, we did not need to qualify DEPTNO in the CURSOR statement for DEPT (in our WHERE clause):

WHERE DEPTNO = :DEPTNO

Here is the explanation. The first DEPTNO in the WHERE parm (without a colon) can only refer to the
column by that name in the table being selected “from” (DEPT). Fieldnames without a leading colon
always refer to columns in the DB2 table being selected from (not to z/Writer working storage fields).
The reference to :DEPTNO (with a colon) is not ambiguous because, while this CURSOR statement for
DEPT is being examined, the only z/Writer field named DEPTNO exists in the earlier PROJECT cursor.
However, for any statement after the DEPT cursor statement, there are two z/Writer fields with this same
name. From that point on, you need to qualify DEPTNO when referencing one of those fields. That is
what we did in the PRINT statement.

Note that while not required, you are allowed to qualify the :DEPT-NO working storage field in the
WHERE clause, if you like. Then it would look like this:

WHERE DEPTNO = :PROJECT.DEPTNO

Multiple DB2 Cursors
In the example in Figure 15, we have added a third DB2 cursor to the previous example. The primary
input (PROJECT) includes the employee number of the employee responsible for the project (in the
RESPEMP field). So, we added a cursor for the DB2 Employee table. The QUERY parm selects just the
row for the employee number in the RESPEMP field (of the PROJECT cursor.)

Now our report still reads sequentially through all rows in the PROJECT table. (This is done
automatically in the auto-cycle report.) For each PROJECT row retrieved, we then open and fetch a
single row from two other DB2 cursors. From the DEPT cursor, we get the full name of the department
owning the project. And from the EMPL cursor, we get the last name of the employee responsible for the
project.

Our report now includes all of this data, coming from three different DB2 sources.

The CURSOR Statement -- More Details

172 Chapter 6. z/Writer’s DB2 Option

Figure 15. A report produced with just three control statements

Figure 15. A Run Using Three DB2 Cursors

These Control Statements:

OPTION DB2SSID('DBBG')

CURSOR PROJECT QUERY(SELECT * FROM DSN81110.PROJ)

CURSOR DEPT QUERY(SELECT * FROM DSN81110.DEPT
 WHERE DEPTNO = :DEPTNO)

CURSOR EMPL QUERY(SELECT * FROM DSN81110.EMP
 WHERE EMPNO = :RESPEMP)
*
********* READ DEPT RECORD FOR PROJ'S DEPTNO **********
OPEN DEPT /* CREATE FRESH RESULT TABLE */
FETCH DEPT /* FETCH SINGLE ROW */
CLOSE DEPT /* CLOSE CURSOR FOR NEXT USE */

********* READ EMPL RECORD FOR PROJ'S RESP EMP ********
OPEN EMPL /* CREATE FRESH RESULT TABLE */
FETCH EMPL /* FETCH SINGLE ROW */
CLOSE EMPL /* CLOSE CURSOR FOR NEXT USE */

PRINT
 PROJNO
 PROJNAME
 PROJECT.DEPTNO /* DEPTNO IS IN BOTH CURSORS. QUALIFY IT */
 DEPTNAME /* DEPT NAME COMES FROM 2ND CURSOR */
 RESPEMP
 LASTNAME('RESPEMP|NAME') /*LAST NAME COMES FROM 3RD CURSOR */
 PRSTAFF

TITLE 'PROJECT LISTING'
TITLE 'WITH DEPARTMENT AND MANAGER INFO'

Produce this Report:

 09/08/12 PROJECT LISTING PAGE 1
 WITH DEPARTMENT AND MANAGER INFO

 RESPEMP
 PROJNO PROJNAME DEPTNO DEPTNAME RESPEMP NAME PRSTAFF
 AD3100 ADMIN SERVICES D01 DEVELOPMENT CENTER 000010 HAAS 6.50
 AD3110 GENERAL AD SYSTEMS D21 ADMINISTRATION SYSTEMS 000070 PULASKI 6.00
 AD3111 PAYROLL PROGRAMMING D21 ADMINISTRATION SYSTEMS 000230 JEFFERSON 2.00
 AD3112 PERSONNEL PROGRAMMG D21 ADMINISTRATION SYSTEMS 000250 SMITH 1.00
 AD3113 ACCOUNT.PROGRAMMING D21 ADMINISTRATION SYSTEMS 000270 PEREZ 2.00
 IF1000 QUERY SERVICES C01 INFORMATION CENTER 000030 KWAN 2.00
 IF2000 USER EDUCATION C01 INFORMATION CENTER 000030 KWAN 1.00
 MA2100 WELD LINE AUTOMATION D01 DEVELOPMENT CENTER 000010 HAAS 12.00
 MA2110 W L PROGRAMMING D11 MANUFACTURING SYSTEMS 000060 STERN 9.00
 MA2111 W L PROGRAM DESIGN D11 MANUFACTURING SYSTEMS 000220 LUTZ 2.00
 MA2112 W L ROBOT DESIGN D11 MANUFACTURING SYSTEMS 000150 ADAMSON 3.00
 MA2113 W L PROD CONT PROGS D11 MANUFACTURING SYSTEMS 000160 PIANKA 3.00
 OP1000 OPERATION SUPPORT E01 SUPPORT SERVICES 000050 GEYER 6.00
 OP1010 OPERATION E11 OPERATIONS 000090 HENDERSON 5.00
 OP2000 GEN SYSTEMS SERVICES E01 SUPPORT SERVICES 000050 GEYER 5.00
 OP2010 SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000100 SPENSER 4.00

(additional lines not shown)

The CURSOR Statement -- More Details

z/Writer Reference Manual 173

Calculations in Queries
As we mentioned earlier, the select statement in your QUERY can be almost any query that could be
specified in an SQL DECLARE CURSOR statement. Figure 16 below is an example of a more complex
query. It includes a subselect clause. And it lets SQL handle the averaging and summarization logic that

your program would otherwise have to perform. This example summarizes the Employee table

records by hire year. It then returns one row per year, along with the average salary for those
employees.

Note that we used CALC_01 as the name of the calculated column, AVG(SALARY), that the select returned.
Columns in the result table that do not come directly from a column in the DB2 table are named in this
manner (CALC_01, CALC_02, ...).

Figure 16. A report produced with just three control statements

Figure 16. A Summary Type DB2 Report Showing Average Values

These Control Statements:

OPTION SSID('DBBG')
REPORT NOGRANDTOTALS

CURSOR EMPL QUERY(
 SELECT HIREYEAR, AVG(SALARY)
 FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY
 FROM DSN81110.EMP) AS NEWEMP
 GROUP BY HIREYEAR)
 SHOWFLDS

PRINT
 HIREYEAR(NOCOMMAS)
 CALC_01('AVERAGE|SALARY' PIC'ZZZ,ZZ9.99')

TITLE
TITLE 'AVERAGE SALARIES'

Produce this Report:

09/05/12 PAGE 1
 AVERAGE SALARIES

 AVERAGE
 HIREYEAR SALARY
 1947 23,840.00
 1949 40,175.00
 1958 46,500.00
 1963 29,250.00
 1964 15,900.00
 1965 39,733.33
 1966 24,960.00
 1967 26,250.00

(additional lines not shown)

The CURSOR Statement -- More Details

174 Chapter 6. z/Writer’s DB2 Option

Passing Null Values to SQL in Your Query
By default, z/Writer passes all working storage fields referenced in your query to DB2 as fields that
cannot contain a null value.

If you need to be able to pass “null” values in your queries, you can use the SQLTYPE and SQLLEN parms
in the appropriate FIELD statement to accomplish this yourself. Follow these steps:

 define your z/Writer field as a character field that is 2 bytes longer than the actual data it will
contain

 set the SQLTYPE to the odd type code that you want (for example 487). Odd SQL types are data
types that may contain null values.

 set the SQLLEN to the correct length for the data you will be passing. For character data, this
will be the length of the z/Writer field minus 2. For decimal data, it will be the special value
(precision * 256 + scale) required by DB2.

 now redefine the z/Writer field. Redefine the first 2 bytes as character data (for your null
indicator). Redefine the rest of the field however you like (binary, decimal, character, etc.)

Here is what z/Writer does when it passes fields with an odd SQLTYPE to DB2:

 it uses your SQLTYPE and SQLLEN just as you provide them.

 it passes the first 2 bytes of your z/Writer field as the null indicator for the value.

 it passes the rest of the z/Writer field as the actual data value

For example, to pass a null decimal value to DB2 in a working storage field, you could use this:

FLD MY-SQL-AMT C10 SQLTYPE(487) SQLLEN(3842) /* SCALE=15,PREC=2. 3842=15*256 + 2 */
REDEFINE MY-SQL-AMT
 FLD MY-AMT-NULL-IND C2 /* NULL INDICATOR FOR AMT */
 FLD MY-AMT P8.2 /* PL8.2 IS SCALE 15 (DIGITS), PREC 2 DECIMAL DIGITS */
ENDREDEFINE

CURSOR MYDB2 QUERY(SELECT * FROM MYTABLE WHERE AMOUNT > :MY-SQL-AMT)
...

IF DEPT = 1
 MOVE X’FFFF’ TO MY-AMT-NULL-IND /* AMT IS “NULL” */
ELSE
 MOVE X’0000’ TO MY-AMT-NULL-IND /* AMT IS NOT “NULL” */
 MOVE DEPT-CUTOFF TO MY-AMT
ENDIF

OPEN MYDB2 /* GET RESULT TABLE FOR CUTOFF AMT, IF IT EXISTS */
...
FETCH MYDB2 /* GET A ROW FROM THE RESULT TABLE */
...

Testing for Null Values Returned By a Fetch
Some DB2 columns returned to z/Writer in the result table may contain a special “null” value. When
z/Writer receives a null value into a field (during a fetch), it assigns a value of zeros (if numeric) or
blanks to that field.

The CURSOR Statement -- More Details

z/Writer Reference Manual 175

However, a null value is not the same as a valid value of zero (or blanks.) So, if your query returns
columns that can contain “null” values, you will probably want to check whether a FETCH has returned
an actual value or a “null” value.

z/Writer’s IF statement has a special test for this purpose. It’s syntax is “IF fieldname NULL”. For example:

CURSOR MYTABLE QUERY(SELECT AMOUNT, EMPLNUM FROM EMPLTAB)
...
IF AMOUNT NULL
 PRINT ‘AMOUNT IS NULL’
ELSE
 PRINT ‘AMOUNT IS‘ AMOUNT
ENDIF

What Is z/Writer’s IMS Option?

176 Chapter 7. z/Writer’s IMS Option

Chapter 7. z/Writer’s IMS Option

This chapter discusses z/Writer’s available IMS Option. Note that it is way beyond the scope of this
manual to teach anyone how IMS works. But this chapter will enable experienced IMS programmers to
work with their IMS data using z/Writer.

What Is z/Writer’s IMS Option?
z/Writer’s IMS Option enables z/Writer to access data from any of your shop’s IMS databases. With the
IMS Option, you can easily report on all of your IMS data using the same powerful, easy z/Writer
language that you already know! And z/Writer lets you combine IMS data with other data from flat files
and VSAM files -- all in one report.

How to Run z/Writer with IMS
To run z/Writer without using IMS data, you execute module ZWRITER in your JCL. When you do want
to access IMS with z/Writer, the EXEC statement in your JCL will now execute IBM’s program DFSRRC00

(as for other IMS batch jobs). And you will specify ZWIMS (not ZWRITER) as the name of the application
program that IMS should execute

You may also need an additional STEPLIB DD in your JCL to identify the library containing your shop's
run-time IMS modules (such as ASMTDLI).

No changes are required to your PCBs or PSBs. z/Writer accepts your existing PSBs and PCBs. (PL/1
format PCBs, however, are not supported.)

What Does the IMS Option Do?
The IMS Option makes a new z/Writer statement available for your use. And it adds some new built-in
fields and functions that let you access IMS status information after each IMS operation.

New DLI Statement for IMS

 The new DLI statement is used to pass your requests to IMS. These can be requests such as “Get
Next” or “Get Unique” or “Insert”, etc. Most DLI requests will result in data being returned
from IMS to a field in your program, where you can process it as you like.

The DLI statement is the method that you will use to perform all of your work on an IMS database. Note
that no FILE statement is necessary for an IMS database.

New Built-In Fields for IMS
A number of new built-in fields become available with the IMS Option (that is, when running ZWIMS

rather than ZWRITER). These built-in fields let you examine (but not change) the contents of the PCB used
in the most recent DLI statement. (Or, if no DLI statement has yet been executed, the contents of the first
PCB passed to z/Writer.) IMS places status and result information in the PCB after each DLI request. The
new built-in fields for IMS runs are shown in "New Built-In Fields for IMS Option" (page 178).

The DLI Statement

z/Writer Reference Manual 177

The DLI Statement
The DLI statement is the key to accessing and maintaining IMS data from your z/Writer program. It is
similar to a CALL statement, in that you specify a variable number of parms to go with it. z/Writer, in
fact, then does a CALL to the IMS application program interface, passing these parms on to it. IMS then
performs the requested function, usually returning a segment of IMS data to your program. And IMS fills
in the PCB with status information to help you evaluate the data returned.

PARMS

The first two parms (PCB and FUNC) are always required. The second parm, IOAREA, is also required in
most cases (with most “functions”). The SSA parm may or may not be required, depending on the
function you specify.

PCB(num-expr)
Required. The numeric expression specifies the number of the PCB to use for the request. This is the
numerical order of the PCB within the PSB that was passed to z/Writer (by IMS) at startup. The numeric
expression can be a literal number, a numeric field, or a numeric expression. Example: PCB(1)

FUNC(char-expr)
Required. This parm provides the 4-byte IMS function code to be performed. It can be a 4-byte character
literal, a character field, or a character expression. Example: FUNC(‘GN ‘)

IOAREA(fieldname)
Required (except for functions such as CKPT, etc.) This parm tells z/Writer where to store the segment
returned by IMS (or where data that is to be passed to IMS is located.) It can be the name of any field in
a workarea or in a file. Example: IOAREA(WORKROOT)

SSA(char-expr [,char-expr] ...)
Optional. Use this parm if the IMS function you specify requires “segment search arguments“. Some
functions (such as Get Unique, ‘GU ‘) require the use of one or more SSA’s to identify the segment to
be returned. The character parms should be formatted as valid SSA’s in IMS’s required format. You may
specify up to 15 SSA’s in the single SSA parm. Each parm be a character literal, a character field or a
character expression. Separate them with blanks and/or a comma.

Example: SSA(‘PARTROOT(PARTKEY EQ 02)’, ‘STOKSTAK ‘)

DLI STATEMENT SYNTAX

DLI PCB(num-expr)
 FUNC(char-expr)
 IOAREA(fieldname)
 [SSA(char-expr [,char-expr] ...]

New Built-In Fields for IMS Option

178 Chapter 7. z/Writer’s IMS Option

New Built-In Fields for IMS Option

In addition to these built-in fields, there is one IMS-related built-in function. It is very similar to a built-
in field, except that you may specify a length argument with it. The new function is:

BUILT-IN FIELDS FOR IMS RUNS

NAME DESCRIPTION DATA TYPE

#PCB

This field contains the entire PCB as one character fieild.
It does not include the variable-length feedback key
appended to it.

36-byte
character

#PCB_DBD_NAME Contains the name of the IMS database accessed.
8-byte
character

#PCB_LEVEL_NUM
Contains the level of the segment returned (when
applicable).

2-byte
character

#PCB_STATUS
Contains the status code for the last DLI statement. A
value of blanks always indicates a successful operation.

8-byte
character

#PCB_OPTIONS Contains the options in the PCB.
4-byte
character

#PCB_FDBK_SEGMENT
Contains the name of the segment just returned (when
applicable)

8-byte
character

#PCB_FDBK_KEY_LEN
Contains the length of the feedback key returned for the
last request (when applicable)

4-byte binary
number

#PCB_NUM_SEGS Contains the number of sensitive segments for this PCB.
4-byte binary
number

BUILT-IN FUNCTION FOR IMS RUNS

NAME DESCRIPTION DATA TYPE

#PCB_FDBK_KEY[(nn)]

Returns the feedback key from the last IMS request as a
character field of length “nn”. Note that the feedback keys that
IMS return are not always of the same length. The key length
for a given request depends on the segment path used for
that request. Be sure that your “nn” is large enough to hold the
largest possible feedback key for your database.

If the actual feedback key is larger than “nn”, the key value will
be truncated to that length. If the actual feedback key is
smaller than the “nn” value, the key valule is right-padded with
blanks.

When the optional “nn” argument is omitted, the feedback key
is returned as a 100-byte character field.

Character

New Built-In Fields for IMS Option

z/Writer Reference Manual 179

EXAMPLES

The examples that follow use a sample “Parts” IMS database that IBM provides at installation. It has this
heirarchy:

Figure 17 shows a very simple report from this IMS database. It reads all of the root segments (only)
from the database. It prints a list of part numbers and descriptions from those segments.

Figure 18 (page 181) shows model code that could be used to read sequentially through all of the
segments of the Parts database, in their heirarchical order.

New Built-In Fields for IMS Option

180 Chapter 7. z/Writer’s IMS Option

Figure 17. A report produced with just three control statements

Figure 17. A Report from the Root Segments of an IMS Parts Database

These Control Statements:

WORKAREA
PARTROOT 60
PART-NUMBER 17 COL(1)
PART-DESC 24 COL(27)

DOUNTIL #PCB_STATUS <> ' '
 DLI PCB(1) FUNC('GN ') IOAREA(PARTROOT) SSA('PARTROOT ')

 IF #PCB_STATUS = ' '
 PRINT PART-NUMBER PART-DESC('DESCRIPTION')
 ENDIF
ENDDO

TITLE 'LIST OF PARTS IN DI21PART DATABASE'

Produce this Report:

03/09/16 LIST OF PARTS IN DI21PART DATABASE PAGE 1

 PART
 NUMBER DESCRIPTION

02AN960C10 WASHER
02CK05CW181K CAPACITOR
02CSR13G104KL KR1J50KS
02JAN1N976B DIODE CODE-A
02MS16995-28 SCREW
02N51P3003F000 SCREW
02RC07GF273J RESISTOR
02106B1293P009 RESISTOR
02250236-001 CAPACITOR
02250239 TRANSISTOR
02250241-001 CONNECTOR
02250794 RESISTOR
02250796 SWITCH
02250891 SERVO VALVE
02252252-003 COUPLING
023003802 CHASSIS

(additional lines not shown)

New Built-In Fields for IMS Option

z/Writer Reference Manual 181

Figure 18. A report produced with just three control statements

Figure 18. Model Code that Sequentially Reads All Segments of an IMS Database

WORKAREA
WORKSEG 160
PARTROOT 60
STANINFO 85
STOKSTAT 160
CYCCOUNT 25
BACKORDR 75

DOUNTIL #PCB_STATUS = 'GE', 'GB'
 DLI PCB(1) FUNC('GN ') IOAREA(WORKSEG)

 CASE #PCB_FDBK_SEGMENT
 WHEN 'PARTROOT'
 MOVE WORKSEG TO PARTROOT
 /* PUT LOGIC HERE THAT ONLY NEEDS PARTROOT */

 WHEN 'STANINFO'
 MOVE WORKSEG TO STANINFO
 /* PUT LOGIC HERE THAT ONLY USES PARTROOT + STANINFO*/

 WHEN 'STOKSTAT'
 MOVE WORKSEG TO STOKSTAT
 /* PUT LOGIC HERE THAT ONLY USES PARTROOT + STOKSTAT*/

 WHEN 'CYCCOUNT'
 MOVE WORKSEG TO CYCCOUNT
 /* LOGIC HERE CAN USE PARTROOT, STOKSTAT, CYCCOUNT*/

 WHEN 'BACKORDR'
 MOVE WORKSEG TO BACKORDR
 /* LOGIC HERE CAN USE PARTROOT, STOKSTAT, BACKORDR*/

 ENDCASE
ENDDO

Built-In Fields

182 Appendix A. Built-In Fields

Appendix A. Built-In Fields

z/Writer has a number of "built–in" fields that are available for use. You may refer to these fields
regardless of what input file(s) you use. Built–in fields are easily distinguished from most other fields
because all built–in field names begin with the pound character (#).

The following table lists the z/Writer built–in fields in detail. Unless otherwise noted, all of these fields
are read-only — they may not be modified by the program.

Z/WRITER BUILT-IN FIELDS

FIELD NAME DESCRIPTION

Character Built-In Fields

#JOBNAME
An 8-byte character field containing the jobname under which z/Writer is
currently executing.

#DATE
An 8-byte character field containing the system date (when program began
execution) in MM/DD/YY format.

#DAYNAME A 9-byte character field containing the current day of the week ("MONDAY")

#TIME

#TIME12

An 8-byte character field containing the system time (when program began
execution) in AM/PM format (ex: "12:45 PM").

#TIME24
An 8-byte character field containing the system time (when program began
execution) in 24–hour format (ex: "13:45:59").

Numeric Built-In Fields

#PAGENUM

#PAGE

The current page number of the report. This field may be modified by the user
program.

Note: This field is normally used in a TITLE statement to position the
report’s page number. You may also reference it in other statements (for
example, an IF or a COMPUTE statement), but only after at least one
REPORT, PRINT or TITLE statement has been processed (for a given report.)
The #PAGE field for a report output is only created when one of those
statements is encountered.

Note: When referenced somewhere other than a TITLE statement, you will
need to qualify the fieldname (#PAGE) with a report name if more than one
reports are defined (for that phase). For example:

ZWOUT001.#PAGE = 1

#RETCODE

The value of this field is returned to the z/OS operating system at the end of
z/Writer’s execution. z/Writer raises the value of this field when certain errors
occur. This field may be modified by the user program.

Built-In Fields

z/Writer Reference Manual 183

#TALLY

This field is intended for use only within code that is executed at control break
time (including at the grand total pseudo control break.) That is, within the
code in the paragraphs specified by the BREAKCODE parm of a BREAK

statement. During break processing, #TALLY holds the number of records that
make up the control group that has just ended. At grand totals time, it holds
the total number of records processed for the report. When referenced in open
code (not during control break processing) this field has a value of 0.

Note: if you need a running count of the number of records that have been read,
use the #COUNT built-in field associated with that file. You may reference that
field at any time in your program.

For Built-In Fields Associated with Files -- see page 79

For Built-In Fields Associated with Tables -- see page 145

For Built-In Fields Associated with IMS PCBs -- see page 178

Z/WRITER BUILT-IN FIELDS (CONTINUED)

FIELD NAME DESCRIPTION

Built-In Functions

184 Appendix B. Built-In Functions

Appendix B. Built-In Functions

A number of built–in functions are available for use within computational expressions. Computational
expressions are used in COMPUTE statements. These built–in functions are listed on the following pages,
according to the type of data returned by the function (character, numeric or date).

The arguments to a function will not necessarily be of the same data type as the result. The data type
expected for each argument is indicated in a function’s syntax. For example, "char" means that a
character argument is expected. Except where otherwise indicated, an argument may be any of the
following:

 a literal value

 the name of a field from any file, table or workarea

 a computational expression (which may itself involve other built–in functions)

Date arguments must:

 be a character (C) or character-numeric (N) field, or a character literal enclosed in ticks

 be either 6 or 8 bytes long

 contain a valid date in YYMMDD format (if 6 bytes long) or in YYYYMMDD format (if 8 bytes)

 6-byte date arguments are converted internally to 8-byte dates by assigning a century based
on the century cutoff value. (See page 106.)

 when a date argument is optional (enclosed in brackets), the system date will be used if the
argument is not present

Note: Date results are returned as 8-byte character values, with an implicit
CONTAINS(YYYYMMDD) “property”. (See page page 73.) Date functions are supported for dates in
the years 1601-9999.

Separate the arguments with blanks and/or commas.

The following table lists the z/Writer built–in functions. After the table, each of the functions is
discussed in more detail.

Z/WRITER BUILT-IN FUNCTIONS

FUNCTION DESCRIPTION

Functions that Return a Character Value

#AND returns the result of AND-ing two character strings

#ASCII returns the ASCII equivalent of an EBCDIC string

#COMPRESS concatenates multiple fields and compresses out extra blanks

#DATE2JUL converts a 6- or 8-byte gregorian date to a 7-byte julian date

Built-In Functions

z/Writer Reference Manual 185

#DAY returns the day of the week (ex: SUNDAY) for a given date

#EBCDIC returns the EBCDIC equivalent of an ASCII string

#LCASE returns the lower–case value of a character string

#LEAPYEAR
returns “Y” if the date argument occurs in a leap year; otherwise returns
‘N’

#LEFT returns the leftmost n characters of a character string

#MONTH returns the month name (ex: JANUARY) pertaining to a given date

#OR returns the result of OR-ing two character strings

#PARSE returns one individual word parsed out of a character string

#REALDATE
returns “Y” if the date argument is a valid, calendar date; otherwise
returns ‘N’

#RIGHT returns the rightmost n characters of a character string

#SUBSTR returns a substring from a character string

#TRANSLATE
translates one set of characters within a character string to another set
of characters

#UCASE returns the upper–case value of a character string

#XOR returns the result of XOR-ing two character strings

#YEAR returns the 4–byte year pertaining to a given date

Functions that Return a Numeric Value

#ABS returns the absolute value of a number

#CHAR2NUM converts a character value to a numeric value

#DATE2DIC converts a date to a numeric “day in century” value

#DAYNUM returns the day of the month (1–31) for a given date

#DOWNUM returns a number (1-7) representing the day of the week of a given date

#INDEX returns the column where a certain substring begins within a larger string

#INT returns the integer portion of a number (no rounding performed)

#MAX returns the greater of two or more values

#MIN returns the smaller of two or more values

#MOD returns the remainder left after division ("modulus")

#MONTHNUM returns the month number (1–12) for a given date

#NUMWORDS returns the number of words within a character string

#ROUND returns the rounded value of a number

#SQRT returns the square root of a number

Z/WRITER BUILT-IN FUNCTIONS (CONTINUED)

FUNCTION DESCRIPTION

.Built-In Functions

186 Appendix B. Built-In Functions

.Built-In Functions

Functions that Return a Character Value

#AND(char1,char2)

Performs the logical AND operation on the two character arguments and returns the result. (An AND

operation results in a 1 bit if the corresponding bit of both operands is a 1: otherwise it results in a 0 bit.)
If the two operands are not the same size, the shorter operand will be right-padded with hex zeros before
performing the AND operation. The size of the result is the size of the larger operand.

Example: COMPUTE A = #AND(X'01FF',X'035E') results in A=X'015E'

Here is an example of using the #AND built–in function to change a packed numeric field’s sign from
the common, but non-standard, F to the standard C. For example, assume that PACKED-NUMBER is a 5-
byte packed field that has an F in the zone portion of its last byte (X’000000123F’)

Example: PACKED–NUMBER = #AND(PACKED-NUMBER,X'FFFFFFFFFC'
 results in PACKED-NUMBER = X'000000123C'

#YEARNUM returns the 4–digit year for a given date

Functions that Return a 8-Byte Character Date Value

#BEGMONTH returns the first day of the month in which a date occurs

#BEGWEEK returns the first day of the week in which a date occurs

#BEGYEAR returns the first day of the year in which a date occurs

#DIC2DATE converts a numeric “day in century” value to a date

#DMY
creates a date from three numeric parms representing day, month and
year

#ENDMONTH returns the last day of the month in which a date occurs

#ENDWEEK returns the last day of the week in which a date occurs

#ENDYEAR returns the last day of the year in which a date occurs

#INCDATE increments a date by a number of days, weeks, months or years

#JUL2DATE converts a 5- or 7-byte julian date to an 8-byte gregorian date

#MDY
creates a date from three numeric parms representing month, day and
year

#YMD
creates a date from three numeric parms representing year, month and
day

For Built-In Functions Associated with IMS PCBs -- see page 178

Z/WRITER BUILT-IN FUNCTIONS (CONTINUED)

FUNCTION DESCRIPTION

Functions that Return a Character Value

z/Writer Reference Manual 187

#ASCII(char)

Returns the ASCII equivalent of the EBCDIC character argument. The size of the value returned by this
function is the size of the character argument.

Example: A = #ASCII(X’F1F2F3') results in A=X’313233'

Note: The three characters "123" are represented with X’F1F2F3’ in EBCDIC and with X’313233’ in
ASCII.

#COMPRESS([n,] char [,n] ,char ...)

Concatenates any number of char arguments, compressing out all but 1 of the blanks between each
argument The optional override number "n" specifies how many blanks to leave (or add) between the
two char arguments (if a number other than 1 is desired). You may specify 0 if no blanks are wanted
between two arguments. The size of the returned string is the sum of the sizes of all arguments, plus
spacing bytes.

Example: COMPUTE NAME=#COMPRESS(LAST–NAME, 0, "," , FIRST–NAME)
 might result in NAME="BAKER, VIVIAN "

Example: COMPUTE ADDR=#COMPRESS(CITY, 0, ",", STATE ZIP–CODE)

 might result in ADDR="DALLAS, TX 75230 "

Note: The #COMPRESS function does not remove any leading blanks that might be in the
character arguments.

#DATE2JUL[(date)]

Returns the 7-byte julian date (in YYYYDDD format) corresponding to the 6- or 8-byte gregorian
argument date.

Example: COMPUTE A = #DATE2JUL(‘20141231’) would result in A="2014365"

#DAY[(date)]

Returns the day of the week pertaining to the date argument, as a 9–byte character field.

Example: COMPUTE A = #DAY(HIRE–DATE) might result in A="TUESDAY "

#EBCDIC(char)

Returns the EBCDIC equivalent of the ASCII character argument. The size of the value returned by this
function is the size of the character argument.

Example: COMPUTE A = #EBCDIC(X’313233') results in A=X’F1F2F3'

Note: The three characters "123" are represented with X’F1F2F3’ in EBCDIC and with X’313233’ in
ASCII.

#LCASE(char)

Returns the character argument's value after translating any of its upper–case alphabetic characters to
the corresponding lower–case character. All other printable characters remain unchanged. (The effect
of this function on non-printable characters is not defined.) The size of the value returned by this
function is the size of the character argument.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE A = #LCASE(DESC) results in A="this is a description".

Functions that Return a Character Value

188 Appendix B. Built-In Functions

#LEAPYEAR[(date)]

Returns ‘Y’ if the year portion of the argument date is a leap year. Otherwise, it returns ‘N’. (The month
and day portions of the argument date are not examined for validity.)

Example: COMPUTE A=#LEAPYEAR(‘20070515’) results in A=‘N’

Example: COMPUTE B=#LEAPYEAR(‘20080515’) results in B=‘Y’

#LEFT(char,num1)

Returns a substring of the char argument, starting with the first column, for a length of "num1" bytes.
Num1 may be either a literal value or a numeric expression. When num1 is a literal value, the size of
the value returned by this function is num1. When num1 is an expression, the size returned by this
function is the size of the character argument (since that is the maximum possible size of the result).

Example: COMPUTE A = #LEFT('ABCDEFG',4) results in A='ABCD'

#MONTH[(date)]

Returns the name of the month pertaining to the date argument, as a 9–byte character field.

Example: COMPUTE A = #MONTH(HIRE–DATE) might result in A="MARCH "

#OR(char1,char2)

Performs the logical OR operation on the two character arguments and returns the result. (An OR

operation results in a 1 bit if the corresponding bit of either (or both) operands is a 1: otherwise it results
in a 0 bit.) If the two operands are not the same size, the shorter operand will be right–padded with hex
zeros before performing the OR operation. The size of the result is the size of the larger operand.

Example: COMPUTE A = #OR(X'8024',X'0756') results in A=X'8776'

Note: you can use the #OR function to create packed numeric fields that have a sign of F (rather
than the standard sign of C). For example, assume that PACKED-NUMBER has a value of X’00123C’.

Example: COMPUTE PACKED-F = #OR(PACKED-NUMBER,X'00000F') results in PACKED–F = X'00123F'

#PARSE(char,num)

Returns a single word parsed from the character argument. Internally, the character argument is first
parsed into individual words, each delimited by one or more spaces. The numeric argument specifies
which of the parsed words should be returned by the function. A numeric argument of 1 indicates that
the first word should be returned; an argument of 2 means return the second word, etc. Negative
numbers may also be used. A negative number indicates the word to return counting backwards from
the last word parsed. A numeric argument of –1 means return the last word parsed; an argument of –2
means return the second to last word, etc. If the word indicated by the numeric argument doesn't exist,
blanks are returned by this function. The size of the value returned by this function is the size of the
whole character argument.

Note: you can use the related #NUMWORDS built–in function to find out how many words a
character string contains.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE A = #PARSE(DESC,1) results in A="THIS "
COMPUTE A = #PARSE(DESC,2) results in A="IS "

Functions that Return a Character Value

z/Writer Reference Manual 189

COMPUTE A = #PARSE(DESC,–1) results in A="DESCRIPTION "
COMPUTE A = #PARSE(DESC,5) results in A=" "

Note: To parse a text using a delimiter other than blanks, try using the #TRANSLATE built-in
function to first translate the desired delimiter characters into blanks. For example, you could
parse an IP address (which is delimited with dots) this way:

Example: COMPUTE A = #PARSE(#TRANSLATE(IPADDR,"."," "),2)

Assume that IPADDR = "12.345.67.8". The above statement results in A = "345 "

Note that using #TRANSLATE with #PARSE may not work if the original string contains multiple

consecutive delimiters.

#REALDATE(date)

Returns ‘Y’ if the date argument contains a real calendar date. Otherwise, it returns ‘N’.

Example: COMPUTE A=#REALDATE(6/30/2007) results in A being "true"

Example: COMPUTE B=#REALDATE(6/31/2007) results in B being "false"

Example: COMPUTE C=#REALDATE(2/29/2007) results in C being "false"

Example: COMPUTE D=#REALDATE(99/99/9999) results in D being "false"

#RIGHT(char,num1)

Returns a substring of the char argument consisting of the last "num1" bytes. Num1 may be either a
literal value or a numeric expression. When num1 is a literal value, the size of the value returned by this
function is num1. When num1 is an expression, the size returned by this function is the size of the
character argument (since that is the maximum possible size of the result).

Example: COMPUTE A = #RIGHT('ABCDEFG',4) results in A='DEFG'

#SUBSTR(char,num1,num2)

Returns a substring of the char argument, starting at column "num1" for a length of "num2" bytes. (The
first byte in a string is column 1.) Num1 and num2 may be literal values or numeric expressions. When
num2 is a literal value, the size of the value returned by this function is num2. When num2 is an
expression, the size returned by this function is the size of the character argument (since that is the
maximum possible size of the result).

Example: COMPUTE A = #SUBSTR('ABCDEFG',2,3) results in A='BCD'

#TRANSLATE(char1,char2,char3)

Returns the char1 string after translating any of its characters found in the char2 argument into the
corresponding character of the char3 argument. (Translated characters in the char1 argument are not

then re–evaluated for additional translation.) The size of the value returned by this function is the size
of the char1 argument.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE A = #TRANSLATE(DESC,"TA","XY") would result in
 A="XHIS IS Y DESCRIPXION".

Note: the char2 and char3 arguments must be character or hex literals.

Functions that Return a Character Value

190 Appendix B. Built-In Functions

#UCASE(char)

Returns the character argument's value after translating any of its lower–case alphabetic characters to
the corresponding upper–case character. All other printable characters remain unchanged. (The effect
of this function on non-printable characters is not defined.) The size of the value returned by this
function is the size of the character argument.

Example: (Assume that NAME = "Smith ")
COMPUTE SORT–NAME = #UCASE(NAME) results in SORT–NAME = "SMITH "

#XOR(char1,char2)

Performs the logical XOR operation on the two character arguments and returns the result. (An XOR

operation results in a 1 bit if the corresponding bit of either (but not both) operands is a 1: otherwise it
results in a 0 bit.) If the two operands are not the same size, the shorter operand will be right-padded
with hex zeros before performing the XOR operation. The size of the result is the size of the larger
operand.

Example: COMPUTE A = #XOR(X'5766',X'5744') results in A=X'0022'

#YEAR[(date)]

Returns the year portion of the date argument as a 4–byte character field.

Example: COMPUTE A = #YEAR(HIRE–DATE) might result in A="2001"

Functions that Return a Character Value

Functions that Return a Numeric Value

#ABS(num)

Returns the absolute value of the numeric argument.

Example: COMPUTE A = #ABS(–4) results in A= 4

#CHAR2NUM(char)

Converts a string of numeric characters into a numeric value. Standard punctuation commonly used
with numbers (such as ‘ $1,234.50 ‘) is allowed in the character argument. However, it must not contain
any alphabetic characters (other than a final digit that is signed with X’C’ or X’D’, such as X’C1’). An all–
blank string returns the value zero.

Example: COMPUTE A = #MAKENUM(' 125') results in A=125

#DATE2DIC(date)

Converts the date argument into a numeric “day in century” value. January 1, 1900 corresponds to day
1, and December 31, 2099 is day 73,049. For dates before 1900, the day in century will be a negative
value.

Example: COMPUTE A = #DATE2DIC(‘20071231’) results in A=39446

Example: COMPUTE A = #DATE2DIC(‘20080101’) results in A=39447

Example: (of computing the number of days between two dates):
COMPUTE NUM–DAYS = #DATE2DIC(END–DATE) – #DATE2DIC(START–DATE)

Functions that Return a Numeric Value

z/Writer Reference Manual 191

If END–DATE is 4/2/2007 and START–DATE is 3/28/2007, then the above example would result in NUM–

DAYS = 5.

Note: You can use the #DIC2DATE function to convert a numeric day in century back into a date.

#DAYNUM[(date)]

Returns the numeric value of the day portion of the date argument.

Example: COMPUTE A = #DAYNUM(’20070331’) results in A=31

#DOWNUM[(date)]

Returns a number from 1 to 7 representing the day of the week of the argument date. (1 means Sunday,
2 means Monday, ... 7 means Saturday.)

Example: COMPUTE A = #DOWNUM(’20070331’) results in A=7

#INDEX(char1,char2)

If the second argument appears somewhere within the first argument, #INDEX returns the byte number
in char1 where the char2 text begins. (The first byte in a string is byte 1.) If char1 does not contain char2,
#INDEX returns zero.

Example: COMPUTE A = #INDEX('ABCDEF', 'CDE') results in A=3

#INT(num)

Returns the integer portion of the numeric argument. The argument’s decimal digits, if any, are simply
dropped, regardless of the sign of the argument.

Example: COMPUTE A = #INT(12.987) results in A= 12
COMPUTE A = #INT(–12.987) results in A= –12

#MAX(num1,num2,num3,...)

Returns the largest of the numeric arguments. Any number of arguments is allowed.

Example: COMPUTE A = #MAX(12, 25, –3) results in A=25

#MIN(num1,num2,num3,...)

Returns the smallest of the numeric arguments. Any number of arguments is allowed.

Example: COMPUTE A = #MIN(12, 25, –3) results in A=–3

#MOD(num1,num2)

Returns the remainder left when the first argument is divided by the second argument.

Example: Example: COMPUTE A = #MOD(45, 4) results in A= 1

 COMPUTE A = #MOD(–45, 4) results in A= –1

 COMPUTE A = #MOD(1.5, .2) results in A= .1

#NUMWORDS(char)

Returns the number of words found within the character argument. The words are parsed in the manner
described under the #PARSE built–in function.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE A = #NUMWORDS(DESC) results in A = 4.

Functions that Return a Date Value

192 Appendix B. Built-In Functions

Note: This function may be useful when you want to assign a value to a computed field
differently depending on how many, if any, words are in some other field. For example, the
following example assigns the second word from the DESC field to the result. However, if the
DESC field contains only 1 (or no) words, the text "*NONE*" is assigned instead:

Example: COMPUTE A = WHEN(#NUMWORDS(DESC) >= 2) ASSIGN(#PARSE(DESC,2))
 ELSE ASSIGN("*NONE*")

#ROUND(num1,num2)

Returns the first numeric argument, rounded to the precision specified by the second numeric argument.
Num2 is the number of decimal places that num1 should be rounded to. Rounding of negative numbers
is performed as if they were positive. Num2 must be a literal integer (not an expression). The number

of decimal digits returned by this function is the same as the number of decimal digits in the num1
argument.

Num2 can also be a negative number. Use this feature to round to a digit position on the left side of the
decimal point. Use -1 to round to tens, -2 to round to hundreds, and so on.

Example: COMPUTE A = #ROUND(12345.678, 2) results in A= 12345.680

COMPUTE A = #ROUND(–12345.678, 2) results in A=–12345.680

COMPUTE A = #ROUND(12345.678, 0) results in A= 12346.000

COMPUTE A = #ROUND(12345.678, –2) results in A= 12300.000

#SQRT(num)

Returns the square root of the numeric argument.

Example: COMPUTE A = #SQRT(2) results in A = 1.41

#YEARNUM[(date)]

Returns the 4-digit numeric value of the year portion of the date argument.Note 1

Example: COMPUTE A = #YEARNUM(‘20070331’) results in A=2007

Functions that Return a Date Value

#BEGMONTH[(date)]

Returns the date of the first day of the month in which the date argument occurs.

Example: COMPUTE A = #BEGMONTH(‘20070515’) results in A=’20070501’

#BEGWEEK[(date)]

Returns the Sunday of the calendar week in which the date argument occurs.

Example: COMPUTE A = #BEGWEEK(‘20070515’) results in A=’20070513’

Note: You can also use this function to return any particular day of a given week (Monday,
Tuesday, etc.). Just use it in combination with an #INCDATE function that adds the appropriate
number of days to the result. Add 1 to get Monday, 2 to get Tuesday, and so on. The following
example returns the Wednesday of the week that SALES-DATE falls within.

Example: WED-SALES-DATE = #INCDATE(#BEGWEEK(SALES-DATE), 3, DAYS)

Functions that Return a Date Value

z/Writer Reference Manual 193

#BEGYEAR[(date)]

Returns the first day of the year in which the date argument occurs.

Example: COMPUTE A = #BEGYEAR(‘20070515’) results in A=‘20070101’

#DIC2DATE(num)

The numeric argument is treated as a "day in century" value. (For example, the value 1 corresponds to
January 1, 1900, and 73,049 corresponds to December 31, 2099. The function returns the date
corresponding to the numeric day from the start of the 20th century. Use this function to change the
results of the #DATE2DIC function back into a date.

Example: COMPUTE A = #DIC2DATE(39446) results in A=‘20071231’

#DMY(num, num, num)

See the description under #YMD below.

#ENDMONTH[(date)]

Returns the last day of the month in which the date argument occurs.

Example: COMPUTE A = #ENDMONTH(‘20070515’) results in A=‘20070531’

#ENDWEEK[(date)]

Returns the Saturday of the calendar week in which the date argument occurs.

Example: COMPUTE A = #ENDWEEK(‘20070515’) results in A=‘20070519’

#ENDYEAR[(date)]

Returns the last day of the year in which the date argument occurs.

Example: COMPUTE A = #ENDYEAR(‘20070515’) results in A=‘20071231’

#INCDATE([date,] number, units)

Returns the date obtained by incrementing the argument date by the given number of units. Units can
be any of these keywords or abbreviations:

 DAYS, DAY, D

 WEEKS, WEEK, WKS, WK, W

 MONTHS, MONTH, MONS, MON, M

 YEARS, YEAR, YRS, YR, Y

Example: COMPUTE A = #INCDATE(‘20070515’, 3, WEEKS) results in A = ‘20070605’

COMPUTE YESTERDAY = #INCDATE(-1, DAYS) results in YESTERDAY being the
 date before the system date.

Note: When incrementing by months or years, the day portion of the resulting date is sometimes
changed to the last day of the month, in order to return a valid calendar date.

Example: COMPUTE A = #INCDATE(‘20070531’, 1, MONTH) results in A = ‘200705630’

 (not ‘20070631’, which is not a valid date)
COMPUTE B = #INCDATE(‘20080229’, 1, YEAR) results in B = ‘20090228’

 (not ‘20090229’, which is not a valid date)

#JUL2DATE[(char)]

Returns the 8-byte gregorian date corresponding to the 5- or 7-byte julian argument date.

Functions that Return a Date Value

194 Appendix B. Built-In Functions

Example: COMPUTE A = #DATE2JUL2(‘14365’) would result in A="20141231"

#MDY(num, num, num)

See the description under #YMD below.

#YMD(num, num, num) and #MDY(num, num, num) and #DMY(num, num, num)

Returns a date value based on the three numeric arguments (representing month, day and year in the
order indicated by the function name.) The resulting date is not validity-checked to see if it is an actual
calendar date. (You can use the #REALDATE function to find this out.) The numeric argument
representing the year can be any 1 to 4 digit number, and the month and day arguments can be any 1 or
2 digit number.

Example: COMPUTE A = #MDY(12,31,2007) results in A=‘20071231’

COMPUTE B = #YMD(9999,99,99) results in B=’99999999’

Syntax of PICTURE Display Formats

z/Writer Reference Manual 195

Appendix C. Syntax of PICTURE Display Formats

A PICTURE is a special display format that describes how a numeric value should be displayed in a
report. The PICTURE display format consists of the word PICTURE (or an abbreviation, such as PIC)
immediately followed by text enclosed in either apostrophes or quotation marks. (Do not put a space
before the apostrophe or quotation mark.) For example:

PICTURE’text’

PIC’text’

The characters making up the text give a "picture" of how the formatted result should look. The PICTURE

specifies such thing as:

 the size of the formatted output (that is, how many characters it will occupy in a print line)

 whether leading zeros should be displayed or suppressed

 whether commas (or some other character) will be used to separate the thousands, the
millions, etc.

 whether a floating dollar sign should appear in the result

 where the minus sign should appear, for negative numbers

 where (and whether) a plus sign should be displayed for positive numbers

 how many decimal digits should print

 any literal characters that should be included in the formatted result

 whether automatic scaling of the number is wanted (to allow a wide range of values to fit
into a small column)

Examples of PICTUREs
z/Writer’s PICTUREs are very similar to COBOL’s PICTURE clause, in case you are familiar with those. If
you haven’t worked with PICTUREs before, the best way to learn about them is probably to look at some
examples. The following examples show the format produced by various PICTUREs. Pick a result that is
similar to what you want, and use that PICTURE as a guide. Adjust the number of digit symbols (Z and
9) in your PICTURE according to the size of the numbers that you will be printing.

In the table below, a sample positive value (1,234.56) and a sample negative value (-98,765.4) are used
to demonstrate each PICTURE.

EXAMPLES OF PICTURES

PICTURE

FORMATTED

POSITIVE VALUE

 FORMATTED

NEGATIVE VALUE

PIC’999999999’ 000001235 ****S****

PIC’999999.9’ 001234.6 ****S***

PIC’999999.99’ 001234.56 ****S****

Examples of PICTUREs

196 Appendix C. Syntax of PICTURE Display Formats

Note: The first several examples above resulted in size error indicators (***S***) for the negative
value. That is because the PICTURE did not have a place where the minus sign could be displayed.
Since leading zero suppression was not used, there were no leading blanks in which to place a
minus sign. If your numbers will include negative values, do not use all 9’s in your PICTURE. Add
at least one leading Z or – to the PICTURE.

Below are two additional examples that illustrate special purpose PICTUREs. Notice that when literal text
is used heavily, you should normally use "9" as your digit symbol. If you want to display a literal
character before the first numeric digit (as in the telephone number example below), you must use "9"
for all of your digit symbols
.

PICTUREs can be used anywhere that a numeric display format is allowed. Following are a few examples
of how PICTUREs can be used in various control statements:

FLD AMOUNT P5.2 FORMAT(PIC’$$$,$$9’)
PRINT EMPL–NAME TOTAL–SALES(PIC’ZZZ,ZZZ,ZZ9.99–’)
TITLE ’TELEPHONE DIRECTORY ––’ TELEPHONE(PIC’(999) 999–9999’)

PIC’999999V99’ 00123456 ****S***

PIC’ZZZZZ9.99’ 1234.56 –98765.40

PIC’ZZZZZ9V99’ 123456 –9876540

PIC’ZZZ,ZZ9.99’ 1,234.56 –98,765.40

PIC’–––,––9.99’ 1,234.56 –98,765.40

PIC’+++,++9.99’ +1,234.56 –98,765.40

PIC’ZZZ,ZZ9.99–’ 1,234.56 98,765.40–

PIC’ZZZ,ZZ9.99+’ 1,234.56+ 98,765.40–

PIC’$$,$$$,$$9.99’ $1,234.56 –$98,765.40

PIC’ZZZ.ZZ9V,99’ 1.234,56 –98.765,40

PIC’ZZZ ZZ9V,99’ 1 234,56 –98 765,40

PIC’ZZZ.ZZ9V,99 EURO’ 1.234,56 EURO –98.765,40 EURO

PIC’ZZZZZ9.99%’ 1234.56% –98765.40%

ADDITIONAL PICTURE EXAMPLES

PICTURE UNFORMATTED VALUE FORMATTED VALUE

PIC’(999) 999–9999’ 1234567890 (123) 456–7890

PIC’999–99–9999’ 123456789 123–45–6789

EXAMPLES OF PICTURES (CONTINUED)

PICTURE

FORMATTED

POSITIVE VALUE

 FORMATTED

NEGATIVE VALUE

How PICTUREs Work

z/Writer Reference Manual 197

How PICTUREs Work
This section explains in more detail exactly how PICTUREs are processed.

When a numeric value is being formatted according to a PICTURE, the following process takes place.
The PICTURE is evaluated one character at a time, from left to right. Each character in the PICTURE is
either:

 a symbol that represents one potential digit of the numeric value

 a literal character that, under certain conditions, will be moved into the result

The character 9 in a PICTURE always represents a digit from the numeric value. It will be replaced by
the appropriate digit of the number, even if that digit is a leading zero.

If you want to suppress leading zeros in your result, use one of the following characters to represent
leading digits in your PICTURE: Z, $, + or –. When one of these characters appears in the PICTURE before
the first 9, that character becomes the leading zero suppression symbol for the PICTURE. Each
occurrence of that symbol will be replaced by the appropriate digit of the number as long as that digit

is not a leading zero. If the digit is a leading zero, then a blank will appear in that position of the result.

Use the $ character for the leading digits in your PICTURE if you want a floating dollar sign to be placed
just before the first significant digit in the result. (You can use the CURRCHAR parm in the REPORT

statement to choose a different currency symbol to appear in your result. But you will still use $ in your
PICTURE.)

Use the + character for the leading digits in your PICTURE if you want a floating sign to be placed just
before the first significant digit in the result. A plus sign is used for positive numbers; a minus sign is
used for negative numbers; no sign is used if the number is zero.

Use the – character for the leading digits in your PICTURE if you want a floating minus sign to be placed
just before the first significant digit in the result (for negative values). Positive and zero values will have
no sign character.

When the letter Z is used for the leading digits in your PICTURE, and no trailing sign symbol appears

in the PICTURE, a floating minus sign is placed before the first significant digit in the result (for negative
values).

Use a + character as the last byte in your PICTURE if you want a trailing sign (either plus or minus) to
be placed in that position of the result.

Use a – character as the last byte in your PICTURE if you only want a trailing minus sign to be placed
in that position of the result (for negative values).

The letter V has a special meaning within a PICTURE. It shows where an "understood decimal point" is
located. A PICTURE may contain only one V symbol. The V symbol does not take up a byte in the
formatted output. (Thus, the result of PIC’99V9’ would be just 3 bytes long, not 4.) If a V is present in the
PICTURE, all decimal points (.) in the PICTURE are treated as literals and are not used in determining
where the decimal digits appear in the result.

The decimal point (.) is treated specially within a PICTURE. If the PICTURE contains a V symbol, all
decimal points within the PICTURE are just treated as literals. (Thus, the two decimal points in
PIC’ZZZ.ZZZ.ZZ9V9’ are treated as regular literals.) If no V symbol appears within the PICTURE, a single

How PICTUREs Work

198 Appendix C. Syntax of PICTURE Display Formats

decimal point is allowed within the PICTURE. It shows where an "explicit decimal point" is to be located
in the result.

The number sign (#) and the at sign (@) are used in scaled pictures (page 200) to show where to put
the abbreviation for the scale used (K, M, G, etc.).

All other characters are treated as literals. Literals are moved into the result just as they appear in the
PICTURE, with one exception. Any literal that appears before the last zero suppression symbol in a
PICTURE is blanked out if zero suppression is still in effect at that point. Such literals are only moved to
the result if one or more non–zero digits have already been moved to the result. (Thus, the comma
literals in PIC’ZZZ,ZZZ,ZZ9.99’ are blanked out until after the first digit appears in the result.) Also, trailing

literals are always moved to the result (even if no digits were moved.) Trailing literals are those that
appear after all of the numeric positions in a PICTURE. They are usually currency indicators (PIC’ZZ9.99

USD’) or percentage signs (PIC’ZZ9.9%’).

Exception: in PICTUREs with no zero suppression symbols (such as PIC’(999) 999–9999’), all literals
are moved to the result.

The following table summarizes the meaning of each character that can appear in a PICTURE.

Note: A PICTURE may contain symbols representing no more than 31 digits. However, the entire
PICTURE text (including literal characters) can be larger than 31 characters.

.

MEANING OF SYMBOLS WITHIN A PICTURE

SYMBOL MEANING

9
Replace this character with a digit from the numeric value, even if that
digit is a leading zero.

Z

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative
numbers (unless the PICTURE contains an explicit trailing plus or minus
sign).

$

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a dollar sign. For negative
numbers, a minus sign will appear just before the floating dollar sign
(unless the PICTURE contains an explicit trailing plus or minus sign).

–

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative
numbers.

How PICTUREs Work

z/Writer Reference Manual 199

+

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain: a plus sign for positive numbers;
a minus sign for negative numbers; a blank if the number is zero.

–

Minus sign, as the last character in a picture. Specifies that a minus sign
should appear in that position if the number is negative. Otherwise, a
blank will appear in that position.

+

Plus sign, as the last character in a picture. Specifies that: a plus sign
should appear in that position if the number is positive; a minus sign
should appear in that position if the number is negative; a blank should
appear in that position if the number is zero.

V

Understood decimal point. This character indicates where the
understood decimal point exists within a picture. However, no actual
decimal point will appear there. This PICTURE symbol does not affect the
size of the formatted result. When this symbol is used, any decimal
points (.) in the PICTURE are treated as literals.

.

When used as an explicit decimal point. When a PICTURE does not
contain a V, this becomes the explicit decimal point. It is displayed as is,
unless "leading zero suppression" is still in effect. In that case, a blank
will appear in its place.

#

Indicates that the numeric value should be scaled as necessary to fit
within the PICTURE. Base-10 scaling (division by factors of 1000) is
desired. The "@" symbol also indicates where to put the scale
abbreviation (K, M, G, etc.).

@

Indicates that the numeric value should be scaled as necessary to fit
within the PICTURE. Base-2 scaling (division by factors of 1024) is
desired. The "?" symbol also indicates where to put the scale
abbreviation (K, M, G, etc.).

other

Any characters other than those listed above are considered literal

characters within a picture. These characters will appear in the
formatted result just as they are, unless "leading zero suppression" is
still in effect. In that case, blanks will appear in their place. Trailing
literals (any literal after the last digit position) are always formatted into
the result.

Notes:
(1) the first Z, $, + or – character that appears in a picture becomes the "zero

suppression symbol" for that picture. Once the zero suppression symbol has been
determined for a picture, the other three characters in that set are just treated as
literals.

MEANING OF SYMBOLS WITHIN A PICTURE (CONTINUED)

SYMBOL MEANING

Scaling Numbers with PICTUREs

200 Appendix C. Syntax of PICTURE Display Formats

Scaling Numbers with PICTUREs
z/Writer PICTUREs also have a unique “scaling” option that you won’t find in other languages. Such
PICTURES automatically scale the number being formatted. Scaling means to round the number to
thousands, millions, etc. as necessary to make it fit within the PICTURE. The appropriate abbreviation
(K, M, G, etc.) indicates what scale the number is shown in.

Scaled PICTUREs allow you to use less space in a report line while still showing approximate values for
very large numbers. Look at these two columns of data:

 SALES SALES

 26 26

 48,712 49 K

5,862,131,092 5,862 M

The first column, while showing the exact value of each number, uses up 13 bytes of the report line
(even more if you have to allow room for totals). The second column shows scaled values for the same
numbers and only uses 7 bytes. (And the total would also fit in 7 bytes.)

Here is the PRINT statement used to format the above columns:

Example: PRINT SALES(13) SALES(PIC’Z,ZZ9 #’)

The "#" in the PICTURE indicates that base-10 scaling (division by factors of 1000) is wanted for that
column. (Base-10 scaling is normally used with business and financial data.) The "#" symbol also
indicates just where to place the scale abbreviation (K, M, G, etc.).

Scaled PICTUREs can also include decimal digits, if you like:

Example: PRINT FILESIZE(13) FILESIZE(PIC’ZZ9.9 #’)

The above statements result in the following columns.

 SALES SALES

 26 26.0

 48,712 48.7 K

5,862,131,092 5.9 M

You can also request base-2 scaling (division by factors of 1024, or 2 to the 10th power). This type of
scaling is often used with data related to computer systems. To specify base-2 scaling, use the "@"
scaling symbol instead of "#". If you also add a literal "B" to the PICTURE, you will end up with the
abbreviations KB, MB, GB, etc. in the column.

Example: PRINT SALES(13) SALES(PIC’Z,ZZ9 @B’)

Scaling Numbers with PICTUREs

z/Writer Reference Manual 201

The above statements result in the following columns.

 FILESIZE FILESIZE

 26 26 B

 48,712 48 KB

5,862,131,092 5,591 MB

Note: If the field you are scaling can contain negative values, be sure to begin the PICTURE with
a minus sign, a space or an "extra" Z. If you fail to this, you won’t get a size error (***S***) as with
regular PICTUREs. But the negative number will have to be scaled down to a potentially
misleading degree. Sometimes all the way down to 0 (on some scale.)

Take, for example, this PICTURE which has no extra byte for a minus sign: PIC’ZZ9#. The number
100,000,000 would format normally as "100M". But the number –100,000,000 appears,
surprisingly (at first glance), as " 0G". z/Writer can’t show "–100M" in the 4-byte PICTURE. So it
has to scale the number down further to –0.1 billion. Rounding that to a whole number (to match
the PICTURE) gives 0 billion. That does fit in the PICTURE (" 0G") but is not very useful and could
be misleading. Using the correct PIC’–ZZ9#’ would give the results you expect for both positive
and negative numbers: " 100M" and "–100M".

Note: in most cases, you will want at least 3 digit positions in scaled PICTUREs. Otherwise, you
can have a similar problem to the one described above (of having your number rounded down to
meaninglessness), even when all values shown will be positive. Take for example, the following
PICTURE with only 2 digits positions: PIC’Z9#’. The positive number 100,000,000 can only be
shown as " 0G" in this small PICTURE.

Note: if you need to use a literal character # or @ in your picture, use the PICBASE2 and
PICBASE10 parms in an OPTION statement (to choose different characters to assign this special
meaning to.) Then the # and/or @ characters will not have special meaning within PICTUREs and
can be used as literals.

202 Z-Writer Reference Manual

Index

Index

Index

Symbols
symbol

meaning in PICTURES 200
meaning in PICTUREs 107, 198

#ABS built-in function 190
#AND built-in function 186
#ASCII built-in function 187
#BEGMONTH built-in function 192
#BEGWEEK built-in function 192
#BEGYEAR built-in function 193
#CHAR2NUM built-in function 190
#COMPRESS built-in function 187
#COUNT built-in field

example 134
for files 42, 79
for tables 145

#DATE built-in field 182
#DATE2DIC built-in function 190
#DATE2JUL built-in function 187
#DAY built-in function 187
#DAYNAME built-in field 182
#DAYNUM built-in function 191
#DMY built-in function 193, 194
#EBCDIC built-in function 187
#EOF built-in field

after a FETCH statement 67
after a READ statement 123
for files 42, 79
for tables 145

#INCDATE built-in function 193
#INDEX built-in function 191
#INT built-in function 191
#JOBNAME built-in field 182
#JUL2DATE built-in function 193
#LCASE built-in function 187
#LEAPYEAR built-in function 188
#LEFT built-in function 188
#MAKEDATE built-in function 193
#MAX built-in function 191
#MDY built-in function 193, 194
#MIN built-in function 191
#MOD built-in function 191
#MONTH built-in function 188

#NUMWORDS built-in function 191
#OR built-in function 188
#PAGENUM built-in field 182
#PARSE built-in function 188
#REALDATE built-in function 189
#RECSIZE built-in field 42, 79
#RETCODE built-in field 182
#RIGHT built-in function 189
#ROUND built-in function 192
#RRN built-in field 80
#SQLCODE built-in field 162
#SQRT built-in function 192
#STATUS built-in field

of files 42, 80
values after a RETRIEVE 133

#SUBSTR built-in function 189
#TALLY built-in field 183
#TIME built-in field 182
#TIME12 built-in field 182
#TIME24 built-in field 182
#TRANSLATE built-in function 189
#UCASE built-in function 190
#XOR built-in function 190
#YEAR built-in function 190
#YEARNUM built-in function 192
#YMD built-in function 193, 194
S

in total line at control break 200
meaning of 196
using automatic scaling to suppress 200

@ symbol
meaning in PICTURES 198, 200
meaning in PICTUREs 107, 198

A
ABS built-in function (see #ABS built-in function)
190
Absolute value

#ABS built-in function 190
Access

to file 82
Addition

adding days, weeks, months or years to a date

Z-Writer Reference Manual 203

Index

193
in computational expressions 36

Address
formatting addresses 187

Address mode
of called modules 30

ADVAFTER parm
in PRINT statement 119

ADVBEFORE parm
in PRINT statement 119

Alignment
of report columns in different report lines 114
of titles (left, center and right) 148
right, left and center, of report data 115

AlignmentLof one field’s data in a title 150
Allocation

of temporary files 84
AND

in conditional expressions 87
AND built-in function (see #AND built-in func-
tion) 186
Appearance

of data in report 115
of data in title lines 150

Approximate
values, using to save space 200

Arithmetic operations
how to perform 36

Arrays
DIM parm 75
maximum elements 75
multiple dimensions 75
processing in a loop 51, 53
subscripts 75
using indexes for 76

ASCII
converting to EBCDIC 187

Assembler
file definitions 39

Assignments
COMPUTE statement 35
MOVE statement 95

Asterisks (*)
S, meaning of 196

At character (see @ symbol) 107
Auto completion

of titles 148

Auto-Cycle
calculating totals 62, 91
control breaks 16, 17, 25
example 10, 17, 18
mode 9

B
Backing up

during record definition 73, 125
Base 10

scaling 107
Base 2

scaling 107
BASIC language

PRINT USING equivalent 195
BEGMONTH (see #BEGMONTH built-in func-
tion) 192
BEGWEEK (see #BEGWEEK built-in function)
192
BEGYEAR (see #BEGYEAR built-in function)
193
Big

biggest of several numbers 191
making report column bigger 114
numbers, scaling to fit in small column 200

Billions
rounding to 192, 200

BIN
data type 72

Binary
data 72
search 144
trees 144

Bit fields
logical operations 186, 188, 190
testing multiple bits 186
testing value of 186

Blank lines
at control break 28
in report 113
in report titles 148

Blanks
all blank field 72
for duplicate data 115
for leading zeros 197
for zero values 115

204 Z-Writer Reference Manual

Index

for zero values in title 150
leading 72, 187
removing blanks during concatenation 187
required around minus sign 37
trailing 72, 187

Body
of report 112

Brackets
square 75

BREAK statement 25
example 17
order of 26
syntax 25

BRK parm
in PRINT statement 116

BRKLAST parm
in PRINT statement 116

BRKSUM parm
in PRINT statement 116

Built-in fields 182
for each file 42, 79
for each table 145
for IMS 176

Built-in functions 184
for IMS 178

Byte
ASCII versus EBCDIC 187

C
CALC_01

use 173
CALL statement 30

syntax 30
CARD parm

in FILE statement 81
Carriage

suppressing carriage control character 130
Case

lower case 187
of fieldnames 43, 70
upper case 190

CASE statement 32
syntax 32

Centering
data by default for a field 76
data in a report column 115

one field’s data in a title 150
part or all of the title line 148

Cents
rounding to whole dollars 192

Century
computing day in century 190
day in century 193

CENTURY option
in OPTIONS statement 106

Changing
records in file 81
translating characters 189

CHAR
data type 71

Character fields
ASCII versus EBCDIC 187
changing case 187, 190
converting to date 193
converting to numeric 190
counting words in 191
parsing words from 188
scanning for a text 191
substrings 189
translating characters 189

CLOSE statement 34
syntax 34

Closing
files, automatic 135

COBOL
file definitions 39

COL parm
in FIELD statement 72

Colons
in statement labels 85

COLSEP parm
in REPORT statement 65, 130

COLSPACE parm
in REPORT statement 130

Column headings
in field definition 75
in summary reports 121
overriding default 115
pad characters 76
splitting onto multiple lines 75, 115
suppressing 130
suppressing underscores 131

Columns

Z-Writer Reference Manual 205

Index

aligning report columns 114
changing size of report column 114
field’s starting column in record 72
inserting text between report columns 65, 130
putting data at a certain column 114, 150
scaling big numbers to fit in report column 200
spacing between report columns 130

Comma (,)
in numbers, using a different character 195
in numbers, whether to print 195

Comma delimited files
enclosing data in quotes 117
quote mark used 65, 131

Completion code
for errors 99
setting (#RETCODE built-in field) 182

COMPRESS built-in function (see #COMPRESS
built-in function) 187
Computational expressions 36

decimal digits in result 37
list of built-in functions 184
operands in 36
operators 36
order of operations 37
syntax 36

COMPUTE statement 35
converting character data to numeric 190
converting data to different type 193–??
converting dates to numeric value 190
decimal digits in result 37
examples 186
list of built-in functions 184
order of operations 37
syntax 35

Concatenation
operater 36
removing excess blank spaces 187

Conditional expressions 87
in CASE statement 32
in DOUNTIL statement 50
in DOWHILE statement 52
in IF statement 86, 87
syntax 87

CONTAINS parm
in FLD statement, values for 74

Control breaks
BREAK statement 25, 62, 91

example 17
format of the total line 116
order of 26
spacing at 28
tally of records in 183

Control listing
starting and stopping listing of statements 92,

93
writing to 139, 140

Conversion
of data, in MOVE statements 95
of files 19
of one data type to another 190, 193–??

Copy library
for FIELD statements 70
using 39

COPY statement 39
syntax 39

Count
of records at control break 183
of records in table 145
of records read from, written to file 42, 79

CURRCHAR parm
in REPORT statement 65, 130

Currency
showing currency in PICTURE 198
symbol, changing 65, 130

Current
date, built-in field 149, 182
location, when defining fields 73
page, built-in field 149, 182
time, built-in field 149, 182

CURSOR Statement 159
CURSOR statement

fields defined for 164
when opened 167, 169

Cylinders
allocated for temporary files 84

D
Dash (-)

formatting negative numbers, where to put 195
Data

representation, numeric fields 71
DATA statement 45

syntax 45

206 Z-Writer Reference Manual

Index

Data types
in IF expressions 88
list of 71

Databases
IMS databases 176

Date
added to title line automatically 148
in title, suppressing 131

DATE built-in field (see #DATE built-in field)
182
DATE2JUL built-in function (see #DATE2JUL
built-in function) 187
Dates

adding to, subtracting from 193
adding/subtracting days, weeks, months or

years 193
calculating first & last days of a week, month

or year 192, 193
CONTAINS parm

in FLD statement 73
converting gregorian to julian 187
converting julian to gregorian 193
converting numeric day, month and year into a

date 193, 194
converting to numeric day in century 190
current date, built-in field 149, 182
day of week for a given date 187
extracting the day, month and year portions

190–191, ??–192
month name for a given date 188
number of days between two dates 190
numeric day of week for a given date 191
specifying the delimiter 106
testing for leap years 188
testing for valid date 189
using DD/MM/YY format 65, 106, 130
windowing YY dates 106

DAY built-in function (see #DAY built-in func-
tion) 187
Day in century (DIC)

computing 190
Day of week

built-in field 149, 182
calculating the date corresponding to any day

of a week 192
computing for a given date 187
number representing, for a given date 191

DAYNAME built-in field (see #DAYNAME
built-in field) 182
DAYNUM built-in function (see #DAYNUM
built-in function) 191
Days

adding to a date field 193
adding to or subtracting from a date field 193
converting numeric day, month and year into a

date 193, 194
day in century 193
day of month, for a given date 191
number of days between two dates 190

DB2
calculations 173
checking status of fetches 67
detecting end-of-file 67
multiple tables 169, 171
null values 169, 174
opening cursor 167, 169
referencing working storage fields 167
report, example 160
select statement 160
SQLCODE 162
SQLTYPE 168
subsystem 160
WHERE clause 166

DB2SSID parm
in OPTION statement 160

DD statement in JCL
for IMS runs 176
used for control listing 92, 93
used for debug information 139, 140
used for report output 14, 64, 65, 97, 129
which one used to read input files 79

DD/MM/YY
displaying dates as 65, 106, 130

Debug
tools 139, 140

Decimal digits
extracting integer value 191
how many stored in record 71, 74
how many to print 195
in computational expressions 37
rounding 192

DECIMAL parm
in FIELD statement 74

Decreasing

Z-Writer Reference Manual 207

Index

size of report column 114
Default

alignment of titles 148
column headings used 115
display formats 65, 106, 130

Definition
of fields 69
of files 78
of working storage 155

Deleting
records from tables 48
records from VSAM files 46

Delimiters
for formatting dates 106
used to parse character strings 189

DELREC statement 46
syntax 46

DELTABREC statement 48
syntax 48

Detail
report lines, suppressing 121

DFSRRC00 176
Digits

decimal, dropping 191
decimal, how many stored in record 71, 74
decimal, rounding 192
how many to print 195

DIR parm
in FILE statement 82

Direct
reads 122
table retrievals 134

DISP parm
in FIELD statement 72

Display formats
how to write PICTUREs 195
in FIELD statement 75
overriding the default 115, 150
removing excess blank spaces 187
setting the default 65, 106, 130

DIVBYZERO
parm in ONERROR statement 102

Division
by zero error 102
in computational expressions 36
remainder (#MOD built-in function) 191

DLI Statement 177

DLI statement 176
DMY see #DMY built-in function) 193, 194
Dollar sign ($)

character used 65, 130
how to print 195
meaning in PICTUREs 197
using Euro sign 65, 130

Dollars
printing whole dollars 192

DOUNTIL statement 50
syntax 50

DOWHILE statement 52
syntax 52

Duplicate
data, blanks instead of 115
keys in sort 84
keys in VSAM file 157

E
Early

stopping execution early 62, 91, 141
EBCDIC

built-in function (see #EBCDIC built-in func-
tion) 187

converting to ASCII 187
ELSE statement 54

in CASE structures 33
syntax 54

ELSEIF statement 56
syntax 56
using CASE instead 32

Empty
paragraphs 108

End of file (see also EOF) 42, 79, 123
ENDCASE statement 57

syntax 57
ENDDO statement 58

syntax 58
ENDIF statement 59

syntax 59
ENDREDEFINE statement 60

syntax 60
ENTRY parm

in RETRIEVE statement 134
EOF

for files 9, 42, 79

208 Z-Writer Reference Manual

Index

in table 145
Equals

in IF statement 88
Errors

division by zero 102
how to handle 99
invalid data 101
overflow 102
print size (***S***) 196
stopping run early 99

ESDS parm
in FILE statement 81

European
date formats 106

Euros
using Euro sign 65, 130

EXCLUDE statement 62
syntax 62

Execution
do not run program 107
stopping early 141
tracing 152, 153

Exits
address mode 30
calling 30

Exponent
raising to a power 36

Export files
multiple 63
primary 63
report name 64

Expressions
computational, syntax 36
conditional, syntax 87

F
F/FB parm

in FILE statement 82
Feedback

fields for IMS runs 176, 178
FETCH statement 67

checking for end-of-file 67
checking the status 67
status 162
syntax 67
using 162

FIELD statement 69
data types, list of 71
fields with varying location 76
keeping in copy library 70
naming rules 70
order of parms 70
redefining part of a record 73
syntax 69
where to put 70

Fields
for DB2 cursors 164
showing contents of 139, 140

FILE statement 78
copying with a REUSE statement 135
instream data 45
naming rules 43, 81
syntax 78
which DD used for file 79

Files
built-in fields for 42, 79
checking status of reads 123
checking status of writes 157
closing 34
converting 19
DDNAME used 80
detecting end-of-file 42, 79, 123
number of records read/written 42, 79
opening 104
primary input file 9
reading 122
reading same file multiple times 34, 135
sorting 84
status 42, 80
temporary 82
types of files supported 81
updating 81, 137, 157

FILLER 70
First

day of a week, month or year, calculating 192,
193

FIRST parm
in RETRIEVE statement 133

FLOAT
data type 72

Floating point
data 72

Format

Z-Writer Reference Manual 209

Index

of data in report 115
of data in titles 150

FORMAT parm
in FIELD statement 75
in OPTION statement 106
in REPORT statement 65, 130
in REPORTstatement 65, 130

Formatting
dates, specifying the delimiter to use 106

G
GEN parm

in POSITION statement 111
in READ statement 124

Generic
keys 111, 124

GOTO statement 85
syntax 85
within performed paragraphs 108

Grand totals 27
customizing 25, 62, 91
size error in (***S***) 200
spacing before and after 28
suppressing 131
which columns receive 26, 62, 70, 116

Greater than
in read keys 111, 124
largest of several fields 191

Gregorian dates
from julian 193
to julian 187

H
Halt

execution 141
execution for a record 62, 91

HEADING parm
in FIELD statement 75

Headings (see also Column headings) 130
Hexadecimal

data, showing during debug 140
floating point data 72

I
I/O

closing a file 34
opening a file 104
reading same file multiple times 34, 135
updating files 81, 137, 157

IF statement 86
data types of operands 88
examples 90
list of comparison operators 88
list of values 89
syntax 86
testing range of values 89

IMS
built-in fields for IMS 176
built-in functions for 178
executing DFSRRC00 176
executing ZWIMS 176
PCB 176
PSB 176
sample runs 179
SSA parms 177
the IMS Option 176

INCDATE (see #INCDATE built-in function) 193
INCLUDE statement 91

syntax 91
Increasing

size of report column 114
INDEX built-in function (see #INDEX built-in
function) 191
INDEX parm

in FIELD statement 76
Inheritance

of dimensions and indexes 75, 76
INIT parm

of FIELD statement 76
Initial

value of field 76
Input files

primary 9
reading 122

INPUT parm
in FILE statement 81
in REUSE statement 136

Instream
data, reading 45

INT built-in function (see #INT built-in function)
191
International

210 Z-Writer Reference Manual

Index

formatting conventions 107, 130
Invalid

data 101
INVDATA

parm in ONERROR statement 101
IP address, parsing 189
Iterative

DOUNTIL statement 50
DOWHILE statement 52

J
JCL

DDNAME for input/output files 79, 80
DDNAME for reports 64, 65, 129
for Z-Writer execution 10

Job
including jobname in report 182

JOBLIB DD
for called modules 30

JOBNAME built-in field (see #JOBNAME built-
in field) 182
JUL2DATE built-in function (see #JUL2DATE
built-in function) 193
Julian dates

converting to gregorian 193
from gregorian 187

Justification
of a field within the title 150
of data within report column 76, 115
of title lines 148
of titles (left, center and right) 148

justified 115

K
KEQ parm

in POSITION statement 111
in READ statement 124

KEY parm
in POSITION statement 111
in READ statement 123
in RETRIEVE statement 134
in TABLE statement 146

Keyed
tables 144

Keys
duplicate 157

equal to or greater than 111, 124
for random reads 111, 123
generic 111, 124
in table records 146
keyed reads 122
keyed table retrievals 134

KGE parm
in POSITION statement 111
in READ statement 124

KSDS parm
in FILE statement 81

L
Labels

naming rules 85
LCASE built-in function (see #LCASE built-in
function) 187
Leading

blanks, removing 187
zeros, printing 197
zeros, suppressing 197

Leap years
testing for 188

LEFT built-in function (see #LEFT built-in func-
tion) 188
Left-justify

data by default for a field 76
data within report column 115
one field’s data in a title 150
part of the title line 148

LEN parm
in FIELD statement 71

Length
of a field in a record 71
of a record in a file 42, 79
of records read 123
of records written 157

Less than
#MIN built-in function 191
in IF statement 88

Letters
ASCII versus EBCDIC 187
lower case 187
upper case 190

Line feeds
spacing after a print line 119

Z-Writer Reference Manual 211

Index

spacing before a print line 119
Lines

per report page 130
LINES parm

in REPORT statement 130
Lining up

report columns 114
Linkage conventions

to called module 30
LISTOFF statement 92

syntax 92
LISTON statement 93

syntax 93
Lists

of values, in CASE statement 33
of values, in IF statement 89
sequential tables 144
value of, in IF statement 89

Literals
as read key 111, 123
in body of report 113
SPACES 96
ZEROS 96

Locks
releasing lock on VSAM record 126

Logical operations
AND operation 186
OR operation 188
XOR operation 190

Loops
DOUNTIL 50
DOWHILE 52

Lower
#MIN built-in function 191

Lower case 187
LRECL

of records read 123
of records written 157

M
MACRO statement 94

syntax 94
MAKEDATE built-in function (see #MAKE-
DATE built-in function) 193
Margins

aligning titles with 148

Math operations
how to perform 36

MAX built-in function (see #MAX built-in func-
tion) 191
Maximum

#MAX built-in function 191
selecting the largest of several values 191

MDY see #MDY built-in function) 193, 194
Millions

rounding to 192, 200
MIN built-in function (see #MIN built-in function)
191
Minimum

#MIN built-in function 191
Minus sign (-)

blanks required around 37
formatting negative numbers, where to put 195
in input field 72
meaning in COL or DISP parm 73
meaning in PICTUREs 197

MOD built-in function (see #MOD built-in func-
tion) 191
Mode

standard mode 11
Modes

auto-cycle 9
Month

adding/subtracting months to/from a date 193
calculating first & last days of a month 192
converting numeric day, month and year into a

date 193, 194
name, for a given date 188

MONTH built-in function (see #MONTH built-in
function) 188
MOVE statement 95

corresponding moves 96
data conversion 95
for whole records 96
syntax 95

Multiple
export files 63, 64
passes through a file 34, 135
program phases 97
reports 13, 97, 113, 128, 129, 149

Multiplication
in computational expressions 36

212 Z-Writer Reference Manual

Index

N
Names

month, spelling out 188
of day for a given date 187
of fields 70
of files 43, 81
of reports 64, 113, 129, 149
of statement labels 85
of tables 146
of workareas 155
removing blanks between last and first name

187
Negative

numbers
formatting for report 195

numbers, scaled down too far or to zero 201
Nesting

of PERFORM statements 108
New

export file in same program phase 63
page in report 119
record, adding to file 157
report in same program phases 128

NEWPHASE statement 97
example 98
syntax 97

NEXT parm
in RETRIEVE statement 133

Nibble
C versus F for packed data 186

NOBRK parm
in PRINT statement 116

NOCC parm
in REPORT statement 130

NOCOLHDGS parm
in REPORT statement 130

NODATE parm
in REPORT statement 131, 148

NOGRANDTOTALS parm
in REPORT statement 131

NOPAGE parm
in REPORT statement 131, 148

NOT
in CASE structures 33
in conditional expressions 87

Not equal
in IF statement 88

NOUNDER parm
in REPORT statement 131

Null
DB2 values 169, 174

NUM
data type 72

Number
of reads/writes to a file 42, 79
of records in table 145

Number sign (see also # symbol)
meaning in PICTUREs 107, 200

Numbers
displaying in international/European format

 107, 130
NUMEDIT

data type 72
NUMERIC

keyword test 89, 90
Numeric fields

bigger than report column 100
converting to date value 193
formatting in report 195
how stored in input file 71
how to define 71
integer portion 191
specifying where to put plus, minus sign 195

NUMWORDS built-in function (see #NUM-
WORDS built-in function) 191

O
of CURSOR Statement 164
ONERROR statement 99

syntax 99
OPEN statement 104

syntax 104
Opening

DB2 cursors 167, 169
files, automatic 135

Operands
in computational expressions 36

Operators
in computational expressions 36

OPTION statement 106
syntax 106

Options
for report 128

Z-Writer Reference Manual 213

Index

OR
in conditional expressions 87

OR built-in function (see #OR built-in function)
188
Order

of BREAK statements 26
of control statements 11
of operations in COMPUTE statement 37
of PRINT statements 113, 121

OUTPUT parm
in FILE statement 81
in REUSE statement 136

OVERFLOW
parm in ONERROR statement 102

Overflow
errors 102

P
PACK

data type 72
Packed

data 72
data, C or F in zone nibble 186
data, invalid 101

Padding
in column headings 76

Page breaks
BREAK statement 28
in report 119
lines per page 130

Page number
added to title line automatically 148
built-in field 149, 182
in title, suppressing 131

PAGE parm
in BREAK statement 28
in PRINT statement 119

PAGENUM built-in field (see #PAGENUM built-
in field) 182
Paragraphs

empty 108
performing 108
syntax 108

Parentheses
in computational expressions 36, 37
in conditional expressions 87

Parms
passing to called modules 30

PARSE built-in function (see #PARSE built-in
function) 188
Parsing

IP addresses 189
PCB

accessing in IMS runs 176, 178
IMS runs 176

PDS
copying from 39

Percent
of totals 97
showing percent sign in PICTUREs 198

PERFORM statement 108
syntax 108

Phases (see Program, phases) 97
PICBASE10 parm

of OPTION statement 107
PICBASE2 parm

of OPTION statement 107
PICTURE format

character used for scaling 107
how to write 195
meaning of # and @ symbols 107, 198, 200
number scaled down too far or to zero 201
scaling to thousands, millions 200
shows misleading value 201
when allowed 196

PL/1
INDEX built-in function equivalent 191

Plus sign (+)
formatting positive numbers, where to put 195
in input field 72
meaning in COL or DISP parm 73
meaning in PICTUREs 197

POSITION statement 110
syntax 110

Pound sign (see also # symbol)
meaning in PICTUREs 107, 200

Power
raising to, in computational expressions 36

Precision
of computational expressions 37
shown in report 100

PRESORT parm
in FILE statement 84

214 Z-Writer Reference Manual

Index

in REUSE statement 136
Primary

input file 9
PRINT statement 113
report 128
report, is export file 63

PRINT statement 112
column headings 115
multiple reports 13
order of 113, 121
primary 113
specifying width of items 114
syntax 112
using a PICTURE to format numeric data 195

PRINT USING in BASIC 195
PRINTMODEL statement 112, 121

syntax 112
Priority

of operations in computational expressions 37
of tests in conditional expressions 87

Program
address mode 30
calling 30
do not run 107
phases 97
tracing 152, 153

PRTSIZE
parm in ONERROR statement 100

PSB
IMS runs 176

Q
QSAM parm

in FILE statement 81
QUERY parm

how to use 159
Quotation marks

enclosing data in quotes 117
used for comma delimited files 65, 131

QUOTECHAR parm
in REPORT statement 65, 131

R
Random

reads 122
table retrievals 134

Range
of values, in CASE statement 33
of values, in IF statement 89

Rank
of operations in computational expressions 37
of tests in conditional expressions 87

Raw
data, showing during debug 140

RDW 72, 82
READ statement 122

checking for end-of-file 123
checking the status 123
omitting 9
positioning for 110, 122
reading same file multiple times 34, 135
syntax 122

Records
adding new record to file 157
defining the fields within 69
length of a record 42, 79, 123, 157
moving whole records 96
updating 137

REDEFINE statement 125
ending it early 60
redefining arrays 75
syntax 125

Redefining
part of a record 73, 125

REINIT parm
of FIELD statement 76

RELEASE statement 126
syntax 126

Remainder, after a division 191
REPORT statement

multiple reports 13, 113, 149
Report statement

Report statement
syntax 63, 128

Reports
formatting 112
lines per page 130
multiple 13, 113, 128, 149
names of reports 113, 149
output DD 14
primary 128
report name 64, 129

RETCODE built-in field (see #RETCODE built-in

Z-Writer Reference Manual 215

Index

field) 182
RETRIEVE statement 132

deleting while retrieving 48
syntax 132
using 144

Return code
for errors 99
setting (#RETCODE built-in field) 182

REUSE statement 135
example 98, 136
syntax 135

REWRITE statement 137
syntax 137

RIGHT built-in function (see #RIGHT built-in
function) 189
Right-justify

data by default for a field 76
data within report column 115
one field’s data in a title 150
part of the title line 148

ROUND built-in function (see #ROUND built-in
function) 192
Rounding

data for report 100
numbers to different scales 200

RRDS parm
in FILE statement 81

RRN
of records read 123
of RRDS file 80

Rules
for fieldnames 70
for filenames 43, 81
for label names 85
for table names 146

S
Scale

SQL 164
Scaling

character used in pictures 107
number scaled down too far or to zero 201
numbers automatically, how to 200
problems 201
to fit number in report 100

Searching

a character field for a text 191
Select

DB2 select statement 160
SELECT parm 164
SEQ parm

in FILE statement 82
Sequential

reads 122
reads, positioning for 110, 111, 122
retrieves from table 133
tables 144

Shorten
report columns 114

SHOW statement 139
syntax 139

SHOWHEX statement 140
syntax 140

Sign
computing absolute value 190
in input field 72
nibble in packed data, changing 186
where to put for numbers in report 195

Size
column too small for data 100
error indicator (**S**) 196
error indicator (**S**), in total line 200
error indicator (**S**), using automatic scal-

ing to suppress 200
of fields in input records 71
of item in title line 150
of report column 114

Skip
bytes during record definition 73

SKIP parm
in FILE statement 82

Skip sequential
access to VSAM files 83

Slashes
in TITLE statements 148

Small
column too small for data 100
making report column smaller 114
smallest of several values 191

Sorting
ascending/descending 84
duplicate keys 84
input files 9, 84

216 Z-Writer Reference Manual

Index

tables 144
SPACE parm

for temporary files 84
in FILE statement 84

SPACES
special literal 96

Spaces
all blank field 72
between items in title lines 150
between report columns 114, 130
for duplicate data 115
for zero values 115
for zero values in title 150
leading 72
trailing 72

Spacing
after a print line 119
before a print line 119
of report columns 114, 130

Splitting
column headings into multiple lines 75, 115
titles into parts 148
why is total line split 16

SQLCODE built-in field (see #SQLCODE built-in
field) 162
SQLLEN parm

in FLDstatement
using 168

SQLTYPE parm
in FLDstatement

using 168
SQRT built-in function (see #SQRT built-in func-
tion) 192
Square root

computing 192
SSA

in IMS requests 177
Stacking

column headings 75, 115
Starting

value of field 76
Statement labels

naming rules 85
Status

of a file 42, 80
of table operation 145

STEPLIB DD

for called modules 30
Stop

stopping execution early for a record 62, 91
stopping run on error 99

STOP statement 141
syntax 141

STORE statement 142
syntax 142
using 144

Subroutines
address mode 30
calling 30
PERFORM statement 108

Subscripts
syntax 75

Substitution
of macros in control statements 94

SUBSTR built-in function (see #SUBSTR built-in
function) 189
Subsystem

DB2 160
Subtraction

blanks required around minus sign 37
in computational expressions 36
subtracting days, weeks, months or years from

a date 193
Summary

reports 121
Suppressing

blanks between fields 187
carriage control character 130
column headings 130
date in title 131
decimal digits in numbers 195
detail report lines 121
duplicate data in report 115
grand totals 27, 131
leading zeros 197
leading zeros in title 150
page number in title 131
totals 27
underscores in column headings 131

Symbol
for currency 65, 130

Syntax
of computational expressions 36
of conditional expressions 87

Z-Writer Reference Manual 217

Index

of paragraphs 108
of statement labels 85

SYSDA
temporary files 84

SYSIN DD
reading data from 45

SYSPRINT DD
debug messages and data 139
starting and stopping listing of statements 92,

93

T
TABLE statement 144

naming rules 146
syntax 144

Tables
adding records to 142
built-in fields for 145
defining the key 146
deleting records from 48
EOF indicator 145
keyed 144
number of records in 145
retrieving records directly 134
retrieving records in order added 134
retrieving records sequentially 133
sequential 144
status 145
status of a RETRIEVE 133
type of 144
updating records 142

TEMP parm
example 98
in FILE statement 81

Temporary
file, space allocated 84
file, unit used 84
files 82

Thousands
rounding to 192, 200

THRU keyword
in CASE statement 33
in IF statement 89

Tiebreaker
in sorts 84

TIME built-in field (see #TIME built-in field) 182

Time of day
built-in field 149, 182

TIME24 built-in field (see #TIME24 built-in field)
182
TITLE statement 147

aligning one field’s data 150
alignment (left, center and right) 148
auto completion of title line 148
multiple reports 13
specifying display formats 150
specifying width of an item 150
syntax 147
use of slash for alignment 148

Titles
date in 131
for multiple reports 149
page number in 131

Totals
S appears in 200
excluding certain records from totals 16
in summary reports 121
lining up columns 114
printing the total value of a field 116
spacing before and after 28
suppressing 27
suppressing grand totals 131
what value appears in the total line 116
which columns are totalled 62, 70, 91, 116
why split onto two lines 16

TRACEOFF statement 152
syntax 152

TRACEON statement 153
syntax 153

Tracing
program flow 152, 153

Tracks
allocated for temporary files 84

Trailing
blanks, removing 187
plus or minus sign 195

TRANSLATE built-in function (see #TRANS-
LATE built-in function) 189
Translation

between ASCII and EBCDIC 187
Trees

binary trees 144
Truncation

218 Z-Writer Reference Manual

Index

of decimal digits (#INT built-in function) 191
truncating numeric data 100

TYPE parm
in FIELD statement 71
in FILE statement 81

U
UCASE built-in function (see #UCASE built-in
function) 190
Underscores

suppressing in column headings 131
UNIT parm

for temporary files 84
in FILE statement 84

Unlocking
releasing lock on VSAM record 126

UPDATE parm
in FILE statement 81
in REUSE statement 136
releasing records 126

Updating
file records 137
table records 142

Upper case 190
using 159

V
V/VB parm

in FILE statement 82
Value

of field, initial 76
Variable

defining variably located fields 76
in working storage 155
location in record 76

Variable length files
defining 82
record descriptor word (RDW) 72, 82
record length 123, 157
writing to 157

Variables
macros in control statements 94

VERIFY parm
of OPTION statement 107

Vertical bar
use in column headings 75, 115

VSAM files
defining 81
deleting records 46
duplicate keys 157
positioning 110, 122
reading 122
reading directly 122
reading sequentially 122
releasing records 126
skip sequential access 83
updating 137, 157

W
Week

adding/subtracting weeks to/from a date 193
calculating any day of week in a given week

192
WHEN statement 154

in CASE structures 32
syntax 154

WHERE
DB2 clause 166

Whole
numbers, how to round out decimal digits 192,

195
Wide

making report column smaller/bigger 114
Width

column too small for data 100
of item in title line 150
of report column 114
of report column, specifying with a PICTURE

195
Words

counting words in a string 191
parsing a character string 188
searching for, within a string 191

Workarea
name of 155

WORKAREA statement 155
moving a whole workarea 96
syntax 155

Working storage (see WORKAREA statement)
155
WRITE statement 157

checking the status 157

Z-Writer Reference Manual 219

Index

syntax 157

X
XOR built-in function (see #XOR built-in func-
tion) 190

Y
Year

adding/subtracting years to/from a date 193
calculating first & last days of a year 193
converting numeric day, month and year into a

date 193, 194
extracting for a given date 190, 192

YEAR built-in function (see #YEAR built-in func-
tion) 190
YEARNUM built-in function (see #YEARNUM
built-in function) 192
Years

leap 188
Yesterday

computing yesterday’s date 193
YMD see #YMD built-in function) 193, 194

Z
Zero

blanks instead of 115
blanks instead of, in title 150
division by zero error 102
leading zero suppression 197
leading zeros, printing 197
number scaled down to zero 201

ZEROS
special literal 96

Zoned
data 72

ZWIMS 176
ZWOUT001 DD 15, 97

	Table of Contents
	Who Is This Manual For?

	Chapter 1. What is z/Writer?
	z/Writer Features

	Chapter 2. How to Make Reports with z/Writer
	z/Writer’s Auto-Cycle Mode
	z/Writer’s Standard Mode
	Order of Statements In Your Program
	Report Column Headings
	Printing Multiple Reports
	Runs with Multiple Phases

	Chapter 3. Sample z/Writer Reports
	Auto-Cycle Report with Control Breaks
	Auto-Cycle Report with Record Selection
	A Sequential File Conversion Program
	Making a Comma-Delimited Export File
	Keyed Reads to a VSAM file

	Chapter 4. Using Macros
	Chapter 5. z/Writer Control Statements
	BREAK Statement
	CALL Statement
	CASE Statement
	CLOSE Statement
	COMPUTE Statement
	COPY Statement
	CURSOR Statement
	DATA Statement
	DELREC Statement
	DELTABREC Statement
	DOUNTIL Statement
	DOWHILE Statement
	ELSE Statement
	ELSEIF Statement
	ENDCASE Statement
	ENDDO Statement
	ENDIF Statement
	ENDREDEFINE Statement
	EXCLUDE Statement
	EXPORT Statement
	FETCH Statement
	FIELD Statement
	FILE Statement
	GOTO Statement
	IF Statement
	INCLUDE Statement
	LISTOFF Statement
	LISTON Statement
	MACRO Statement
	MOVE Statement
	NEWPHASE Statement
	ONERROR Statement
	OPEN Statement
	OPTION Statement
	PERFORM Statement
	POSITION Statement
	PRINT Statement
	PRINTMODEL Statement
	READ Statement
	REDEFINE Statement
	RELEASE Statement
	REPORT Statement
	RETRIEVE Statement
	REUSE Statement
	REWRITE Statement
	SHOW Statement
	SHOWHEX Statement
	STOP Statement
	STORE Statement
	TABLE Statement
	TITLE Statement
	TRACEOFF STATEMENT6
	TRACEON STATEMENT
	WHEN Statement
	WORKAREA Statement
	WRITE Statement

	Chapter 6. z/Writer’s DB2 Option
	What Is z/Writer’s DB2 Option?
	How It Works
	The CURSOR Statement - A Quick Look
	The FETCH Statement -- A Quick Look
	The CURSOR Statement -- More Details

	Chapter 7. z/Writer’s IMS Option
	What Is z/Writer’s IMS Option?
	How to Run z/Writer with IMS
	What Does the IMS Option Do?
	The DLI Statement
	New Built-In Fields for IMS Option

	Appendix A. Built-In Fields
	Appendix B. Built-In Functions
	Functions that Return a Character Value
	Functions that Return a Numeric Value
	Functions that Return a Date Value

	Appendix C. Syntax of PICTURE Display Formats
	Examples of PICTUREs
	How PICTUREs Work
	Scaling Numbers with PICTUREs

	Index

