
Spectrum Writer

User’s Guide
Reference
Manual

®

Spectrum Writer Release 3.0.1

All Rights Reserved. The material in this publication is confidential and contains proprietary information and
trade secrets. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without written permission from Pacific Systems Group.

While every effort has been made to ensure the accuracy of the material in this publication, Pacific Systems
Group shall not be liable for any errors contained herein, or for incidental or consequential damages resulting
from the performance, furnishing or use of this manual. If you find technical inaccuracies or typographical errors,
we would appreciate your letting us know about them. Other comments concerning the usefulness of this
publication are also welcome.

Spectrum Writer and Pacific Systems Group are registered trademarks of Pacific Systems Group. Other program
names are trademarks of their respective companies.

Printed in the United States of America

Copyright 1991-2006 Pacific Systems Group

Pacific Systems Group, LLC
32533 Regents Boulevard

Union City, CA 94587

www.pacsys.com

1-800-572-5517 ! 1-510-471-7111

Spectrum Writer User’s Guide & Reference ManualHow to use This Manual

What Should You Read?

It is not necessary to read this entire manual in order to start producing custom reports and
PC files with Spectrum Writer. To learn how to use Spectrum Writer, we suggest the
following steps:

1. Step 1.Read Chapter 1, "Introduction" to learn just what Spectrum Writer is and
what it can do for you.

2. Step 2.If you will be producing custom reports, read Chapter 2, "How to Request
a Report." There you will learn the basics of producing reports with Spectrum
Writer.

3. Step 3.If you want to produce PC files, read Chapter 3, "How to Request a PC
File." That chapter teaches you the basics of producing PC files with Spectrum
Writer.

4. Step 4.Start producing your own reports and output files! When questions come
up, use the Index at the end of this manual to locate the section that explains how
to do what you want.

Note: If you are responsible for initially installing Spectrum Writer and defining
your input files, also read Chapter 6, "How to Define Your Input Files" and
Chapter 8, "Operating System Considerations."

How This Manual Is Organized

This manual is divided into two major parts.

Part 1 is the User's Guide, which explains in non–technical terms how to produce reports
and PC files with Spectrum Writer. The User's Guide contains over 100 examples of actual
Spectrum Writer runs. It also explains how to define files and setup the JCL needed to
execute Spectrum Writer. Just read the parts of the User's Guide that explain what you need
to do.

Part 2 is the Reference Manual, which provides complete syntax information about each
of the Spectrum Writer control statements. You will only need to refer to this portion of the
manual when you have specific questions about control statement syntax.

Following the Reference Manual is a section titled "Updates to This Manual". Be sure
to file any documentation updates that you receive in this section. And remember to check
this section for the latest features available in your shop's current version of Spectrum
Writer.

The User's Guide and Reference Manual are divided into 9 chapters, plus Appendices and
Index. Following is a brief synopsis of each chapter and appendix.
How to use This Manual 3

How This Manual Is Organized
Chapter 1, "Introduction."
This chapter explains just what Spectrum Writer is, and what it can do to save you time
and effort. Everyone should read this chapter.

Chapter 2, "How to Request a Report."
This chapter is a tutorial on producing custom reports. It is divided into nine easy
lessons. These lessons show you how to write the control statements that tell Spectrum
Writer how to produce a report. Everyone who will be producing reports with
Spectrum Writer should read at least some of the lessons in this chapter.

Chapter 3, "How to Request a PC File."
This chapter is a tutorial on producing PC files from your shop's mainframe data. It is
divided into seven easy lessons. These lessons show you how to write the control
statements that tell Spectrum Writer how to produce a PC file. Everyone who will be
producing PC files with Spectrum Writer should read at least some of the lessons in
this chapter.

Chapter 4, "Beyond the Basics."
This chapter shows how to use of some of Spectrum Writer's more advanced features
to create more complex reports and output files. After you feel comfortable with the
basics, scan the headings and examples in this chapter to get an idea of what else
Spectrum Writer is capable of doing. You may find that you can use Spectrum Writer
to produce reports that you thought were too complicated for a Spectrum Writer.

Chapter 5, "How to Make a Web Report."
This chapter shows how to create custom reports that are specially formatted for
viewing on the Worldwide Web. Web reports can take advantage of many formatting
options not available on mainframe printers. These include such things as custom
fonts, colors, bold, underlined and italicized text, graphics, photographs, and much
more.

Chapter 6, "How to Define Your Input Files."
This chapter shows how to define your company's files to Spectrum Writer. This
one–time setup is necessary before your company's files can be used in reports or PC
files. The analyst or programmer responsible for setting up Spectrum Writer file
definitions should read this chapter.

Chapter 7, "Working with Databases."
This chapter shows how to produce reports and PC files using data from special
databases (instead of standard files). Read this chapter if you will be using Spectrum
Writer with a special database.

Chapter 8, "Operating System Considerations."
This chapter explains what "job control language" (JCL) is necessary to run a
Spectrum Writer job under different operating systems. The analyst or programmer
responsible for setting up the JCL to run Spectrum Writer should read this chapter.

Chapter 9, "General Syntax Rules."
This chapter explains some of the general rules to follow in writing control statements.
For example, it explains: the rules for naming fields; how to split a long control
statement into multiple lines; the rules for writing computational expressions; etc. It is
not necessary to read through this entire chapter. Rather it is intended to be a reference
chapter. Refer to the appropriate section whenever you need help writing a control
statement.
4 Spectrum Writer User’s Guide & Reference Manual

How This Manual Is Organized
Chapter 10, "Control Statement Syntax."
This chapter shows the complete syntax for each of Spectrum Writer's control
statements. It is not necessary to read through this entire chapter. It is also a reference
chapter. Refer to the appropriate section whenever you need help writing a control
statement.

Appendix A, "Data Types."
This appendix lists the types of data that Spectrum Writer supports in input files.

Appendix B, "Display Formats."
This appendix lists the many ways that Spectrum Writer can format data in your
reports and output files.

Appendix C, "Built-In Fields."
This appendix lists Spectrum Writer's built–in fields which are available for use in
your requests.

Appendix D, "Built-In Functions."
This appendix lists Spectrum Writer's built–in functions which are available for use in
the COMPUTE statement.

Appendix E, "Error Indicators."
This appendix lists Spectrum Writer's error indicators (such as ***I***), explains their
meaning, and shows ways that they can be handled.

Appendix F, "Files Used in Examples."
This appendix shows the Spectrum Writer file definitions (and the raw contents) of the
sample files used for the examples in this manual.

Appendix G, "Speed-Up Tips."
This appendix explains various techniques that can be used to optimize Spectrum
Writer's run–time efficiency.

Appendix H, "Sample Data Exit Programs."
This appendix shows a sample data exit program and a sample run that uses it.

Appendix I, "I/O Exits."
This appendix explains how to use I/O Exits for special file processing. It includes a
sample I/O Exit program.

How to use This Manual 5

How This Manual Is Organized
6 Spectrum Writer User’s Guide & Reference Manual

Spectrum Writer User’s Guide & Reference Manual Table of Contents

 How to use This Manual . 3
What Should You Read? . 3
How This Manual Is Organized . 3

 List of Figures . 15

Chapter 1. Introduction . 19
What Is Spectrum Writer? . 20
Create Brand–New Reports in Minutes . 20
Use Mainframe Data in Any PC Program . 21
Create Web Reports and E-Mail Attachments . 22
Create Custom Mainframe Files in Minutes . 22
Ways that Spectrum Writer Benefits You! . 22
Spectrum Writer Pays for Itself Fast! . 24
Spectrum Writer Features . 25

Chapter 2. How to Request a Report . 29
Lesson 1. How to Produce a Report in 5 Minutes . 34

How to Use the INPUT Statement . 34
How to Use the COLUMNS Statement . 35
Another 5–Minute Report Example . 37
Using Your Company's Files . 37

Lesson 2. How to Specify Which Records to Include in Your Report . 40
How to Use the INCLUDEIF Statement . 40
How to Write Conditional Expressions . 40

Lesson 3. How to Create Your Own Fields . 46
Creating Numeric Fields . 46
Creating Character Fields . 48
Assigning Values to Fields Based on Conditions. 50

Lesson 4. How to Make Your Own Report Titles. 53
How to Use the TITLE Statement . 53
More Date and Time Features . 55
How to Align the Title . 55
How to Put File Data in the Title . 55

Lesson 5. Changing the Format of your Report . 58
Using Display Formats . 58
Specifying Column Headings . 60
Specifying a Column's Width . 60
Multiple Overrides . 60

Lesson 6. How to Specify the Report Order . 62
How to Use the SORT Statement . 62
Automatic Sorting. 62

Lesson 7. How to Create Control Breaks . 65
How to Use the BREAK Statement . 65
How to Specify Control Break Spacing . 67
How to Print Statistics at a Control Break . 67
How to Produce Multiple Control Breaks . 69

Lesson 8. How to Create Summary Reports . 73
How to Create a Summary Report . 73
Table of Contents 7

Lesson 9. How to Use Data from More Than One File. 76
How Auxiliary Input Files Are Processed . 76
How to Use the READ Statement. 77
"One-to-Many" Random Reads . 79
How to Use Multiple READ Statements . 79

Chapter 3. How to Request a PC File . 83
Lesson 1. How to Produce a PC File in 5 Minutes . 88

Converting a Whole Mainframe File . 88
Another 5–Minute Example . 90
Using Your Company's Files . 90

Lesson 2. How to Include Only Certain Records In Your PC File . 93
How to Use the INCLUDEIF Statement . 93
How to Write Conditional Expressions . 95

Lesson 3. How to Create Your Own Fields . 98
Creating Numeric Fields . 98
Creating Character Fields . 100
Assigning Values to Fields Based on Conditions. 102

Lesson 4. How to Specify the PC File Order . 105
How to Use the SORT Statement . 105
Automatic Sorting. 105

Lesson 5. How to Create Control Breaks . 108
How to Use the BREAK Statement . 108
Customizing the Control Break . 108

Lesson 6. How to Create Summary Files . 113
How to Create a Summary File. 113

Lesson 7. How to Use Data from More Than One File. 116
How Auxiliary Input Files Are Processed . 116
How to Use the READ Statement. 117
"One-to-Many" Random Reads . 120
How to Use Multiple READ Statements . 120

Chapter 4. Beyond the Basics . 123
Additional Features in the COLUMNS Statement . 125

Writing Print Expressions . 126
How to Change the Column Headings . 130
Special Options Related to Column Headings . 133
How to Change the Width of a Column . 135
How to Change the Way Dates, Times and Numbers Are Formatted . 137
Formatting Tips for International Users . 140
How to Format Data as ASCII . 143
How to Blank Out Repeating Values . 144
How to Change the Justification of Data within a Column . 146
How to Specify Which Columns to Total . 148
How to Produce Multi–Line Reports . 151
How to Change the Report Margins . 154
How to Print Bar Graphs . 154
How to Print Vertical Lines between Report Columns . 156
Including All Fields in the COLUMNS Statement . 158

What If You Run Out of Room? . 160
Why Do I See ****X**** in My Report? . 160
Customizing the Report Titles . 161

How to Include Data from a File in the Title . 161
8 Spectrum Writer User’s Guide & Reference Manual

How to Include the Page Number, Date and Time in a Title . 163
How to Change the Appearance of Items in the Title . 165
How to Split the Title into Left Aligned, Centered, and Right Aligned Parts . 168
Special Options Related to Titles . 175
How to Print "Titles" at the Bottom of Each Page . 175

Customizing the Control Breaks . 177
How to Change the Control Break Spacing . 178
How a Default Total Line Looks . 180
How to Customize the Total Line at a Control Break . 182
How to Suppress the Total Line at a Control Break . 185
How to Customize the Statistical Lines at a Control Break . 186
How to Print Customized Footing Lines at a Control Break . 188
How to Print the Number of Items in a Control Group . 198
How to Print Header Lines at the Beginning of a Control Group . 200

Computing True Percentages and Ratios at Control Breaks . 202
Reports with Multiple Control Breaks . 204
How to Customize the Grand Totals . 207
How to Produce Summary Reports . 209
Printing a "Line Number" in Your Report . 211
How to Create "Top 10" Type Reports . 212
How to Count "Occurrences" in a File . 214
How to Break Totals Down into Categories . 217
How to Make “Crosstab” Reports . 219

A Simple Crosstab Report . 219
Another Crosstab Report . 221

Working With Multiple Input Files . 224
Using Multiple READ Statements for the Same File . 224
How to Chain READ Statements . 226
How to Name the Input File Records . 228
How Missing Records Are Handled . 229
Testing for Missing Records . 230
How I/O Errors Are Handled . 230
Using Generic and KGE Keys . 230
How to Perform "One–to–Many" Reads . 232

Working with "Batched" Input Files . 234
Working With Arrays . 237

Using Normalization to Process Arrays . 237
The NORMALIZE Parm . 240
File Definition Tips for Records with Arrays . 243
Normalizing Nested Arrays . 244
Normalizing Multiple, Non-Nested Arrays . 245
Normalizing only Certain Records . 247
Normalizing an Auxiliary Input File . 248
Normalization Errors . 248

How to Print a Variable Number of Lines Per Input Record . 249
Variable Number of Lines — Strategy 1 . 249
Variable Number of Lines — Strategy 2 . 254
Putting a Variable Number of Items on a Single Line . 257

Creating PC Files from Non-Spectrum Writer Reports . 258
Working with SMF Records . 263
Working with Date Fields . 269
Working with Time Fields . 272
Producing Files for Non-Standard PC Programs . 275
Table of Contents 9

Producing Files for Mainframe Programs . 280
How to "Subset" Mainframe Files . 283
How to Sort Mainframe Files . 283

Computing Percent of Totals . 284
Creating Multiple Reports in a Single Run . 289

Chapter 5. How to Make a Web Report . 293
How to Create a Web Report . 294
Writing Your Own HTML Tags . 296
Experimenting with HTML Tags . 297
Customizing the Web Report's Titles . 298
Customizing the Web Report's Data Columns . 301
Customizing Control Breaks and Grand Totals . 303
Putting Graphics in Your Web Report . 305
Putting Graphics in Your Report Title . 305
Putting Graphics in the Body of Your Report . 306
Putting Graphics at Control Breaks . 308
Putting Hot Links in your Web Report . 308
Using HTML Tables in your Web Report . 312
Using Dynamic HTML Tags . 315
Using the PRESCRIPT and POSTSCRIPT Options . 318
Summary of Options for Web Reports . 320
Common HTML Tags . 321

Chapter 6. How to Define Your Input Files . 325
How to Define a File . 328

How to Use the FILE Statement –– OS/390 . 328
How to Use the FILE Statement –– VSE . 331

How to Define a Field . 333
How to Define a Character Field . 333
How to Define a Numeric Field . 335
Should You Define a Field as Character or Numeric? . 339
How to Define a Date Field . 340
How to Define a Time Field . 344
How to Define a Bit Field . 347
How to Specify a Field’s Column Heading . 350
How to Specify a Field’s Location in a Record . 350
Variably Located Record Segments . 353
How to Define Arrays . 355
How to Specify What File a Field Belongs To . 356
How to Define a Field Created by a Data Exit . 357

Keeping Your File Definitions in a Copy Library . 360
Including the Definition Statements "In–Line" . 360
Using the Spectrum Writer Copy Library . 363
How to Use a Copy Library Alias . 367
Defining One–Time Fields . 368

Using Cobol and Assembler Record Layouts . 369
Live Runs Using Cobol Record Layouts . 370
Live Runs Using Assembler Record Layouts . 372
Handling Date and Time Fields in Record Layouts . 375
How Spectrum Writer Handles Cobol Arrays . 377
Converting Cobol and Assembler Layouts to FIELD Statements . 378
How to Copy Cobol and Assembler Record Layouts from Libraries . 382
10 Spectrum Writer User’s Guide & Reference Manual

Mixing FIELD Statements with COBOL and ASM Statements . 383
The Starting Column of a Cobol or Assembler Layout . 384
The "Default Location" After a Cobol or Assembler Layout . 384
The Scope of the COBOL and ASM Statements . 384
Technical Notes on Cobol Support . 385
Technical Notes on Assembler Support . 387

Chapter 7. Working with Databases . 391
Using Spectrum Writer with DB2 Databases . 392

Using DB2 Data in Reports . 393
Using DB2 Data in PC Programs . 395
What Fields Are in Your DB2 Table? . 397
Using the WHERE Parm . 397
Using the ORDERBY Parm . 399
Using Multiple DB2 Tables . 400
Using Data from Three DB2 Tables . 403
WHERE Parm Syntax . 405
Customizing Your DB2 Fields . 407
Saving DB2 File Definitions . 408
DB2 Setup . 409
DB2 Restrictions . 410

Chapter 8. Operating System Considerations . 411
OS/390 Operating System Considerations . 412

Execution JCL for Reports — OS/390 . 412
DD statements used by Spectrum Writer . 414
Execution JCL for PC and Mainframe Files — OS/390 . 415
Spectrum Writer PROC — OS/390 . 417
Output File Options –– OS/390 . 417
Considerations for Runs with Multiple Outputs — OS/390 . 419
Setting Up File Definitions — OS/390 . 420
Copy Library DD — OS/390 . 423
Input File DDs — OS/390 . 423
Specifying Shop–Wide Options –– OS/390 . 424
Completion Codes –– OS/390 . 425

VSE Operating System Considerations . 425
Execution JCL for Reports — VSE . 427
Execution JCL for PC and Mainframe Files — VSE . 429
Output File Options –– VSE . 431
Input File DLBL/TLBLs –– VSE . 432
The Control Statement Listing — VSE . 433
The EXEC Statement’s SIZE Parm –– VSE . 433
Specifying Sort Work Files — VSE . 434
Considerations for Runs with Multiple Outputs — VSE . 435
Setting Up File Definitions — VSE . 437
Completion Codes –– VSE . 439

Chapter 9. General Syntax Rules . 441
Control Statements . 443

What Is a Control Statement? . 443
How to Write Control Statements . 443
How to Continue a Control Statement Onto Multiple Lines . 444
The Order of Control Statements . 444
How to Put Comments in Your Control Statements . 445
Table of Contents 11

How to Put Page Breaks in the Control Listing . 446
Names of Files, Fields, and Records . 446

Rules for Assigning Names . 446
How to Make Field Names Unique . 447

How to Write Literals . 448
The Five Types of Data . 448
Character Literals . 448
Numeric Literals . 449
Date Literals . 449
Time Literals . 450
Bit Literals . 450
When Do You Need Quotes Around a Number? . 450

PICTURE Display Formats . 451
Examples of PICTUREs . 452
Showing Scaled Numbers with PICTUREs . 453
How PICTUREs Work . 455
Time PICTUREs . 458

Conditional Expressions . 459
How to Specify a Relation Condition . 460
Comparing Character Operands of Different Lengths . 462
Comparing Fields of Different Data Types . 463
Conditions Involving Explicit Literals . 464
How to Specify a Bit Field Condition . 465
How to Specify Multiple Conditions . 465
Conditional Expressions That Use AND . 465
Conditional Expressions That Use OR . 466
Conditional Expressions That Use Both AND and OR . 467
How to Shorten Long Expressions . 468
How to Negate Conditions . 469
Examples of Conditional Expressions . 470

Computational Expressions . 472
Operands in Computational Expressions . 473
Operators in Computational Expressions . 473
Order of Operations . 474
Examples of Computational Expressions . 474

Chapter 10. Control Statement Syntax . 477
Syntax Notation . 478
ASM Statement . 479
BREAK Statement. 481
COBOL Statement. 493
COLUMNS Statement. 498
COMPUTE Statement . 506
COPY Statement . 516
FIELD Statement. 521
FILE Statement . 531
FOOTNOTE Statement . 538
INCLUDEIF Statement . 540
INPUT Statement . 542
NEWOUT Statement. 554
OPTIONS Statement . 555
READ Statement . 578
SORT Statement . 595
12 Spectrum Writer User’s Guide & Reference Manual

TITLE Statement . 602

Appendix A. Data Types . 609
Character Data Types . 609
Numeric Data Types . 610
Date Data Types . 611
Time Data Types . 613
Bit Data Types . 616

Appendix B. Display Formats . 617
Default Display Formats . 618
Display Formats for Any Type of Field . 618
Numeric Display Formats . 619
Date Display Formats . 620
Time Display Formats . 622

Appendix C. Built-In Fields . 624
Character Built–In Fields . 625
Numeric Built-In Fields . 626
Date Built-In Fields . 626
Time Built-In Fields . 627

Appendix D. Built-In Functions . 628
Functions that Return a Character Value . 630
Functions that Return a Numeric Value . 635
Functions that Return a Date Value . 638
Functions that Return a Time Value . 640
Functions that Return a Boolean (or Bit) Value . 642

Appendix E. Error Indicators . 644
Suppressing Error Indicators . 646
Propagation of Error Indicators . 647
Determining if a Field Is In Error . 647

Appendix F. Files Used in Examples . 648
 Sample File Definitions . 648
Sample Files’ Raw Data . 650

Appendix G. Speed-Up Tips . 652
INCLUDEIF Statement . 652
Conditional COMPUTE Statements . 655
Compute Statements with RETAIN . 656
Intermediate Computational Expressions . 657
Intermediate Conditional Expressions . 657
Read Statements with the MULTI parm. 658
Use the STOPWHEN Parm for Non-Keyed Files . 661
Replace an Auxiliary File with a “Table Lookup” . 661
Clearing I/O Areas . 662
Fine-Tuning the Sort . 662
Development Cycle. 663
Using Explicit Literals in Conditional Expressions . 664

Appendix H. Sample Data Exit Programs . 666
Sample Assembler Data Exit Program . 666
Sample Cobol Data Exit Program . 671

Appendix I. I/O Exits . 673
Table of Contents 13

 Updates to This Manual . 689

 Index . 691
14 Spectrum Writer User’s Guide & Reference Manual

Spectrum Writer User’s Guide & Reference Manual List of Figures

Figure 1. Spectrum Writer Control Statements Used for Making Reports . 33
Figure 2. A report produced with just two control statements . 36
Figure 3. An employee directory produced with only two control statements . 38
Figure 4. Using an INCLUDEIF statement to specify which records to include in a report 41
Figure 5. Including records in a report if either of two conditions is true . 43
Figure 6. Using the COMPUTE statement to create numeric fields . 47
Figure 7. Using the COMPUTE statement to create character fields. 49
Figure 8. Assigning values to computed fields based on conditions . 51
Figure 9. Using the TITLE statement to specify your own titles . 54
Figure 10. Using slashes to align the different parts of a title . 56
Figure 11. Using override display formats, column headings and column widths . 59
Figure 12. Using a SORT statement to specify the sort order of a report . 63
Figure 13. Using the BREAK statement to create a control break . 66
Figure 14. A BREAK statement that produces a page break . 68
Figure 15. A report that prints statistical information at control breaks and the Grand Totals 70
Figure 16. A report with two levels of control breaks . 71
Figure 17. Producing a summary report . 74
Figure 18. A report that uses only the primary input file . 78
Figure 19. A report that uses a READ statement to specify an auxiliary input file . 80
Figure 20. A report that uses two READ statements to specify two auxiliary input files 81
Figure 21. Spectrum Writer Control Statements for making PC Files . 87
Figure 22. An Excel spreadsheet containing the entire mainframe SALES-FILE took only 3 statements 89
Figure 23. A Quattro Pro employee directory produced with just three control statements 91
Figure 24. Using an INCLUDEIF statement to specify which records to include in a PC file 94
Figure 25. Using the COMPUTE statement to create numeric fields for a PC file . 99
Figure 26. Using the COMPUTE statement to create character fields for a PC file . 101
Figure 27. Assigning values to computed fields based on conditions . 103
Figure 28. Using a SORT statement to specify the sort order of a PC file . 106
Figure 29. Using the BREAK statement to create a control break with subtotals in a PC file 109
Figure 30. Using FOOTING parms to customize the total row and create blank rows . 111
Figure 31. A Paradox table containing only summary data . 114
Figure 32. A spreadsheet that uses only the primary input file . 118
Figure 33. A spreadsheet that uses a READ statement to specify an auxiliary input file 119
Figure 34. A spreadsheet that uses two READ statements to specify two auxiliary input files 121
Figure 35. Using spacing factors and literal texts in the COLUMN statement . 127
Figure 36. Specifying your own column headings . 131
Figure 37. Specifying the width of report columns . 136
Figure 38. Customizing the way dates and numbers are formatted in a report . 138
Figure 39. A report with international formatting options . 142
Figure 40. A report that blanks out repeating values . 145
Figure 41. Specifying how to justify data within the report columns . 147
Figure 42. Specifying which columns to total . 149
Figure 43. Using multiple COLUMN statements to print multi-line reports . 152
Figure 44. A report with a bar graph column . 155
Figure 45. A report with vertical lines separating the columns . 157
Figure 46. A report title that includes data from a file . 162
Figure 47. A title that shows the current day of the week, date, time and page number 164
List of Figures 15

Figure 48. Using width, display format and justification parms in the title . 166
Figure 49. A report with left and right title parts . 170
Figure 50. A report with left, center, and right title parts . 171
Figure 51. Titles with the date, 24-hour time, and page number on the left side of the report 172
Figure 52. A title with date (spelled out), time, and page number on the right side of report 174
Figure 53. Using the FOOTNOTE statement to add footnotes to a report . 176
Figure 54. A BREAK statement that requests a page break and resets the page number 179
Figure 55. A report with a customized total line at the control breaks . 183
Figure 56. A report that prints statistical lines (average, maximum, minimum) at control breaks 187
Figure 57. Using the FOOTING parm to print a customized line at a control break . 190
Figure 58. A report which prints a field’s average value in a footing line . 195
Figure 59. Printing a field’s total, average, and maximum values on a single line . 197
Figure 60. A report that prints the number of items in a control group . 199
Figure 61. A report that prints control group headings . 201
Figure 62. Using the DIVTOTS parm to get accurate percentages at control breaks . 203
Figure 63. A report with two levels of control breaks . 205
Figure 64. A report with customized Grand Totals . 208
Figure 65. A summary report that uses two levels of control breaks . 210
Figure 66. “Top 3 Sales in Region” report . 213
Figure 67. Counting how many times various values occur in a file . 215
Figure 68. Breaking down “count” statistics further . 216
Figure 69. Subtotaling fields by a category (such as gender) . 218
Figure 70. A Simple Crosstab Report . 220
Figure 71. Another sample crosstab report . 222
Figure 72. Control statements to produce the crosstab report on page 222 . 223
Figure 73. A report with multiple READ statements for the same file . 225
Figure 74. A report with chained READ statements . 227
Figure 75. A "one-to-many" report using the MULTI parm in a READ statement . 233
Figure 76. An "batched" input file (with header and detail records) and its definition statements 235
Figure 77. A PC file produced from a batched input file (with header and details records) 236
Figure 78. SALES-HISTORY file containing an array . 238
Figure 79. Normalizing the SALES-HISTORY file . 239
Figure 80. A report that uses normalization to process an array . 241
Figure 35. A sample file containing sales data for up to 6 sales per record . 250
Figure 36. A report with “no strategy” to deal with unused array items . 251
Figure 37. Strategy 1 — just add the SKIPZERODET option . 252
Figure 38. Adding literal identifiers to variable lines . 256
Figure 39. A typical mainframe report that has been written to a disk file . 259
Figure 40. Spectrum Writer statements to define the “report file” shown above . 259
Figure 41. Creating a Lotus 1-2-3 spreadsheet from a mainframe report . 261
Figure 42. File definition of selected fields in SMF type 30 records . 264
Figure 43. SMF “Daily ABEND” report . 267
Figure 44. SMF “TSO Sessions” report . 268
Figure 45. A standard comma-delimited PC File . 277
Figure 46. An output file created with the MAINFRAME option . 281
Figure 47. This step adds "region total records" to the file, and also creates a special sort key 285
Figure 48. Sorting the temporary dataset so that the regional totals come before the detail data 287
Figure 49. A report with "percent of total" columns . 288
Figure 35. A basic Web report (viewed on Microsoft’s Internet Explorer) . 295
Figure 36. A Web report with customized titles . 299
Figure 37. A Web report with two bold columns . 302
Figure 38. A Web report with customized total lines . 304
16 Spectrum Writer User’s Guide & Reference Manual

Figure 39. A Web report containing graphics in the title and body . 307
Figure 40. Control statements used to create a Web report with “hot links” . 309
Figure 41. Two screens from a Web report with “hot links” . 310
Figure 42. the HTML output file for a Web report with “hot links” . 311
Figure 43. A Web report that uses “tables” . 312
Figure 44. Control statements used to create a Web report with “tables” . 313
Figure 45. HTML file for a Web report with "tables" . 314
Figure 46. A Web report that uses dynamic HTML tags . 317
Figure 47. HTML file with dynamic HTML tags . 318
Figure 48. A sample Spectrum Writer file definition . 327
Figure 49. A report with FIELD statements that define character fields . 334
Figure 50. A report with FIELD statements that define numeric fields . 336
Figure 51. A report with FIELD statements that define date fields . 342
Figure 52. A report with FIELD statements that define time fields . 345
Figure 53. A report with FIELD statements that define bit fields . 348
Figure 54. Different ways to define an array depending on how it will be processed 356
Figure 55. A Spectrum Writer report that does not use a copy library — OS/390 . 361
Figure 56. A Spectrum Writer report that does not use a copy library — VSE . 362
Figure 57. A report which uses Spectrum Writer’s Copy Library — OS/390 . 365
Figure 58. A report which uses Spectrum Writer’s Copy Library — VSE . 366
Figure 59. A report produced using a Cobol record layout . 371
Figure 60. A report produced using an Assembler record layout . 373
Figure 61. Creating true date and time fields from a Cobol layout . 376
Figure 62. Converting a Cobol record layout to Spectrum Writer FIELD statements . 380
Figure 63. A Spectrum Writer DB2 report . 394
Figure 64. Using DB2 data in a Lotus 1-2-3 spreadsheet . 396
Figure 65. Using the WHERE and ORDERBY parms . 398
Figure 66. A report that uses data from two different DB2 tables . 402
Figure 67. A report that uses data from three different DB2 tables . 404
Figure 68. Sample Spectrum WriterSpectrum Writer JCL for reports - OS/390 . 413
Figure 69. Sample Spectrum Writer JCL for PC and Mainframe files — OS/390 . 416
Figure 70. Sample Spectrum Writer JCL for reports — VSE . 428
Figure 71. Sample Spectrum Writer JCL for PC and Mainframe files — VSE . 430
Figure 72. A report that uses a data exit program . 667
Figure 73. Sample Data Exit Program Written in Assembly Language . 668
List of Figures 17

18 Spectrum Writer User’s Guide & Reference Manual

Spectrum Writer User’s GuidePart 1.
User’s Guide

Chapter 1. Introduction

Chapter Table of Contents

Chapter 1. Introduction . 19

What Is Spectrum Writer? . 20
Create Brand–New Reports in Minutes . 20
Use Mainframe Data in Any PC Program . 21
Create Web Reports and E-Mail Attachments . 22
Create Custom Mainframe Files in Minutes . 22
Ways that Spectrum Writer Benefits You! . 22
Spectrum Writer Pays for Itself Fast! . 24
Spectrum Writer Features . 25
Chapter 1. Introduction 19

Chapter 1. Introduction

What Is Spectrum Writer?

Spectrum Writer is three powerful programs in one.

! It's an easy–to–use, full function 4GL report writer.

! It's a powerful PC–format utility. Use its 4GL language to easily turn any
mainframe data into PC files for use in all popular PC programs. Or create HTML
files to display reports on web sites, or to send as e-mail attachments.

! It's also a mainframe file formatting utility. It's 4GL language lets you easily
create your own custom mainframe output files.

 Create Brand–New Reports in Minutes
?

Spectrum Writer makes it easy to produce custom reports from your company's existing
files.

Programmer productivity increases dramatically with Spectrum Writer. To produce a
new report without Spectrum Writer, a programmer has to write a new program in a
language such as COBOL. The programmer must code all of the I/O routines, the selection
logic, the computations, summarization, sorting, formatting, page breaks, titles, column

Spectrum
Writer

Custom reports, queries and one-time analyses

Mainframe files
20 Spectrum Writer User’s Guide

Create Brand–New Reports in Minutes
headings, etc. The process of coding, testing, and debugging takes many days, if not weeks.
Then there's the whole cycle all over again when the users need "a few minor changes".

The easy alternative is to use Spectrum Writer. With Spectrum Writer, you no longer need
to write detailed programming instructions. You simply describe the desired report to
Spectrum Writer with a few simple control statements (much like SQL allows you to do
with DB2 data). In fact, you can produce a complete report with Spectrum Writer using only
two statements. Try that with COBOL! Add a few more statements and you can produce
more complex reports.

With Spectrum Writer you'll have your results in minutes, instead of days or weeks. And
if you need to change something later, modifications are a snap with Spectrum Writer.

Spectrum Writer also lets end users get the information they need with less intervention
from programmers. Set up a model report for the users once — then let them modify and
submit it over and over. If new selection criteria are needed in a report, or a different sort
order or different title is wanted, they can make the changes themselves, without taking up
a programmer's time at all. The end users get their results faster, and the programming staff
has fewer interruptions. Everyone benefits with Spectrum Writer.

Create Brand–New Reports in MinutesUse Mainframe Data in Any PC Program

Spectrum Writer's PC–formatting feature makes it easier than ever to use mainframe data
in your favorite PC programs (such as Excel, Lotus 1–2–3, Access and Paradox, among
many others).

Spectrum Writer is a great help for the PC users in your shop. Are users at your company
manually keying data from mainframe reports into PC spreadsheets or databases? That's a

Spectrum
Writer

PC spreadsheets, databases and Web reports

Mainframe files
Chapter 1. Introduction 21

Use Mainframe Data in Any PC Program
tedious, time–consuming process that is highly prone to errors. Spectrum Writer lets you
give accurate mainframe data to your PC users in a format that's especially designed for
their PC program. A few keystrokes is all it takes to "import" the data into their PC
program. That means they can begin productive work right away.

Just moving data from the mainframe to a PC is easy. But being able to use that data in your
PC software, easily and efficiently, is another matter. That's where Spectrum Writer comes
in.

Spectrum Writer lets you use "non–PC compatible" mainframe data in your PC. This
includes such things as bit fields, Julian dates, packed numbers, binary numbers,
hexadecimal fields, etc. PC programs can't handle such data, but Spectrum Writer
reformats these fields into standard ASCII data that your PC program can use.

Spectrum Writer lets you choose the PC program you prefer. Spectrum Writer knows the
quirks of various PC program and automatically formats the data appropriately.

Use Mainframe Data in Any PC ProgramCreate Web Reports and E-Mail Attachments

Spectrum Writer can create your report in HTML format. Perfect for uploading to Web sites
for easy Intranet or Internet viewing. Or attach the HTML report to an e-mail and send it
instantly to whomever you like. You can even customize your HTML file to include special
formatting, custom fonts, graphics, hyperlinks and more.

Use Mainframe Data in Any PC ProgramCreate Custom Mainframe Files in Minutes

Spectrum Writer creates mainframe output files just as easily as PC files. Use its 4GL
language to: select the input records you want; combine data from multiple input files;
optionally summarize data; sort data; etc. Then have Spectrum Writer write out the desired
data in any format you choose. Use Spectrum Writer to easily convert binary fields to
packed fields (or vice versa), to reformat date fields (perhaps changing YY dates to YYYY
dates), etc. Add new computed fields to your output; or eliminate unneeded fields. You'll
find a thousand and one uses for custom mainframe files once you see how easy it is to
create them.

Ways that Spectrum Writer Benefits You!

Here are a few examples of the ways that Spectrum Writer's custom reports, PC files and
mainframe files will:

! make you more productive!

! delight your end–users!

! impress your boss!

Easily Make Quality Production Reports
The reports produced by Spectrum Writer look every bit as professional as those produced
by individual report programs. Titles are perfectly centered, or flush with the report
margins. Column headings are neatly aligned above the data, and underlined. At control
22 Spectrum Writer User’s Guide

Ways that Spectrum Writer Benefits You!
breaks, totals are aligned under the numeric columns, with the name of the break field
clearly identified, etc. This attention to detail means you can use Spectrum Writer to
quickly produce your regular production reports. Its usefulness is not limited to just ad hoc
reports.

Fast One–Time Queries
Spectrum Writer is also great for those frequent requests for "one–shot" runs. Now you'll
be able to satisfy requests that there just wasn't time for without Spectrum Writer. You'll
wonder how you ever got along without it.

Provide Reports for CICS Systems
Spectrum Writer is ideal for handling the batch reporting side of online CICS applications.
Use your CICS system for online inquiries and updates. Use Spectrum Writer to produce
production reports and custom queries from that system.

Save Money on Special Analyses
Without Spectrum Writer, what happens when a special study is needed? Someone
probably ends up manually going through the "closest" existing report, copying the needed
data onto paper or into a spreadsheet, performing manual calculations, etc. With Spectrum
Writer, you can quickly deliver the exact report that's needed and reduce the amount of
expensive manual effort required.

Reduce Your CPU Usage
Some programming tools are real "CPU Hogs." No wonder many systems programmers
hesitate to let programmers develop new applications using them. But, because Spectrum
Writer is written entirely in efficient assembly language, its reports run amazingly fast.

In many cases, there is no significant difference between Spectrum Writer's run time, and
the run time of a COBOL program written to produce the same report. And when you
consider the CPU cycles saved in development (fewer compiles, test runs, debugging, etc.),
Spectrum Writer can actually lighten the load on your CPU.

Delight Your PC End–Users
When the users would really prefer to manipulate the mainframe data themselves,
Spectrum Writer allows you to give it to them in PC format. The users can then process the
mainframe data however they like in their spreadsheet, database or word processing
program. And the programmers can get back to programming.

Spectrum Writer delights PC users with many exciting new possibilities. With mainframe
data in their PCs, they'll be able to:

! perform "what if" calculations in PC spreadsheets

! maintain their own PC database, for personal access or network use

! print high quality charts

! create color graphics, overhead transparencies and slides for fabulous
presentations

Spectrum Writer's PC files also make it easy for you to provide mainframe data to people
without access to your mainframe. Copy the PC file to a diskette and send it to other
departments in your company. Or, mail it to your offices around the world.
Chapter 1. Introduction 23

Ways that Spectrum Writer Benefits You!
Perfect for Downsizing Applications
Use Spectrum Writer for one–time file conversions needed when downsizing mainframe
applications to run on PC systems. Spectrum Writer converts the packed, binary, and bit
fields to the kind of ASCII data that is needed on the PC system.

Reduce PC Download Time and Hard Disk Usage
Spectrum Writer reduces download time and hard disk usage by letting you download only
the data you actually need (not the entire mainframe file). Why waste time and PC storage
downloading records and fields that won't even be used?

Some PC–based products require you to download entire reports to the PC. Then, the PC
program must process the entire, gigantic report just to extract the few lines of data that the
PC user might actually need. Spectrum Writer lets you do the extraction on the mainframe,
before you download the data.

Save Wasted Employee Time Caused by Slow PC Processing
Spectrum Writer eliminates much needless PC processing by moving that processing from
the PC to the mainframe. Don’t bother with slow PC sorts. Let your mainframe perform
the sort for you at mainframe speed. Then download the sorted file. Instead of summarizing
data in your PC, let Spectrum Writer summarize it on the mainframe. Then just download
the small summary file to your PC. Why merge data from multiple files on your PC, where
disk I/O is slow? Use Spectrum Writer to combine data from multiple mainframe files (or
DB2 tables) into a single file before you download it to the PC.

Ways that Spectrum Writer Benefits You!Spectrum Writer Pays for Itself Fast!

Spectrum Writer quickly pays its own way in a shop— maybe even the first time you use it!

Spectrum Writer greatly increases programmers' productivity. It slashes the programming
effort required to create reports and PC files by as much as 90%. That means more
completed projects, in less time, without an increase in staff. And if Spectrum Writer
eliminates the need, even once, to bring in contract programmers to help overburdened
staff with a project— you could recover its cost on that one project.

Spectrum Writer also increases the productivity of your PC users. If they are manually
entering data now, the time savings will be enormous. But even if you have an existing
download application, Spectrum Writer reduces the "dead–time" associated with it. You'll
eliminate the wasted time spent downloading unnecessary data. And you'll shift much of
the slower processing from the PC back up to the mainframe. You'll recover all the
productivity your shop is losing every day to idle time when PC users are just waiting on
their PCs. And with Spectrum Writer, there are no expensive PC components to purchase
and maintain. All you need is Spectrum Writer and your existing file transfer facility.

Add together the cumulative value of the hours saved by the programming staff and your
end–users. You'll see that it won't take long to recoup your modest investment in Spectrum
Writer.
24 Spectrum Writer User’s Guide

Spectrum Writer Pays for Itself Fast!
Spectrum Writer Pays for Itself Fast!Spectrum Writer Features

Here are some of Spectrum Writer's major features:

! control statements use an easy, free format, English–like syntax that's easily
learned by non–technical users

! user–friendly field names can be up to 70 characters long (unlike some report
writers that restrict you to 8–byte names). This allows full compatibility with
existing COBOL, PL/1 and Assembler data names.

! you can easily combine data from flat files, VSAM files and DB2 tables

! use your existing COBOL or Assembler record layouts instead of creating a data
dictionary. Or, use Spectrum Writer's simple data dictionary for added
functionality.

! no data definition required for DB2 tables — Spectrum Writer accesses the
definition from your DB2 system

! automatically creates Web reports for viewing on Web browsers

! produces efficient internal machine code that is easy on your CPU

! can produce multiple reports (or output files) in a single pass of the input file

! produces output files for mainframe or Unix applications

! report lines are not limited to only 132 characters. Spectrum Writer can format a
report as wide as your laser printer supports.

! automatically prints bar graphs

0

2

4

6

8

10

12

1 2 3 4 5

Months Until Payback
Based on Number of Users

1-2 Users 3-4 Users 7-8 Users5-6 Users 9+ Users

Conservative Assumptions Used: Group 38 MVS CPU; salary and benefits total
$50/hour; used 3 hours per w eek per employee; development time is half that of COBOL.

Conservative assumptions Used: Group 38 CPU; employee salary and benefits
total $85/hour; used 10 hours per week; development time is half that of COBOL.
Chapter 1. Introduction 25

Spectrum Writer Features
! ability to print full–page forms

! ability to skip to a new physical sheet of paper at control breaks (not just the next
"page")

! has a logical default for every aspect of the report, from the report titles, to how
to format numeric fields, to the layout of the Grand Total line

! allows complete control over formatting of numeric fields, including handling of
special cases like telephone numbers, social security numbers, etc.

! formats dates in over 40 ways, including MM/DD/YY, DD/MM/YY, MM/DD/YYYY, etc.
Or, with the month name spelled out, or abbreviated, and many more.

! has special numeric, date and time formatting options for international users

! allows complete control over report titles, column headings, and footnotes

! has a "forgiving" error philosophy which produces as much output as it reliably
can, even when minor errors are encountered.

! has thorough, clear documentation, including a User's Guide in non–technical
language for end–users

! validity–checks numeric data before processing it, to prevent S0C7 abends

! ability to display file data in hexadecimal format, for analyzing invalid data

! translates fields from EBCDIC to ASCII and vice verse

! supports full "boolean logic" (the use of AND, OR and NOT) in conditional
expressions

! ability to scan free format fields, to see if a certain text appears anywhere within
the field

! comparisons and computations are allowed among all numeric fields, (even if
some are packed, some are binary, and others are character, etc.)

! comparisons are allowed among all date fields (even if some are Julian and some
are Gregorian, some packed, others character, etc.)

! supports dates with 2–digit or 4–digit years

! supports century windowing for dates with 2–digit years

! supports every imaginable type of mainframe data, including over 30 kinds of
date fields, and over 20 kinds of time fields.

! you can create your own new fields, optionally using different formulas
depending on one or more conditions

! full mathematical calculations are supported when creating new fields, including
the use of many built–in functions

! supports a full range of functions to manipulate string data, including powerful
parsing features

! "compress" formatting features lets you, for example, compress separate city,
state and ZIP fields into a normal formatted line format
26 Spectrum Writer User’s Guide

Spectrum Writer Features
! lets you use data from existing mainframe reports (rather than mainframe files)
in PC programs

! handles complicated record layouts, including variably–located fields, fields
located by pointer or pointer expressions, etc.

! supports records that contain arrays with varying number of entries

! lets you specify your own spreadsheet column headings, or use defaults

! easily summarizes data

! automatically computes statistics (such as total, average, maximum, minimum)

! allows an unlimited number of input files for a single report or PC file

! allows an unlimited number of control breaks

! allows an unlimited number of print lines per input record

! allows complete customization of control breaks

! allows complete customization of Grand Totals at end of report

! built–in fields provide the system date, time, jobname, etc.

! special features for speedy report development, such as limiting the number of
records processed, or the number of report lines printed

! can limit input files to a certain key range to eliminate unnecessary I/O

! can halt input processing when a user-defined condition is met, to eliminate
unnecessary I/O

! user exit interfaces for any special data handling required at the field level or
record level

! user I/O exit interface allows access to files that use non-standard access methods

! prints end of job statistics, such as how many records read from each input file,
and how many records included in report
Chapter 1. Introduction 27

28 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 2. How to Request a Report

Chapter Table of Contents

Chapter 2. How to Request a Report . 29

Lesson 1. How to Produce a Report in 5 Minutes . 34
How to Use the INPUT Statement . 34
How to Use the COLUMNS Statement . 35
Another 5–Minute Report Example . 37
Using Your Company's Files . 37

Lesson 2. How to Specify Which Records to Include in Your Report . 40
How to Use the INCLUDEIF Statement . 40
How to Write Conditional Expressions . 40

Lesson 3. How to Create Your Own Fields . 46
Creating Numeric Fields . 46
Creating Character Fields . 48
Assigning Values to Fields Based on Conditions. 50

Lesson 4. How to Make Your Own Report Titles. 53
How to Use the TITLE Statement . 53
More Date and Time Features . 55
How to Align the Title . 55
How to Put File Data in the Title . 55

Lesson 5. Changing the Format of your Report . 58
Using Display Formats . 58
Specifying Column Headings . 60
Specifying a Column's Width . 60
Multiple Overrides . 60

Lesson 6. How to Specify the Report Order . 62
How to Use the SORT Statement . 62
Automatic Sorting. 62

Lesson 7. How to Create Control Breaks . 65
How to Use the BREAK Statement . 65
How to Specify Control Break Spacing . 67
How to Print Statistics at a Control Break . 67
How to Produce Multiple Control Breaks . 69

Lesson 8. How to Create Summary Reports . 73
How to Create a Summary Report . 73

Lesson 9. How to Use Data from More Than One File. 76
How Auxiliary Input Files Are Processed . 76
How to Use the READ Statement. 77
"One-to-Many" Random Reads . 79
How to Use Multiple READ Statements . 79
Chapter 2. How to Request a Report 29

Chapter 2. How to Request a Report

How to Request a Report This chapter teaches you how to use Spectrum Writer control statements to request custom
reports.

Spectrum Writer's language is non–procedural, which means you just describe the result
you want, not the programming steps needed to do it. That means you can produce new
reports in a matter of minutes, rather than days or weeks.

Describe your new report with a few simple "control statements". You can create a report
with just two control statements. For example:

INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

The above statements are all that is needed to produce a complete report with Spectrum
Writer. (See Figure 2 on page 36.)

The box on page 33 lists all of the Spectrum Writer control statements, and tells you which
aspect of the report each one deals with. The lessons in this chapter illustrate how to use
these control statements.

Once you've written the necessary control statements, submit a batch job to execute
Spectrum Writer. Spectrum Writer examines the control statements describing the report
you want. It also automatically reads the appropriate "file definition" statements stored in
a copy library. (These statements define the input files needed for your report.) Spectrum
Writer then accesses the input file(s) and prepares the desired report.
30 Spectrum Writer User’s Guide

How to Request a Report
Custom
Reports

File Definition
Statements

Input Files
(Raw Data)

INPUT: SALES FILE
COLUMNS: REGION EMPL-NAME

FILE: SALES-FILE DDNAME(SALEFILE)
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)

JONES.....036NORTH9770010250.37950415TOY T
JONES.....036NORTH9460121760.37950415TOY T
JOHNSON...039NORTH9260234450.36950401F7 GR

Spectrum Writer

Control
Statements
Chapter 2. How to Request a Report 31

How to Request a Report
The remainder of this chapter is divided into nine easy lessons that explain how to use
Spectrum Writer's control statements to create custom reports. After reading just the first
lesson, you will be able to produce useful reports with Spectrum Writer. The other lessons
introduce additional control statements, and explain their roles in producing increasingly
sophisticated reports. It is not necessary to read all of the other lessons initially. Nor is it
necessary to read the lessons in sequential order. Read the summaries below and decide
which lessons you need for the kind of reports you want to produce.

Lesson 1. How to Produce a Report in 5 Minutes.
This lesson shows how to produce reports using just two simple control
statements — the INPUT and the COLUMNS statements. You will use these
two statements for almost every report you request.

Lesson 2. How to Specify Which Records to Include in Your Report.
This lesson shows how to use the INCLUDEIF statement to select which
records will appear in your report.

Lesson 3. How to Create Your Own Fields.
This lesson shows you how to create your own fields by performing
computations on existing fields. This is done with the COMPUTE statement.

Lesson 4. How to Make Your Own Report Titles.
This lesson introduces the TITLE statement, and shows how you can specify
your own report titles.

Lesson 5. Changing the Format of your Report.
This lesson shows how you can customize the appearance of your report.
It introduces some of the parms available in the COLUMNS statement. These
parms let you change: column headings; column width; and the way dates
and numbers are formatted.

Lesson 6. How to Specify the Report Order.
This lesson shows how to sort your reports into whatever order you want.
The use of the SORT statement is explained.

Lesson 7. How to Create Control Breaks.
This lesson shows how to break a report up into sections, printing subtotals
for each section. The use of the BREAK statement to request such "control
breaks" is explained

Lesson 8. How to Create Summary Reports.
This lesson shows you how to turn a report with subtotals into a "summary
report."

Lesson 9. How to Use Data from More Than One File.
This lesson shows how easy it is to read records from additional files when
producing a report. By adding a single READ statement, you automatically
have access to all of the fields from an additional file.

Keep in mind that these lessons show you the most common use of each control statement.
Most control statements also have additional features that are not discussed in these
lessons. Additional ways to use these control statements are discussed in Chapter 4,
"Beyond the Basics." The complete syntax for each control statement is shown in
Chapter 10, "Control Statement Syntax."
32 Spectrum Writer User’s Guide

How to Request a Report
SPECTRUM WRITER CONTROL STATEMENTS
(GROUPED BY FUNCTION)

Statements that Define How Input Data Looks
FILE Defines a file
FIELD Defines a field within a file
ASM Defines a file using an Assembler record layout
COBOL Defines a file using a Cobol record layout
COMPUTE Computes a new user-defined field

Statements that Specify the Input Files to Use for a Report
INPUT Specifies the primary input file
READ Specifies an auxiliary input file

Statements that Describe the Body of a Report
INCLUDEIF Specifies which input records to include in the report
COLUMNS Specifies the report columns and column headings
TITLE Specifies the report titles
FOOTNOTE Specifies footnotes at the bottom of each page

Statements that Define the Report Order and Control Breaks
SORT Specifies report order and, optionally, specifies control break fields
BREAK Specifies control break processing

Miscellaneous Statements
OPTIONS Specifies various special options, such as double spacing, or

summary reports
NEWOUT Indicates that subsequent statements will define a new report
COPY Copies additional control statements for processing

Figure 1. Spectrum Writer Control Statements Used for Making Reports
Chapter 2. How to Request a Report 33

Lesson 1. How to Produce a Report
in 5 Minutes

This lesson teaches you how to produce a complete report using just two simple control
statements. These statements are:

! the INPUT statement
! the COLUMNS statement

You only need these two statements to create a report with Spectrum Writer. For example:
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

Figure 2 shows a report created with just these two statements.

How to Use the INPUT Statement

Your company probably has many files stored on its disk drives and magnetic tapes. For
example, the personnel department of your company probably has an employee file,
containing information about each employee. The accounting department probably has
numerous files, such as an accounts receivable file, an accounts payable file, etc. A sales
department might have a sales file, with information about sales that have been made, and
so forth.

The very first step in requesting a report is to tell Spectrum Writer which one of your
company's files has the data needed for your report. Use the INPUT statement to do this. For
example:

INPUT: SALES–FILE

The above statement tells Spectrum Writer that you want to use a file named SALES–FILE
as the input for your report. SALES–FILE is a sample file that we will use for many examples
in this manual. The SALES–FILE contains information about the sales made by the
employees of an imaginary company. Each record in this file contains data about one sale.

All Spectrum Writer control statements begin in column 1 with the name of the statement
(for example, INPUT), followed immediately by a colon. What follows next will depend on
the particular control statement involved. With an INPUT statement, you simply put the
name of the file to be used as the input for the report. In the above example, we named the
SALES-FILE.
34 Spectrum Writer User’s Guide

Lesson 1. How to Produce a Report in 5 Minutes
How to Use the COLUMNS Statement

After identifying the input file to use, the next step is to tell Spectrum Writer which fields
from that file you want to see in your report. Use the COLUMNS statement to do that. Each
field named in this statement will appear as one column of data in the report. For example:

INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

The COLUMNS statement above tells Spectrum Writer that we want columns in our report
that show the sales region, the employee name, the sales date, the sales time, the customer's
name, the amount of the sale, and the tax amount.

Note: Normally, reports are a maximum of 132 characters wide. You probably
won't be able to fit all of a file's fields into that much space. Decide, then, which
fields you need to see in your particular report, and put them in the COLUMNS
statement. You may specify as many fields as there is room for in the report.

With just the two statements shown above, we have given Spectrum Writer everything it
needs to produce a report. The report produced is shown in Figure 2.

You now see how easy it is to produce reports with Spectrum Writer. With just two simple
statements we have produced an attractive report that has:

! a default title containing the name of the input file, as well as the date, time, day
of the week, and page number

! the columns of data that we requested, appearing in the same order as we
requested

! neat, underlined column headings identifying each column of data
! date, time and numeric fields that are properly formatted
! a Grand Totals line which shows totals for each of the numeric columns
! an item count, showing the number of records printed in the report
Chapter 2. How to Request a Report 35

Lesson 1. How to Produce a Report in 5 Minutes
Figure 2. A report produced with just two control statements

Remarks:
• this report was produced from just two statements: the INPUT and the COLUMNS statements
• the data used in this report comes from the SALES-FILE
• the seven columns of data in the report correspond to the field names in the COLUMNS statement
• the default column headings used are the field names themselves, broken apart at each dash
• the report has a default title which includes the name of the input file
• the report has a Grand Total line showing totals for the two numeric columns
• the number of items listed in the report is shown
• the JCL used to produce this report is shown on page 413 (OS/390) or page 428 (VSE)

These Control Statements:

INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:
TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
36 Spectrum Writer User’s Guide

Lesson 1. How to Produce a Report in 5 Minutes
Another 5–Minute Report Example

Now let's make another report, this time using a different input file. This time we will
request a report from the EMPL–FILE. That's a sample employee file. We will print a simple
employee directory from this file. We want the report to have columns showing employee
number, last name, first name, sex, social security number, date hired, and their city and
state. We only need the following two statements:

INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

The INPUT statement above specifies that the input file for our report will be the employee
file (EMPL–FILE). The COLUMNS statement specifies the columns of data we want our report
to have. Notice that we needed two lines for the COLUMNS statement in this example. You
can continue a control statement onto as many lines as you like. Just leave at least 1 blank
space at the beginning of each continuation line.

The report produced by the above statements is shown in Figure 3.

You have now seen two examples showing just how easy it is to request a report with
Spectrum Writer. That's all there is to it! You now know enough to request basic reports
from the files at your company. Just specify the file you wish to use in your report with an
INPUT statement. And then specify the fields that you want to see in the report with a
COLUMNS statement.

Using Your Company's Files

You may be wondering how Spectrum Writer knows the names of your company's files
and fields. The answer is that your company's files are defined to Spectrum Writer by other
control statements that are kept in a Spectrum Writer "copy library." For example, the
statements used to define the sample files used in the preceding examples are shown in
Appendix F, "Files Used in Examples" (page 648).

For a list of the file names and field names available for you to use, ask your programmer.
They can print that information from the Spectrum Writer Copy Library, in a format similar
to that shown in Appendix F.

If you already know the name of the file to use, you can use a "dummy" run to easily get a
list of all of its fields. Just use an INPUT statement with the SHOWFLDS(YES) parm, like this:

INPUT: SALES–FILE SHOWFLDS(YES)

The above statement tells Spectrum Writer to print (in the control statement listing) a list
of all of the fields defined for the SALES–FILE.

If a file that you need to use has not yet been defined, see Chapter 6, "How to Define Your
Input Files" for information on doing that.
Chapter 2. How to Request a Report 37

Lesson 1. How to Produce a Report in 5 Minutes
Figure 3. An employee directory produced with only two control statements

Remarks:
• the INPUT statement names the EMPL–FILE as the input file for this report
• the COLUMNS statement specifies which fields to print as columns in the report
• notice that we split the COLUMNS statement onto two lines, with the "continued" line beginning with

at least one blank space

These Control Statements:

INPUT: EMPL-FILE
COLUMNS: EMPL-NUM LAST-NAME FIRST-NAME SEX SOCIAL–SEC–NUM
 HIRE-DATE CITY STATE

Produce this Report:

TUE 05/16/95 8:29 AM DATA FROM EMPL-FILE PAGE 1

 SOCIAL
EMPL LAST FIRST SEC HIRE
NUM NAME NAME SEX NUM DATE CITY STATE

036 JONES JERRY M 012-09-8765 01/31/80 SAN FRANCISCO CA
037 JOHNSON THOMAS M 912-04-0334 06/21/75 SCOTTSDALE AZ
039 JOHNSON LINDA F 004-77-9981 11/25/79 SANTA ROSA CA
040 MACDONALD RICHARD M 889-79-0013 07/04/82 PLEASANTON CA
041 SIMPSON TIMOTHY M 112-05-0456 12/01/82 ARCADIA CA
042 MORRISON MICHAEL M 900-12-0556 11/30/79 GLENDALE CA
043 CHRISTOPHERSON MELISSA F 415-09-0761 08/15/81 PHOENIX AZ
044 BAKER VIVIAN F 878-19-0156 06/04/82 WALNUT CREEK CA
045 THOMAS MARTIN M 776-83-8221 06/04/82 CONCORD CA

*** GRAND TOTAL(9 ITEMS)
38 Spectrum Writer User’s Guide

Lesson 1. How to Produce a Report in 5 Minutes
Summary
Here is a summary of what we learned in this lesson:

! an INPUT statement is needed to tell Spectrum Writer which input file to use for
a particular report

! a COLUMNS statement is needed to tell Spectrum Writer what columns of data to
print in your report

! by using just these two statements you can produce a complete report

The next lesson will teach you how to limit the records that are included in your report.

To Learn More
To learn more about writing control statements in general, see Chapter 9, "General Syntax
Rules." In that chapter you will learn such things as:

! how long each control statement can be (page 443)

! how to continue control statements onto multiple lines (page 444)

There are some additional features associated with the INPUT and COLUMNS statements
which we have not covered in this lesson. Some of these additional features are discussed
in Lesson 5, "Changing the Format of your Report" (page 58). Other topics are discussed
in Chapter 4, "Beyond the Basics." Some additional features are:

! how to specify your own column headings for a report (page 60 and page 130)

! how to make a column in the report wider or narrower (page 60 and page 135)

! how to change the way that numbers, dates and times are formatted in your
report (page 58 and page 137)

! how to make a report column that contains a literal text (page 126)

! how to specify the number of spaces to leave between columns in your report
(page 128)

! how to specify which numeric columns to include in the Grand Totals
(page 148)

! how to print multiple report lines for each input record (page 151)

! how to print all of the fields from an input file in your report, without having to
name each field individually (see page 158)

! how to produce reports that are wider than 132 characters (see page 417 or
page 431)

The complete syntax for the INPUT and COLUMNS statements appears in Chapter 10,
"Control Statement Syntax" (pages 542 and 498 respectively).
Chapter 2. How to Request a Report 39

Lesson 2. How to Specify Which Records to Include
in Your Report

This lesson teaches you how to select only certain records from the input file for inclusion
in your report. The control statement discussed is:

! the INCLUDEIF statement

How to Use the INCLUDEIF Statement

The reports we produced in the previous lesson included all of the records found in the
input file. When no INCLUDEIF statement is specified, Spectrum Writer defaults to including
every record from the input file. For example, the report on page 36 included all sales from
the SALES–FILE. And the report on page 38 listed all of the employees in the EMPL–FILE.

Often you want a report to include only selected records from the input file. Use the
INCLUDEIF statement to tell Spectrum Writer to "include" a record in the report only "if" one
or more conditions are met.

For example, assume that we want to print another list of sales from the SALES–FILE similar
to the one on page 36. But this time we only want to print sales made by the employee
named Jones. We would simply add the following INCLUDEIF statement to our other control
statements:

INCLUDEIF: EMPL–NAME = 'JONES'

The above INCLUDEIF statement tells Spectrum Writer to "include" records from the SALES-
FILE "if" the EMPL–NAME field is equal to 'JONES'. Spectrum Writer still reads through the
entire SALES–FILE, just like before. But now it examines each record before including it in
the report. If the record's EMPL–NAME field contains the value 'JONES', then the record is
included in the report. If the EMPL–NAME field contains any other value, then that record is
not included in the report. Figure 4 shows a report produced using the above statement.
Only the sales made by Jones appear in that report.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per report, but it may contain as many conditions as you
like.

By the way, the INCLUDEIF statement can refer to any of the fields in the input file (as well
as any COMPUTE field). You are not limited to just those fields that are listed in the
COLUMNS statement.

How to Write Conditional Expressions

The INCLUDEIF statement simply contains a conditional expression. The complete rules for
writing conditional expressions are explained beginning on page 459. Briefly, a
conditional expression contains one or more "conditions," separated with words such as
AND and OR. A condition usually involves comparing the contents of one field with the
40 Spectrum Writer User’s Guide

Lesson 2. How to Specify Which Records to Include in Your Report
Figure 4. Using an INCLUDEIF statement to specify which records to include in a report

Remarks:
• the report now includes only those records whose EMPL–NAME field is equal to 'JONES'

These Control Statements:

INPUT: SALES-FILE
INCLUDEIF: EMPL–NAME = 'JONES'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62

*** GRAND TOTAL (3 ITEMS) 142.26 8.55
Chapter 2. How to Request a Report 41

Lesson 2. How to Specify Which Records to Include in Your Report
contents of another field, or with a literal value. Let's look at some more examples of
INCLUDEIF statements and their conditional expressions.

Note: If you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1, and
BASIC. If you are familiar with any of these languages, you should find it especially
easy to write INCLUDEIF statements.

You may want your report to include all records which do not contain a certain value. Do
this by specifying "not equal" in your condition. For example:

INCLUDEIF: EMPL–NAME ¬= 'JONES'

The above statement specifies that the report should include all records from the input file
whose EMPL–NAME field is not equal to 'JONES'.

Note: In addition to ¬=, you can also use <> to indicate "not equal," like this:

INCLUDEIF: EMPL–NAME <> 'JONES'

You may want to include a record in your report if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR. Consider
the following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR AMOUNT > 100

The above statement states that a record should be included in the report "if the EMPL–NAME
field is equal to 'JONES' or if the AMOUNT field is greater than 100." The word OR indicates
that records from the input file will be included if either one (or both) of the conditions are
true. Figure 5 shows a report that uses the above statement. All sales listed in that report
were either made by Jones or were for an amount over $100.

Notice in the above statement that we enclosed 'JONES' in single quotation marks, while we
did not use quotation marks around the 100. That is because EMPL–NAME is a character
field, while AMOUNT is a numeric field. Character literals (such as 'JONES') must be
enclosed in quotation marks. You can use either single (') or double (") quotation marks.
But numeric literals (such as 100), as well as date and time literals, are not enclosed in
quotation marks. Numeric literals also must not contain commas. (The rules for writing
literals are thoroughly explained in "How to Write Literals" on page 448.)

As another example, you may want to include records in your report when both of two
conditions are true. For example, let's say we want a listing only of sales that were made
by Jones and that were also for an amount over $100. For this report, two conditions must
both be true: the EMPL–NAME field must be equal to 'JONES' and the AMOUNT field must be
over 100. Use the word AND to specify that both conditions must be true, like this:

INCLUDEIF: EMPL–NAME = 'JONES' AND AMOUNT > 100

Now as Spectrum Writer reads each record from the input file, it will include a record in
the report only "if the EMPL–NAME field is equal to 'JONES' and the AMOUNT field is greater
than 100."

Here is an example of including records in a report based on the contents of a date field:
INCLUDEIF: SALES–DATE > 4/15/1995
42 Spectrum Writer User’s Guide

Lesson 2. How to Specify Which Records to Include in Your Report
Figure 5. Including records in a report if either of two conditions is true

Remarks:
• records are included in the report if either the EMPL–NAME field is equal to 'JONES' or the AMOUNT

field is greater than 100

These Control Statements:

INPUT: SALES-FILE
INCLUDEIF: EMPL-NAME = 'JONES' OR AMOUNT > 100
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00

*** GRAND TOTAL (8 ITEMS) 1,250.84 75.08
Chapter 2. How to Request a Report 43

Lesson 2. How to Specify Which Records to Include in Your Report
The above statement specifies that records should be included in the report only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Note: You may be wondering if you need to use a different format for your date
literals when you know that a particular date field is stored in a record as a Julian
date (YYDDD format.) The answer is no. All date literals in your control statements
should be written as MM/DD/YYYY (or MM/DD/YY). Spectrum Writer automatically
takes care of any date conversions that may be required. Thus, you test Julian date
fields just like all other date fields:

INCLUDEIF: JULIAN-START-DATE >= 1/1/2000

Here is an example of including records in a report based on the contents of a time field:
INCLUDEIF: SALES–TIME < 17:00:00

The above statement specifies that records should be included in the report only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM).

Note: You are allowed to omit the seconds in your time literals, if you prefer. When
the seconds are not specified, zero seconds is assumed. Thus, you could also write
the above statement this way:

INCLUDEIF: SALES–TIME < 17:00

If your INCLUDEIF statement contains both the words OR and AND, you should use
parentheses to indicate the order in which to perform the comparisons. Consider the
following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR
 (SALES–DATE > 4/15/1995 AND SALES–DATE < 4/30/1995)

In the above statement, records will be included if the EMPL–NAME field is equal to 'JONES'
or if both of the SALES–DATE comparisons are true. The parentheses cause the two
SALES–DATE comparisons to be treated as one condition. That condition is true if the
SALES–DATE is greater than April 15, 1995 and is less than April 30, 1995.

Note: In addition to the actual words AND and OR, you can also use the symbols "&"
and" |", respectively, in your conditional expressions.

Summary
Here is a summary of what we learned in this lesson:

! use the INCLUDEIF statement when you want to include only certain records from
the input file in your report

! the INCLUDEIF statement may contain one or more conditions, separated by the
words AND or OR

! groups of conditions can be enclosed in parentheses, to indicate the order in
which the comparisons should be performed

The next lesson will show you how to compute your own new fields for use in your report.
44 Spectrum Writer User’s Guide

Lesson 2. How to Specify Which Records to Include in Your Report
To Learn More
There are some additional features associated with the INCLUDEIF statement which we have
not covered in this lesson. These additional features are discussed in "Conditional
Expressions" (page 459). The additional features include:

! how to use the keyword NOT (or the symbol ¬) to negate a condition (page 469)

! how to scan a character field, to see if a certain text exists anywhere within the
field (page 460)

! how to specify conditions based on bit fields (page 465)

! how to specify a condition based on a field's raw hexadecimal value (page 464)

! what to do if you want to specify date literals in DD/MM/YY or DD/MM/YYYY format
(page 140), like this:

INCLUDEIF: SALES–DATE > 15/4/1995

! how the KEYRANGE or STOPWHEN parms of the INPUT statement can be used to
limit the records included in your run (page 542)

The complete syntax for the INCLUDEIF statement appears in Chapter 10, "Control
Statement Syntax" (page 540).
Chapter 2. How to Request a Report 45

Lesson 3. How to Create Your Own Fields

This lesson teaches you how to create your own fields to use in producing your report. The
control statement discussed is:

! the COMPUTE statement

Sometimes the data you need for a report is not contained in the input file. Yet the
necessary data might be easily computed from one or more fields which are in the input
file. In such cases, simply create a new field by using the COMPUTE statement.

Creating Numeric Fields

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed in "Computational Expressions" (page 472).
Generally, your expression will consist of one or more arithmetic operations performed on
numeric fields or numeric literals.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can
use the COMPUTE statement to create a new field containing the total amount due just by
adding those two fields together, like this:

COMPUTE: TOTAL–AMOUNT = AMOUNT + TAX

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column in the body of the report; in the report titles; as a
sort field; as a control break field; as part of a conditional expression (in the INCLUDEIF
statement); even as an operand in subsequent COMPUTE statements to create other fields.

Figure 6 shows a report that uses the above COMPUTE statement.

Note: COMPUTE statements normally appear after the INPUT statement. A COMPUTE
statement must appear before any other control statement that refers to the field
being created. In Figure 6, the COMPUTE statement for TOTAL–AMOUNT had to come
before the COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE
statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note: When performing subtraction, always put a blank space before and after
the minus sign. Otherwise, the minus sign will appear to be part of a field name.
Blanks are optional around the other arithmetic operators.
46 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 6. Using the COMPUTE statement to create numeric fields

Remarks:
• the column heading used for computed fields is (by default) the field name itself, broken apart at each

dash
• computed numeric fields receive Grand Totals just like other numeric fields

These Control Statements:

INPUT: SALES-FILE
COMPUTE: TOTAL-AMOUNT = AMOUNT + TAX
COMPUTE: SALES-COMMISSION = TOTAL-AMOUNT * .33
COLUMNS: EMPL-NAME CUSTOMER AMOUNT TAX TOTAL-AMOUNT SALES-COMMISSION

Produce this Report:

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL TOTAL SALES
 NAME CUSTOMER AMOUNT TAX AMOUNT COMMISSION

JOHNSON ACE ELECTRICAL 101.38 6.09 107.47 35.4651
BAKER JACKS CAFE 137.00 8.22 145.22 47.9226
MORRISON STAR MARKET 44.35 2.66 47.01 15.5133
MORRISON A1 PHOTOGRAPHY 29.65 1.78 31.43 10.3719
SIMPSON EUROPEAN DELI 14.99 0.90 15.89 5.2437
JOHNSON VILLA HOTEL 234.45 14.07 248.52 82.0116
JOHNSON MARYS ANTIQUES 9.98 0.60 10.58 3.4914
BAKER JACKS CAFE 135.75 8.15 143.90 47.4870
THOMAS YOGURT CITY 9.98 0.60 10.58 3.4914
JONES EZ GROCERY 10.25 0.62 10.87 3.5871
JONES TOY TOWN 121.76 7.31 129.07 42.5931
JONES TOY TOWN 10.25 0.62 10.87 3.5871
JOHNSON ACME BUILDING 500.00 30.00 530.00 174.9000
SIMPSON J & S LUMBER 23.87 1.43 25.30 8.3490

*** GRAND TOTAL (14 ITEMS)
 1,383.66 83.05 1,466.71 484.0143
Chapter 2. How to Request a Report 47

Lesson 3. How to Create Your Own Fields
As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

COMPUTE: SALES–COMMISSION = TOTAL–AMOUNT * .33

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE
statement to perform the computation in this statement.

Figure 6 (page 47) shows a report that uses the COMPUTE statement shown above.

In addition to the basic arithmetic operations, there are also a large number of built–in
functions that you can use in the COMPUTE statement. These built–in functions allow you
to perform more complex mathematical operations on numeric operands. A complete list
of built–in functions is found in Appendix D, "Built-In Functions" (page 628).

Creating Character Fields

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you. "Concatenating"
simply means "stringing together" two or more character fields.) The plus sign (+) is used
as the symbol for concatenation. For example:

COMPUTE: WHOLE–NAME = LAST–NAME + FIRST–NAME

The above statement creates a new field named WHOLE–NAME. It is created by
concatenating the contents of the LAST–NAME field and the contents of the FIRST–NAME
field. The result is a single field which now contains both the first and last names of the
employee. The new field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together. For example:
COMPUTE: MAILING–CODE = STATE + '–' + EMPL–NUM

This example creates a new field called MAILING–CODE which consists of the contents of
the STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions that
can be used when creating character fields. For example, the #LEFT function can be used to
extract the leftmost n bytes of a character field. Here is an example of how to use the #LEFT
built–in function:

COMPUTE: FIRST–INITIAL = #LEFT(FIRST–NAME,1)

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.

Figure 7 shows a report that uses each of the above COMPUTE statements.
48 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 7. Using the COMPUTE statement to create character fields.

Remarks:
• the column heading used for computed fields is (by default) the field name itself, broken apart at each

dash

These Control Statements:

INPUT: EMPL-FILE
COMPUTE: WHOLE-NAME = LAST-NAME + FIRST-NAME
COMPUTE: MAILING-CODE = STATE + '-' + EMPL-NUM
COMPUTE: FIRST-INITIAL = #LEFT(FIRST-NAME,1)
COLUMNS: EMPL-NUM WHOLE-NAME MAILING-CODE FIRST-INITIAL CITY STATE

Produce this Report:
TUE 05/16/95 8:27 AM DATA FROM EMPL-FILE PAGE 1

EMPL WHOLE MAILING FIRST
NUM NAME CODE INITIAL CITY STATE

036 JONES JERRY CA-036 J SAN FRANCISCO CA
037 JOHNSON THOMAS AZ-037 T SCOTTSDALE AZ
039 JOHNSON LINDA CA-039 L SANTA ROSA CA
040 MACDONALD RICHARD CA-040 R PLEASANTON CA
041 SIMPSON TIMOTHY CA-041 T ARCADIA CA
042 MORRISON MICHAEL CA-042 M GLENDALE CA
043 CHRISTOPHERSON MELISSA AZ-043 M PHOENIX AZ
044 BAKER VIVIAN CA-044 V WALNUT CREEK CA
045 THOMAS MARTIN CA-045 M CONCORD CA

*** GRAND TOTAL (9 ITEMS)
Chapter 2. How to Request a Report 49

Lesson 3. How to Create Your Own Fields
Assigning Values to Fields Based on Conditions

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE
statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In conditional
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that you
specify. Conditional COMPUTE statements can be very powerful tools in producing reports.
Here is an example of a conditional COMPUTE statement:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)

The above statement creates a field named BONUS. However, in this example the BONUS
field can be computed in one of two ways: for employees hired before January 1, 1980, the
bonus is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or after
January 1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Spectrum Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value to
BONUS. (Any remaining WHEN parms are not evaluated.)

You may have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE
statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm. For example:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above statement has the same effect as the previous example, but is a little simpler. It
has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields. For example:
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')

The statement above creates a new field called TITLE. The contents of TITLE will be "MR" if
the SEX field contains an "M", and "MS" otherwise.

Figure 8 shows a report that uses some of the conditional COMPUTE statements just
discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces is
assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You
can, however, use any valid conditional expression within the WHEN parm. The conditional
expression can contain as many different conditions as you like, separated with the words
AND and OR, and optionally grouped with parentheses. (A conditional expression is the sort
of expression that is allowed in the INCLUDEIF statement, as was described in the section
50 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 8. Assigning values to computed fields based on conditions

Remarks:
• the BONUS field is calculated differently, depending on the contents of the HIRE–DATE field
• the value assigned to the TITLE field is based on the contents of the SEX field

These Control Statements:

INPUT: EMPL–FILE
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
COLUMNS: TITLE LAST–NAME FIRST–NAME SEX HIRE–DATE TOTAL–SALES BONUS

Produce this Report:

TUE 05/16/95 8:29 AM DATA FROM EMPL-FILE PAGE 1

 LAST FIRST HIRE TOTAL
TITLE NAME NAME SEX DATE SALES BONUS

 MR JONES JERRY M 01/31/80 42,509.89 2,125.4945
 MR JOHNSON THOMAS M 06/21/75 86,999.24 6,959.9392
 MS JOHNSON LINDA F 11/25/79 75,023.55 6,001.8840
 MR MACDONALD RICHARD M 07/04/82 2,560.98 128.0490
 MR SIMPSON TIMOTHY M 12/01/82 8,723.88 436.1940
 MR MORRISON MICHAEL M 11/30/79 98,054.99 7,844.3992
 MS CHRISTOPHERSON MELISSA F 08/15/81 47,665.31 2,383.2655
 MS BAKER VIVIAN F 06/04/82 92,125.89 4,606.2945
 MR THOMAS MARTIN M 06/04/82 60,193.49 3,009.6745

*** GRAND TOTAL (9 ITEMS) 513,857.22 33,495.1944
Chapter 2. How to Request a Report 51

Lesson 3. How to Create Your Own Fields
"How to Write Conditional Expressions" on page 40. The complete rules for writing
conditional expressions are given in "Conditional Expressions" on page 459.)

Additional examples of COMPUTE statements are shown beginning on page 506.

Summary
Here is a summary of what we learned in this lesson:

! the COMPUTE statement is used to create new fields

! a simple COMPUTE statement assigns the result of a single computational
expression to a new field

! a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will show you how to specify your own report titles.

To Learn More
There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed under the
COMPUTE statement in Chapter 10, "Control Statement Syntax" (page 506). Other
additional features are discussed in Chapter 4, "Beyond the Basics." Examples of
additional topics include:

! how to create date fields (page 514)

! how to create time fields (page 272)

! how to create bit (boolean) fields (page 514)

! how to specify how many decimal places a numeric or time field should contain
(page 511)

! how to specify column headings for the fields you create (page 511)

! how to specify how your field should be formatted when it is printed in a report
(page 510)

! how to specify whether a numeric or time field should be totalled in the Grand
Totals line at the end of the report (page 148)

! how to retain the previous value of a COMPUTE field in certain cases (page 234)

The complete syntax for the COMPUTE statement appears in Chapter 10, "Control
Statement Syntax" (page 506).
52 Spectrum Writer User’s Guide

Lesson 4. How to Make Your Own Report Titles

This lesson teaches you how to specify your own report titles. The control statement
discussed is:

! the TITLE statement

How to Use the TITLE Statement

As we've seen in the previous lessons, a TITLE statement is not required to produce a report.
If you do not supply a TITLE statement when requesting your report, Spectrum Writer
provides a default title.

To specify your own report titles, simply use one or more TITLE statements. For each TITLE
statement you supply, Spectrum Writer will print one title line at the top of each page of
the report. TITLE statements may appear anywhere after the INPUT statement.

After the word TITLE and the colon, enclosed your desired title text in either single or
double quotation marks. For example:

TITLE: 'ABC COMPANY -- RECENT SALES'

Note: If your title is too big to fit on a single line, you may continue it onto
additional lines. See "How to Continue a Control Statement Onto Multiple Lines"
(page 444) for information on continuing control statements.

You will probably want to include the date and page number in your titles. Do this by using
the special built–in fields named #TODAY and #PAGENUM. (Don't let the pound sign scare
you. All of Spectrum Writer's built–in field names begin with this character. This is to help
distinguish them from fields in your own files that may have similar names.)

When using #TODAY and #PAGENUM in your TITLE statement, do not enclose them in
quotation marks. Anything enclosed in quotation marks is printed as is in the title.
Anything not within quotation marks must be the name of a field, whose contents you want
in the title. The words #TODAY and #PAGENUM are the names of built-in fields, whose
contents are the system date and the current page number. Here is an example of specifying
titles that contain the date and page number:

TITLE: 'ABC COMPANY -- RECENT SALES'
TITLE: #TODAY
TITLE: 'PAGE' #PAGENUM

The three TITLE statements above result in three title lines in the report. The first title line
is the literal text "ABC COMPANY — RECENT SALES". The second title line just contains the current
date. The third title line contains the word "PAGE" followed by the page number itself. This
third title line illustrates a new point: a TITLE statement can contain more than one item. In
this case, it contains one literal text ('PAGE') and one field name (#PAGENUM).

Figure 9 shows a report produced using the above TITLE statements. Notice that the titles
are automatically centered over the report.
Chapter 2. How to Request a Report 53

Lesson 4. How to Make Your Own Report Titles
Figure 9. Using the TITLE statement to specify your own titles

Remarks:
• this report has three title lines, corresponding to the three TITLE statements
• the second title line simply contains the current date (#TODAY)
• the third title line contains the literal word "PAGE" followed by the page number (#PAGENUM)
• all title lines are centered over the report

These Control Statements:

INPUT: SALES-FILE
TITLE: 'ABC COMPANY -- RECENT SALES'
TITLE: #TODAY
TITLE: 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:
 ABC COMPANY -- RECENT SALES
 12/01/95
 PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
54 Spectrum Writer User’s Guide

Lesson 4. How to Make Your Own Report Titles
More Date and Time Features

When you use #TODAY in your title, Spectrum Writer formats it in the standard default date
format (MM/DD/YY). If you want to spell out the month name in the date, specify the LONG1
"display format" after #TODAY, like this:

TITLE: #TODAY(LONG1)

The above statement would cause, for example, "DECEMBER 1, 1995" to appear in the title,
rather than "12/01/95". The report in Figure 10 uses the LONG1 display format. The use of
LONG1 and other display formats is discussed in more detail in "How to Change the
Appearance of Items in the Title" (page 165). For a complete list of display formats to
choose from when formatting dates in your titles, see Appendix B, "Display Formats"
(page 617).

In addition to the current date, you can also use the built–in fields #TIME and #DAYNAME in
your TITLE statement. These allow you to print the time of day and the day of the week in
your titles.

Figure 10 also illustrates the #TIME built–in field.

How to Align the Title

What if we want just a single title line that contains the date, time and the page number
along with our literal text? The following example shows how to do that:

TITLE: #TODAY #TIME / 'ABC COMPANY — RECENT SALES' / 'PAGE' #PAGENUM

Notice that the above TITLE statement contains two slashes (/). These are used to separate
the title line into three parts. When slashes are not used (as in the previous examples), the
whole title is simply centered over the report. But when slashes are used, the first part of
the title (#TODAY and #TIME, in the case above) is aligned with the left edge of the report.
The middle part (the literal text) is centered over the report. The last part ("PAGE" and
#PAGENUM) is aligned with the right edge of the report. The use of slashes in the TITLE
statement gives you the maximum control over how your title lines look.

Figure 10 shows a sample report that uses slashes to align a three-part title. Figure 14
(page 68) illustrates the alignment of a two-part title.

How to Put File Data in the Title

As mentioned earlier, TITLE statement text that is enclosed within quotation marks will
appear "as is" in the title. You can also put field names (without quotation marks) in the
TITLE statement. A field name can be one of the special built-in fields, such as #PAGENUM.
Or it can be the name of a regular field from the input file (or even a COMPUTE field). When
inserting the contents of a data field into the title, Spectrum Writer uses the data found in
the first record used on the current report page. Figure 14 (page 68) shows an example of
including file data in a title.
Chapter 2. How to Request a Report 55

Lesson 4. How to Make Your Own Report Titles
Figure 10. Using slashes to align the different parts of a title

Remarks:
• the two slashes divide the TITLE statements into three parts
• the first part (the date and time) is left aligned over the report
• the second part (the name of the report) is centered over the report
• the third part (the page number) is right aligned over the report
• the LONG1 "display format" causes the month name to be spelled out in the date

These Control Statements:

INPUT: SALES-FILE
TITLE: #TODAY(LONG1) #TIME / 'RECENT SALES' / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

DECEMBER 1, 1995 8:27 AM RECENT SALES PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
56 Spectrum Writer User’s Guide

Lesson 4. How to Make Your Own Report Titles
Summary
Here is a summary of what we learned in this lesson:

! use the TITLE statement to specify your own titles for a report

! if more than one TITLE statement is used, the title lines print in the same order
in which the TITLE statements appear

! use Spectrum Writer's built–in fields to include the date, time, day of the week,
and page number in your titles

! use slashes to separate your title into left, center, and right aligned parts

The next lesson will teach you how to customize the formatting of your report.

To Learn More
There are some additional features associated with the TITLE statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional features include:

! how to change the way the dates, times and numbers are formatted in the title
(page 165)

! how to use any combination of left aligned, centered, and right aligned title
parts (page 168)

! how to include the jobname in your title (page 163)

! how to print "footnotes" at the bottom of each page of the report (page 175)

The complete syntax for the TITLE statement is given in Chapter 10, "Control Statement
Syntax" (page 602).
Chapter 2. How to Request a Report 57

Lesson 5. Changing the Format of your Report

This lesson teaches you how to specify your own formatting options for a report. The
formatting options discussed are:

! display formats
! column headings
! column widths

Using Display Formats

Spectrum Writer provides many "display formats" that you can choose from when
displaying fields in a report. A complete list of display formats is found in Appendix B,
"Display Formats" (page 617). When no display format is specified (as in most of the
examples in the previous lessons), Spectrum Writer uses a default format. To specify your
own display format, just place it in parentheses after the appropriate field name. (Do not
leave a space between the field name and the open parenthesis.) Display formats are
allowed in most statements. For example:

TITLE: #TODAY(LONG1)
COLUMNS: SALES-DATE(SHORT3) SALES-TIME(HH-MM) AMOUNT(DOLLAR)

The above statements specify a display format for each field:

! the #TODAY field (in the title) will be formatted in Spectrum Writer's LONG1
format (that is, as MMMMMMMMM DD, YYYY).

! the SALES–DATE column in the report will be formatted in the SHORT3 format
(that is, DD MMM YY).

! the SALES–TIME field will be formatted in the HH–MM format (that is, without the
seconds). The time will be rounded to the nearest minute and formatted as
HH:MM.

! the AMOUNT field will be formatted as a dollar value, with a floating dollar sign

Figure 11 shows a report that illustrates these display formats.
58 Spectrum Writer User’s Guide

Lesson 5. Changing the Format of your Report
Figure 11. Using override display formats, column headings and column widths

Remarks:
• The display formats (LONG1, SHORT3, HH–MM and DOLLAR) specify how the data is formatted in

the report
• The override column heading changes the column heading for the EMPL–NAME field
• The override width parm makes the TAX column only 5 bytes wide
• Changes made to the detail line formatting are also reflected in the Grand Total line

These Control Statements:

INPUT: SALES-FILE
TITLE: #TODAY(LONG1) / 'EXAMPLES OF SPECIAL FORMATTING' / #PAGENUM
COLUMNS: REGION EMPL-NAME('SALES PERSON') SALES-DATE(SHORT3)
 SALES-TIME(HH-MM) CUSTOMER AMOUNT(DOLLAR) TAX(5)

Produce this Report:

DECEMBER 1, 1995 EXAMPLES OF SPECIAL FORMATTING 1

 SALES SALES
REGION SALES PERSON DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 12 MAR 95 10:25 ACE ELECTRICAL $101.38 6.09
WEST BAKER 26 MAR 95 12:09 JACKS CAFE $137.00 8.22
EAST MORRISON 29 MAR 95 15:30 STAR MARKET $44.35 2.66
EAST MORRISON 30 MAR 95 19:06 A1 PHOTOGRAPHY $29.65 1.78
EAST SIMPSON 01 APR 95 08:18 EUROPEAN DELI $14.99 0.90
NORTH JOHNSON 01 APR 95 17:03 VILLA HOTEL $234.45 14.07
NORTH JOHNSON 05 APR 95 14:33 MARYS ANTIQUES $9.98 0.60
WEST BAKER 12 APR 95 14:31 JACKS CAFE $135.75 8.15
WEST THOMAS 14 APR 95 15:42 YOGURT CITY $9.98 0.60
NORTH JONES 15 APR 95 07:59 EZ GROCERY $10.25 0.62
NORTH JONES 15 APR 95 08:02 TOY TOWN $121.76 7.31
NORTH JONES 15 APR 95 13:53 TOY TOWN $10.25 0.62
SOUTH JOHNSON 16 APR 95 11:49 ACME BUILDING $500.00 30.00
EAST SIMPSON 30 APR 95 15:30 J & S LUMBER $23.87 1.43

*** GRAND TOTAL (14 ITEMS) $1,383.66 83.05
Chapter 2. How to Request a Report 59

Lesson 5. Changing the Format of your Report
Specifying Column Headings

Another way to customize your report is with override column headings. You remember
that Spectrum Writer uses the field name itself as the default column heading. To specify
your own column heading, just place the desired text in parentheses after the appropriate
field name in the COLUMNS statement. For example:

COLUMNS: EMPL-NAME('SALES PERSON')

In the above statement, we specified our own column heading for the EMPL–NAME field. As
you can see in the report in Figure 11 (page 59), the EMPL–NAME column now has "SALES
PERSON" as its column heading.

Note: To break your column heading text into multiple lines, use the vertical bar (|)
as a line separator. For example:

COLUMNS: EMPL–NAME('SALES|PERSON')

The above statement would result in a two-line column heading for the EMPL-NAME column.
The word SALES would be stacked over the word PERSON.

Note: The vertical bar is the "Shift 1" key on most mainframe terminals. When
working at a PC running terminal emulation software, you will probably not see a
key with this symbol on it. (The "pipeline" character is not the same as the vertical
bar.) Some emulator programs use the right–hand square bracket key (]) to send a
vertical bar to the mainframe.

Specifying a Column's Width

One other way to customize your report is to specify a column width for a particular
column. When no column width is specified, Spectrum Writer chooses a default column
width. You may want a larger column width (to hold larger numeric values, for example).
Or, you may want a smaller column width (to save space so you can squeeze more columns
into your report). Just specify the desired column width in parentheses after the field name.
For example:

COLUMNS: TAX(5)

The above statement tells Spectrum Writer to make the TAX column just 5 bytes wide in the
report. This is also illustrated in the report in Figure 11 (page 59).

Multiple Overrides

You can specify more than one override for a single field. Their order within the
parentheses is not important. Just separate the overrides with spaces and/or commas. For
example, the following statement specifies an override column heading, display format and
column width:

COLUMNS: AMOUNT('AMOUNT OF SALES', DOLLAR, 8)
60 Spectrum Writer User’s Guide

Lesson 5. Changing the Format of your Report
Summary
Here is a summary of what we learned in this lesson:

! use an override display format to change the way a field is formatted in a report

! use override column headings to change the column headings in a report

! specify a column width to change the width of a column in a report

! each of these overrides should be put in parentheses after the appropriate field
name

The next lesson will teach you how to sort your report into whatever order you want.

To Learn More
There are many additional ways to change the format of your report. Some of these
additional features are discussed as topics in Chapter 4, "Beyond the Basics." Some
additional formatting features include:

! how to left-justify, center or right-justify data within its column (page 146)

! how to blank out repeating values in a column(page 144)

! how to blank out zero values (page 129)

! how to change the spacing between columns in a report (page 128)

! how to use a character other than the vertical bar (|) to separate column
headings into multiple lines (page 130)

! how to change the default display format for all fields in a report (page 562)

! how to format reports using international conventions (page 140)

The complete syntax for the COLUMNS statement is given in Chapter 10, "Control
Statement Syntax" (page 498).
Chapter 2. How to Request a Report 61

Lesson 6. How to Specify the Report Order

This lesson teaches you how to sort your report into any order you want. The control
statement discussed is:

! the SORT statement

How to Use the SORT Statement

When no SORT statement is specified, Spectrum Writer defaults to printing the report
records in their original input file order. For example, the records in the sample SALES–FILE
are stored in sales date order. Therefore, the sales reports in the previous lessons (for
example, on page 59) all appeared in sales date order. The EMPL–FILE sample file is a VSAM
file stored in EMPL–NUM order. Therefore, all previous reports from that file have been in
employee number order (for example, the report on page 38).

To print a report in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per report,
but it may contain as many "sort fields" as you like. Spectrum Writer will sort your report
on all of the sort fields.

For example, let's request a report from the SALES–FILE and sort it on three fields:
SORT: REGION EMPL–NAME SALES–DATE

To begin with, the report will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using
the second sort field, EMPL–NAME. Records having the same value for both the REGION and
the EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE.

Figure 12 shows a report produced with the above statement.

By the way, the SORT statement can refer to any of the fields in the input file (as well as
any COMPUTE field). You are not limited to just the fields that are listed in the COLUMNS
statement.

By default, Spectrum Writer sorts reports into ascending order on each sort field. If you
want to sort the report into descending order for a field, put the DESCENDING parm (or just
DESC) in parentheses immediately after the field name. For example, to sort a sales report
into reverse employee number order, you could use this SORT statement:

SORT: EMPL–NUM(DESC)

Automatic Sorting

If you prefer, you can let Spectrum Writer automatically sort your report for you. To have
your report automatically sorted on the first 5 columns of data, simply specify the
AUTOSORT option, like this:

OPTIONS: AUTOSORT
62 Spectrum Writer User’s Guide

Lesson 6. How to Specify the Report Order
Figure 12. Using a SORT statement to specify the sort order of a report

Remarks:
• the SORT statement causes the report to be sorted on REGION, EMPL–NAME and SALES–DATE

These Control Statements:

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
TITLE: 'RECENT SALES'
TITLE: 'SORTED BY REGION, EMPLOYEE NAME, AND SALES DATE'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:
 RECENT SALES
 SORTED BY REGION, EMPLOYEE NAME, AND SALES DATE

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 2. How to Request a Report 63

Lesson 6. How to Specify the Report Order
Summary
Here is a summary of what we learned in this lesson:

! use the SORT statement to sort your report

! you can sort on multiple sort fields

! you can sort in either ascending or descending order

The next lesson will show you how to create control breaks and print subtotals and other
statistics in your reports.

To Learn More
There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional features include:

! creating a control break with the SORT statement (page 177)

! specifying control break spacing with the SORT statement (page 178)

! requesting totals and statistics in the SORT statement (page 186)

The complete syntax for the SORT statement is given in Chapter 10, "Control Statement
Syntax" (page 595).
64 Spectrum Writer User’s Guide

Lesson 7. How to Create Control Breaks

This lesson teaches you what control breaks are, and shows how to request them in your
report. This lesson also shows how to print totals and other statistics in reports. The control
statement discussed is:

! the BREAK statement

How to Use the BREAK Statement

If you are not a programmer, the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your reports much more
useful.

Consider the result of sorting a report on some field. By sorting the report on a field, we
group together all the report lines that contain a particular value for that field. For example,
in the report in Figure 12 (page 63) we sorted first of all on the REGION field. As you can
see, this caused the report lines to be grouped together by region. All of the report lines for
the East region appear together at the beginning of the report. Next come all of the report
lines for the North region, and so on. By sorting on the REGION field, we grouped together
all of the records for each region.

Often it is desirable to perform special processing whenever one such group of records
ends and another group is about to begin. For example, you might want to print a line of
totals for the group that just ended. Or, you might want to print a few blank lines before the
next group starts printing, or even skip to a new page. This processing is called control
break processing. A control break is said to occur whenever one group of records ends
and another group is about to begin. The field that is being grouped (for example, REGION)
is called the control break field (or often just the break field). A control break field must
also be a sort field, since it is by being sorted that records are grouped together in the first
place.

You may designate any sort field as a control break field. Just name the field in a BREAK
statement:

SORT: REGION EMPL–NAME SALES–DATE
BREAK: REGION

The above statement makes REGION a control break field. Now we will get REGION totals
in the report whenever one region finishes printing and another region is about to begin.

After these totals, two blank lines will print. Then the report lines for the next region start
to print, and so on.

Figure 13 shows a report that uses the above BREAK statement to produce a control break.
Chapter 2. How to Request a Report 65

Lesson 7. How to Create Control Breaks
Figure 13. Using the BREAK statement to create a control break

Remarks:
• REGION is a sort field in this report
• the BREAK statement makes REGION a control break field
• whenever the value of the REGION column changes, a control break occurs
• at each control break a total line prints, followed by two blank lines

These Control Statements:

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
TITLE: 'RECENT SALES'
TITLE: 'TOTALLED BY REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

 RECENT SALES
 TOTALLED BY REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
*** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
66 Spectrum Writer User’s Guide

Lesson 7. How to Create Control Breaks
How to Specify Control Break Spacing

You can use additional parms in the BREAK statement to customize your control break. For
example, you can specify a break spacing parm. This parm tells Spectrum Writer what
kind of spacing to perform at the control break. By default, Spectrum Writer prints two
blank lines at each control break (after the totals line). You can use a spacing parm to
request either a different number of blank lines, or to request a page break.

For example, the following statement makes REGION a break field and specifies that 3 blank
lines should print at the control break:

BREAK: REGION SPACE(3)

If you want to skip to a new page whenever the contents of the REGION field changes, use
the PAGE spacing parm, like this:

BREAK: REGION SPACE(PAGE)

The SPACE(PAGE) parm specifies that, rather than printing 2 blank lines whenever the
REGION field changes, the report should skip to a new page.

The report in Figure 14 illustrates the use of the PAGE spacing parm to request a page
break.

How to Print Statistics at a Control Break

You may want to print statistics other than totals at a control break. The total line, as we
have seen, prints automatically at control breaks. By supplying the appropriate parm in the
BREAK statement, you can also print up to five additional statistical lines at a control break.
These additional lines are:

! an average line
! a non–zero average line (the average of all non–zero values)
! a maximum line
! a minimum line
! a non–zero minimum line (the minimum non–zero value)

The parms that correspond to these statistical lines are:

! AVERAGE (or AVG)
! NZAVERAGE (or NZAVG)
! MAXIMUM (or MAX)
! MINIMUM (or MIN)
! NZMINIMUM (or NZMIN)

You can specify as many of these parms as you like in the BREAK statement. The parms
may be specified in any order. (The statistic lines in the report, however, will always print
in a standard fixed order.) For example:

BREAK: REGION AVERAGE MAXIMUM
Chapter 2. How to Request a Report 67

Lesson 7. How to Create Control Breaks
Figure 14. A BREAK statement that produces a page break

Remarks:
• the SPACE(PAGE) parm causes the report to skip to a new page whenever the REGION field changes

value
• since each page contains data for only a single region, we chose to include the REGION field in the title
• a single slash (/) in the TITLE statement divides the title into two parts (left- and right-aligned)

These Control Statements:

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION SPACE(PAGE)
TITLE: 'SALES FOR REGION:' REGION / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:
SALES FOR REGION: EAST PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

SALES FOR REGION: NORTH PAGE 2

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SALES FOR REGION: SOUTH PAGE 3

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00

 (other report lines not shown)
68 Spectrum Writer User’s Guide

Lesson 7. How to Create Control Breaks
The BREAK statement above requests that an average line and a maximum line print (in
addition to the totals line) whenever the contents of the REGION field changes.

Figure 15 (page 70) shows a sample report that uses the preceding BREAK statement.

How to Produce Multiple Control Breaks

You may designate more than one sort field as a control break field. Spectrum Writer even
allows all of your sort fields to be control break fields. However, most reports look best
when no more than the first two or three sort fields are used as control breaks. The
following example makes the first two sort fields control break fields:

SORT: REGION EMPL–NAME SALES–DATE
BREAK: REGION SPACE(3)
BREAK: EMPL–NAME SPACE(1)

In the statements above, we made both REGION and EMPL–NAME control break fields. A
control break will occur whenever the REGION field changes values (as in the previous
examples). A total line will print for the region, and then 3 blank lines will print. But in this
example, the second sort field, EMPL–NAME, is also designated as a control break field. So,
a control break will also occur whenever the EMPL–NAME field changes value. A total line
will print for the employee, followed by 1 blank line. Figure 16 shows a sample report that
uses the above statements.

Note: When multiple BREAK statements are used, they may appear in any order.
However, all BREAK statements must appear after the SORT statement.
Chapter 2. How to Request a Report 69

Lesson 7. How to Create Control Breaks
Figure 15. A report that prints statistical information at control breaks and the Grand Totals

Remarks:
• the AVERAGE and MAXIMUM parms (in the BREAK statement) cause two statistical lines to print

(in addition to the totals line) whenever the REGION field changes value
• at the Grand Total, the same statistical lines also print

These Control Statements:

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION AVERAGE MAXIMUM
TITLE: 'RECENT SALES'
TITLE: 'TOTALLED BY REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

 RECENT SALES
 TOTALLED BY REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77
*** AVERAGE VALUE 28.22 1.69
*** MAXIMUM VALUE 44.35 2.66

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
*** AVERAGE VALUE 77.34 4.64
*** MAXIMUM VALUE 234.45 14.07

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
****** AVERAGE VALUE 98.83 5.93
****** MAXIMUM VALUE 500.00 30.00
70 Spectrum Writer User’s Guide

Lesson 7. How to Create Control Breaks
Figure 16. A report with two levels of control breaks

Remarks:
• the two BREAK statements make both REGION and EMP–NAME control break fields
• when the EMPL–NAME field changes, employee totals print, followed by 1 blank line
• when the REGION field changes, region totals print, followed by 3 blank lines
• the employee total line begins with 3 asterisks, while the region total line begins with 6 asterisks, and

the Grand Total line has 9 asterisks (indicating the level of the break)

These Control Statements:

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION SPACE(3)
BREAK: EMPL-NAME SPACE(1)
TITLE: 'SALES TOTALLED BY EMPLOYEE AND REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

 SALES TOTALLED BY EMPLOYEE AND REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44

EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33

****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67

NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55

****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

 (other report lines not shown)

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 2. How to Request a Report 71

Lesson 7. How to Create Control Breaks
Summary
Here is a summary of what we learned in this lesson:

! use the BREAK statement to specify a control break field

! control break fields must also be sort fields

! use the SPACE parm to specify your own spacing at the control break

! use one or more statistical parms to request that statistical lines print at a control
break

! you can specify multiple control breaks in the same report

The next lesson will show you how to turn reports with control breaks into "summary
reports."

To Learn More
There are some additional features associated with the BREAK statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional topics include:

! additional control break spacing parms, including one that skips to a new sheet
of paper (page 178)

! how to print one or more customized headers at the beginning of a control
break (page 200)

! how to print one or more customized lines at the end of a control break
(page 188)

! how to customize the total line and the other statistical lines (page 182 and
page 186)

! how to suppress the total line at a control break (page 185)

! how to print only the total lines to produce a summary report (page 73 and
page 209)

! how to compute percentages and ratios that apply to an entire control group
(page 202)

! how to customize the Grand Totals at the end of the report (page 207)

The complete syntax for the BREAK statement is given Chapter 10, "Control Statement
Syntax" (page 481).
72 Spectrum Writer User’s Guide

Lesson 8. How to Create Summary Reports

This lesson teaches you how to produce summary reports. The control statement discussed
is:

! the OPTIONS statement

How to Create a Summary Report

A summary report is one which does not show the detail information for every record
included in the report. Instead the detail information is summarized and only the totals are
printed in the report.

Control breaks are used to create the desired total lines. Consider the report shown earlier
on page 66. It is a detail report that lists each sale made in every region. The control break
on REGION causes a total line to print after the detail lines for each region have printed. By
adding the following statement, we can suppress the detail lines and print just the region
totals:

OPTIONS: SUMMARY

Figure 17 shows a summary report that uses the above statement.
Chapter 2. How to Request a Report 73

Lesson 8. How to Create Summary Reports
Figure 17. Producing a summary report

Remarks:
• this is the same report as on page 66, except for the additional OPTIONS statement
• the SUMMARY parm (in the OPTIONS statement) suppresses the detail report lines, leaving just a

summary report
• in summary reports, only the numeric columns are filled in (with total values)

These Control Statements:

OPTIONS: SUMMARY
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
TITLE: 'REGIONAL SALES SUMMARY'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

 REGIONAL SALES SUMMARY

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09
*** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
74 Spectrum Writer User’s Guide

Lesson 8. How to Create Summary Reports
Summary
Here is a summary of what we learned in this lesson:

! use the SUMMARY option (in the OPTIONS statement) to create a summary
report

! a summary report must have at least one control break field

The next lesson will show you how to use data from more than one input file in a report.

To Learn More
There are some additional features associated with summary reports which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Examples of additional features include:

! customizing the summary lines in your report (page 182)

! printing statistics (such as averages, maximums and minimums) in your
summary report (page 186)

! creating multiple levels of summarization (page 204)

! printing a limited number of detail records in each control group, creating
reports such as "The Top 3 Sales in Each Region" (page 212)
Chapter 2. How to Request a Report 75

Lesson 9. How to Use Data from More Than One File

This lesson teaches you how to read records from additional input files for use in your
report. The control statement discussed is:

! the READ statement

All of the sample reports produced so far have used data from only one input file. The data
has come from the file specified in the INPUT statement, called the primary input file.
There are times when all of the data needed for a particular report will not be found in just
a single file. One of Spectrum Writer's most powerful features is its ability to link to any
number of additional files to produce a report.

How Auxiliary Input Files Are Processed

Each report is allowed to have only one primary input file, specified in the INPUT statement.
When data from additional input files is required to produce a report, a READ statement is
used. The READ statement causes a record to be read from another input file, called an
auxiliary input file. You may have as many READ statements as you like in a single report.

Here is how Spectrum Writer processes the primary and auxiliary input files. Spectrum
Writer first reads a single record from the primary input file. (This file is always read
sequentially, beginning with the first record in the file.) Next, if any auxiliary input files
were specified, Spectrum Writer also reads one record from each of those files. (These files
are always read randomly, using a key.) At this point, Spectrum Writer will have read one
record from each of the input files. The fields from all of these records are now available
for use in producing the report. These fields can be used:

! as columns in the body of the report
! in titles
! as sort fields
! as control break fields
! in conditional expressions
! in calculations
! and in any other way that fields from the primary input file are used

After processing this set of records, Spectrum Writer then repeats the process. Another
record is read sequentially from the primary input file. Then random reads are performed
to each of the auxiliary input files. This next group of records is then used in making the
report, and so on. This process is repeated until there are no more records left in the primary
input file.

By simply adding a READ statement to your report request, you automatically make all of
the data fields from another file available for use in producing your report.

There is one important thing about auxiliary input files to keep in mind. Since these files
are ready randomly, they must be keyed files (or DB2 tables). (VSAM files are often keyed
files.)
76 Spectrum Writer User’s Guide

Lesson 9. How to Use Data from More Than One File
In a keyed file, each record has a unique "key" value associated with it. When a random
read is made to such a file, a read key must be specified to identify which record to read.
What read key should you tell Spectrum Writer use when reading a record from an
auxiliary input file? In order to be useful, the auxiliary input record should be somehow
related to the primary input record. Usually, the record from the primary input file will
contain the key of a corresponding record in the auxiliary input file. That key from the
primary input file will be used as the read key.

Note: If you are not familiar with such terms as "keyed files" and "read keys," ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement

Now let's look at a concrete example of how to use the READ statement. Begin by
considering Figure 18, which shows a simple report that uses only a primary input file (the
SALES–FILE). This report shows information about each sale made by an employee.

This report includes columns for two fields that we haven't used in previous examples, so
we'll explain them. They are the EMPL–NUM field and the PRODUCT–CODE field. The
EMPL–NUM is the employee number of the employee who made the sale. The
PRODUCT–CODE is a code that identifies which product was sold to the customer.

Now, let's assume that we need this same report to also show each employee's social
security number. The social security number is not available in the SALES–FILE. But it is a
field in the EMPL–FILE. (See the report on page 38.) In order to produce such a report, we
need data from a second input file–– the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records
in the SALES–FILE also contain an employee number, so we can use that field as the "read
key" when we read the EMPL–FILE. So, we can make the EMPL–FILE an auxiliary input file
by simply adding this statement:

READ: EMPL–FILE READKEY(EMPL–NUM)

This READ statement tells Spectrum Writer to use the EMPL–NUM field from the records in
the SALES–FILE as a key to read an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well
as to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

READ: EMPL–FILE READKEY(EMPL–NUM)
COLUMNS: EMPL–NAME SALES–FILE.EMPL–NUM SOCIAL–SEC–NUM
 SALES–DATE CUSTOMER AMOUNT PRODUCT–CODE

Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the
SALES–FILE and the EMPL–FILE. (See Appendix F, "Files Used in Examples" (page 648).)
Since the EMPL–NUM will have the same value in both of the records, it doesn't really matter
which one we specify in the COLUMNS statement, but we do have to specify a unique name.
In this case we specified the EMPL–NUM field from the SALES–FILE. (For more information
on using "record names" to qualify field names, see "How to Name the Input File Records"
on page 228.)
Chapter 2. How to Request a Report 77

Lesson 9. How to Use Data from More Than One File
Figure 18. A report that uses only the primary input file

Remarks:
• all fields used in this report come from the SALES–FILE

These Control Statements:

INPUT: SALES-FILE
TITLE: ’RECENT SALES'
COLUMNS: EMPL-NAME EMPL-NUM SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Produce this Report:

 RECENT SALES

 EMPL EMPL SALES PRODUCT
 NAME NUM DATE CUSTOMER AMOUNT CODE

JOHNSON 037 03/12/95 ACE ELECTRICAL 101.38 952
BAKER 044 03/26/95 JACKS CAFE 137.00 978
MORRISON 042 03/29/95 STAR MARKET 44.35 907
MORRISON 042 03/30/95 A1 PHOTOGRAPHY 29.65 919
SIMPSON 041 04/01/95 EUROPEAN DELI 14.99 916
JOHNSON 039 04/01/95 VILLA HOTEL 234.45 926
JOHNSON 039 04/05/95 MARYS ANTIQUES 9.98 997
BAKER 044 04/12/95 JACKS CAFE 135.75 916
THOMAS 045 04/14/95 YOGURT CITY 9.98 997
JONES 036 04/15/95 EZ GROCERY 10.25 977
JONES 036 04/15/95 TOY TOWN 121.76 907
JONES 036 04/15/95 TOY TOWN 10.25 977
JOHNSON 037 04/16/95 ACME BUILDING 500.00 976
SIMPSON 041 04/30/95 J & S LUMBER 23.87 916

*** GRAND TOTAL (14 ITEMS) 1,383.66
78 Spectrum Writer User’s Guide

Lesson 9. How to Use Data from More Than One File
Figure 19 shows a report which uses the above statements. The report now has the desired
new column showing each employee's social security number. Notice that we also sorted
the report on SOCIAL–SEC–NUM. Remember that you can use fields from auxiliary input
files in any way that you can use fields from the primary input file.

"One-to-Many" Random Reads

Normally, Spectrum Writer reads just a single record from your auxiliary input file — the
record whose key field matches the READKEY value. If you want to use all of the records
which match the READKEY (or partial READKEY), add the MULTI parm to your READ
statement. When the READ statement has the MULTI parm, Spectrum Writer creates and
processes "logical input records" by matching the primary input file row with each
qualifying record from the auxiliary input file. For more information on how the MULTI
parm works, see "How to Perform "One–to–Many" Reads" on page 232.

How to Use Multiple READ Statements

You may use as many READ statements in a run as you like. The report in Figure 20 uses
two READ statements. The primary input file is once again the SALES–FILE, which contains
one record for each sale made by an employee.

To obtain additional data about the employee who made each sale, we use a READ statement
for the EMPL–FILE (just like in the preceding example). The EMPL–NUM field in the
SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

To obtain additional information about each product sold, a second READ statement names
the PRODUCT–FILE as another auxiliary input file. (The PRODUCT–FILE is also described in
Appendix F, "Files Used in Examples" on page 648.)

However, there is one minor complication in reading records from this file. The key in the
PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the
read key to the PRODUCT–FILE. But it does contain the 3–byte PRODUCT–CODE field, which
we can use to build the 4–byte read key. A COMPUTE statement is therefore used to create
a new field (called PRODKEY) which consists of the letter "P" followed by the product code.
This computed field is then used as the read key in the READ statement for the
PRODUCT–FILE:

COMPUTE: PRODKEY = 'P' + PRODUCT–CODE
READ: PRODUCT–FILE READKEY(PRODKEY)

By having two READ statements in addition to the INPUT statement, the report now uses data
from three input files. Data from all of these files can be used in any of the subsequent
control statements. In the report in Figure 20, the COLUMNS statement uses two fields from
the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the EMPL–FILE and the
PRODUCT–DESC field from the PRODUCT–FILE.
Chapter 2. How to Request a Report 79

Lesson 9. How to Use Data from More Than One File
Figure 19. A report that uses a READ statement to specify an auxiliary input file

Remarks:
• the READ statement makes the fields from the EMPL–FILE available for use
• the COLUMNS statement includes the SOCIAL–SEC–NUM field from the EMPL–FILE
• we also sorted the report on the SOCIAL–SEC–NUM field from the EMPL–FILE
• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field

by that name exists in both input files

These Control Statements:

INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
SORT: SOCIAL–SEC–NUM
TITLE: 'SALES SORTED BY SOCIAL SECURITY NUMBER'
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Produce this Report:

 SALES SORTED BY SOCIAL SECURITY NUMBER

 SALES
 FILE SOCIAL
 EMPL EMPL SEC SALES PRODUCT
 NAME NUM NUM DATE CUSTOMER AMOUNT CODE

JOHNSON 039 004-77-9981 04/05/95 MARYS ANTIQUES 9.98 997
JOHNSON 039 004-77-9981 04/01/95 VILLA HOTEL 234.45 926
JONES 036 012-09-8765 04/15/95 EZ GROCERY 10.25 977
JONES 036 012-09-8765 04/15/95 TOY TOWN 10.25 977
JONES 036 012-09-8765 04/15/95 TOY TOWN 121.76 907
SIMPSON 041 112-05-0456 04/30/95 J & S LUMBER 23.87 916
SIMPSON 041 112-05-0456 04/01/95 EUROPEAN DELI 14.99 916
THOMAS 045 776-83-8221 04/14/95 YOGURT CITY 9.98 997
BAKER 044 878-19-0156 04/12/95 JACKS CAFE 135.75 916
BAKER 044 878-19-0156 03/26/95 JACKS CAFE 137.00 978
MORRISON 042 900-12-0556 03/30/95 A1 PHOTOGRAPHY 29.65 919
MORRISON 042 900-12-0556 03/29/95 STAR MARKET 44.35 907
JOHNSON 037 912-04-0334 03/12/95 ACE ELECTRICAL 101.38 952
JOHNSON 037 912-04-0334 04/16/95 ACME BUILDING 500.00 976

*** GRAND TOTAL (14 ITEMS) 1,383.66
80 Spectrum Writer User’s Guide

Lesson 9. How to Use Data from More Than One File
Figure 20. A report that uses two READ statements to specify two auxiliary input files

Remarks:
• all fields from the SALES–FILE, the EMPL–FILE and the PRODUCT–FILE are available for use in the

report
• the key to the PRODUCT–FILE is a computed field
• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field

by that name exists in two input files (SALES–FILE and EMPL–FILE)
• the SOCIAL–SEC–NUM field comes from the EMPL–FILE auxiliary input file
• the PRODUCT–DESC field comes from the PRODUCT–FILE auxiliary input file

These Control Statements:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
COMPUTE: PRODKEY = 'P' + PRODUCT–CODE
READ: PRODUCT–FILE READKEY(PRODKEY)
TITLE: 'SALES SORTED BY SOCIAL SECURITY NUMBER'
COLUMNS: EMPL–NAME
 SALES–FILE.EMPL–NUM
 SOCIAL–SEC–NUM
 SALES–DATE
 CUSTOMER
 PRODUCT–CODE
 PRODUCT–DESC

Produce this Report:

 SALES SORTED BY SOCIAL SECURITY NUMBER

 SALES
 FILE SOCIAL
 EMPL EMPL SEC SALES PRODUCT PRODUCT
 NAME NUM NUM DATE CUSTOMER AMOUNT CODE DESC

JOHNSON 039 004-77-9981 04/05/95 MARYS ANTIQUES 9.98 997 MAILING LABELS
JOHNSON 039 004-77-9981 04/01/95 VILLA HOTEL 234.45 926 DESK CALENDARS
JONES 036 012-09-8765 04/15/95 EZ GROCERY 10.25 977 PAPER CLIPS
JONES 036 012-09-8765 04/15/95 TOY TOWN 10.25 977 PAPER CLIPS
JONES 036 012-09-8765 04/15/95 TOY TOWN 121.76 907 INKPADS
SIMPSON 041 112-05-0456 04/30/95 J & S LUMBER 23.87 916 RED PENS
SIMPSON 041 112-05-0456 04/01/95 EUROPEAN DELI 14.99 916 RED PENS
THOMAS 045 776-83-8221 04/14/95 YOGURT CITY 9.98 997 MAILING LABELS
BAKER 044 878-19-0156 04/12/95 JACKS CAFE 135.75 916 RED PENS
BAKER 044 878-19-0156 03/26/95 JACKS CAFE 137.00 978 HOLE PUNCHERS
MORRISON 042 900-12-0556 03/30/95 A1 PHOTOGRAPHY 29.65 919 GREEN PENS
MORRISON 042 900-12-0556 03/29/95 STAR MARKET 44.35 907 INKPADS
JOHNSON 037 912-04-0334 03/12/95 ACE ELECTRICAL 101.38 952 PENCILS (NO. 1)
JOHNSON 037 912-04-0334 04/16/95 ACME BUILDING 500.00 976 CHAIRS

*** GRAND TOTAL (14 ITEMS) 1,383.66
Chapter 2. How to Request a Report 81

Lesson 9. How to Use Data from More Than One File
Summary
Here is a summary of what we learned in this lesson:

! the READ statement is used to read records from auxiliary input files

! the file named in a READ statement must be a keyed file (or a DB2 table)

! you may have as many READ statements as you like in a single report

To Learn More
There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional features include:

! how to assign a record name to the records read from auxiliary input files
(page 228)

! how to read multiple records (containing different keys) from the same auxiliary
input file (page 224)

! how to use data from one auxiliary input file as the read key to another
auxiliary input file (page 226)

! how to specify generic keys and "KGE" keys in the READ statement (page 230)

! how to read multiple records (with the same key or partial key) from the
auxiliary input file (page 232)

! what happens when no record is found for a particular read key (page 229)

! how to determine whether the read for a particular key was successful or not
(page 230)

! how to use the READ statement to obtain data from a DB2 table or view
(page 393)

! how to use the ONIOERROR option to increase the severity of I/O errors on an
input file (page 586)

The complete syntax for the READ statement, as well as a more detailed narrative of how
Spectrum Writer assembles input records during the report process, is given in Chapter 10,
"Control Statement Syntax" (page 578).
82 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 3. How to Request a PC File

Chapter Table of Contents

Chapter 3. How to Request a PC File . 83

Lesson 1. How to Produce a PC File in 5 Minutes . 88
Converting a Whole Mainframe File . 88
Another 5–Minute Example . 90
Using Your Company's Files . 90

Lesson 2. How to Include Only Certain Records In Your PC File . 93
How to Use the INCLUDEIF Statement . 93
How to Write Conditional Expressions . 95

Lesson 3. How to Create Your Own Fields . 98
Creating Numeric Fields . 98
Creating Character Fields . 100
Assigning Values to Fields Based on Conditions. 102

Lesson 4. How to Specify the PC File Order . 105
How to Use the SORT Statement . 105
Automatic Sorting. 105

Lesson 5. How to Create Control Breaks . 108
How to Use the BREAK Statement . 108
Customizing the Control Break . 108

Lesson 6. How to Create Summary Files . 113
How to Create a Summary File. 113

Lesson 7. How to Use Data from More Than One File. 116
How Auxiliary Input Files Are Processed . 116
How to Use the READ Statement. 117
"One-to-Many" Random Reads . 120
How to Use Multiple READ Statements . 120
Chapter 3. How to Request a PC File 83

Chapter 3. How to Request a PC File

This chapter teaches you how to turn mainframe data into PC files to use in your favorite
PC program. Spectrum Writer makes using mainframe data in PC programs as easy as
1-2-3.

1. Use Spectrum Writer to create a custom PC file on your mainframe.
Spectrum Writer's language is non–procedural, which means you just describe the
result you want, not the programming steps needed to do it. Describe your PC file
with a few simple "control statements". (These control statements are the same ones
you already learned about in the previous chapter.) You can create a PC file with just
three control statements. The lessons in this chapter teach you how to use the control
statements.

Once you've written the necessary control statements, submit a batch job to execute
Spectrum Writer. Spectrum Writer examines the control statements describing the
PC file you want. It automatically locates the appropriate "file definition" statements
stored in a copy library. (These statements define your mainframe files.) Spectrum
Writer then accesses the mainframe data and creates the desired PC file on your
mainframe.

2. Download the PC file to your PC.
Just use your shop's existing download facility to transfer the PC file to your PC.

3. Use the PC file in your PC program.
Start the PC program and "open" or "import" the PC file with a few simple
keystrokes. When you use the PC file in a spreadsheet program, for example, the
program automatically moves the data into the correct rows and columns. Each
downloaded record results in one row in a spreadsheet. And each field becomes a
column in a spreadsheet.

Using mainframe data in your favorite PC program is as easy as that with Spectrum Writer!

How to Request a PC File
84 Spectrum Writer User’s Guide

How to Request a PC File
File Definition
Statements

Input Files
(Raw Data)

OPTIONS: PC
INPUT: SALES FILE
COLUMNS: REGION EMPL-NAME

FILE: SALES-FILE DDNAME(SALEFILE)
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)

" ","EMPL","SALES"
"REGION","NAME","DATE"
" "
"SOUTH","JOHNSON ","03/12/95"
"WEST ","BAKER ","03/26/95" Mainframe

Step 1. Create PC file on mainframe

Step 2. Download
PC file to PC

Spectrum Writer

PC File

JONES.....036NORTH9770010250.37950415TOY T
JONES.....036NORTH9460121760.37950415TOY T
JOHNSON...039NORTH9260234450.36950401F7 GR

Control
Statements

Step 3. Use PC file in PC program
Chapter 3. How to Request a PC File 85

How to Request a PC File
Figure 21 lists all of the Spectrum Writer control statements available when requesting PC
files and describes the function of each one.

The remainder of this chapter is divided into seven easy lessons that explain how to use the
various control statements to request PC files.

After reading just the first lesson, you will be able to produce useful PC files with Spectrum
Writer. The other lessons introduce additional control statements, and explain their roles in
producing increasingly sophisticated PC files. It is not necessary to read all of the other
lessons initially. Nor is it necessary to read the lessons in sequential order. Read the
summaries below and decide which lessons you need for the kind of PC files you want to
produce.

Lesson 1. How to Produce a PC File in 5 Minutes.
This lesson shows how to produce PC files using just three simple control
statements — the INPUT, COLUMNS and OPTIONS statements. You will use
these three statements for every PC file you make.

Lesson 2. How to Include Only Certain Records In Your PC File.
This lesson shows how to use the INCLUDEIF statement to specify which
mainframe records to include in your PC file.

Lesson 3. How to Create Your Own Fields.
This lesson shows you how to create your own fields by performing
computations on existing fields. This is done with the COMPUTE statement.

Lesson 4. How to Specify the PC File Order.
This lesson shows how to sort your PC file into whatever order you want.
The use of the SORT statement is explained.

Lesson 5. How to Create Control Breaks.
This lesson shows how to break a PC file up into sections, with subtotals
appearing at the end of each section. The use of the BREAK statement to
request such "control breaks" is explained.

Lesson 6. How to Create Summary Files.
This lesson shows you how to turn a PC file with subtotals into a small
summary file that is more easily downloaded to a PC.

Lesson 7. How to Use Data from More Than One File.
This lesson shows how easy it is to read records from additional files when
producing PC files. By adding a single READ statement, you automatically
have access to all of the fields from an additional file.

These lessons show the most common use of each control statement. Most control
statements also have additional features that are not discussed in these lessons. Additional
ways to use these control statements are discussed in Chapter 4, "Beyond the Basics." The
complete syntax for each control statement is shown in Chapter 10, "Control Statement
Syntax."
86 Spectrum Writer User’s Guide

How to Request a PC File
SPECTRUM WRITER CONTROL STATEMENTS
(GROUPED BY FUNCTION)

Statements that Define How Input Data Looks
FILE Defines a file
FIELD Defines a field within a file
ASM Defines a file using an Assembler record layout
COBOL Defines a file using a Cobol record layout
COMPUTE Computes a new user-defined field

Statements that Specify the Input Files to Use to Make the PC File
INPUT Specifies the primary input file
READ Specifies an auxiliary input file

Statements that Describe the Body of a PC File
INCLUDEIF Specifies which input records to include in the PC file
COLUMNS Specifies the PC file’s columns and column headings

Statements that Define the PC File Order and Control Breaks
SORT Specifies the PC file order and, optionally, specifies control break

fields
BREAK Specifies control break processing

Miscellaneous Statements
OPTIONS Specifies the kind of PC file needed, as well as various other special

options
NEWOUT Indicates that subsequent statements will define a new PC file
COPY Copies additional control statements for processing

Figure 21. Spectrum Writer Control Statements for making PC Files
Chapter 3. How to Request a PC File 87

Lesson 1. How to Produce a PC File
in 5 Minutes

This lesson teaches you how to turn your mainframe data into PC files using just three
simple control statements. These statements are:

! the OPTIONS statement

! the INPUT statement

! the COLUMNS statement

Converting a Whole Mainframe File

With Spectrum Writer, it only takes three statements to convert an entire mainframe file
into a comma-delimited PC file, ready to import into your favorite PC program:

OPTION: PC
INPUT: SALES-FILE
COLUMNS: SALES-FILE

Figure 22 shows a portion of the PC file created with the above statements. It also shows
the spreadsheet obtained by importing the PC file into Excel.

Let’s examine what each statement does. The OPTION statement above tells Spectrum
Writer that you want to produce a comma-delimited PC file (instead of a report) in this run.
Such PC files can be imported into virtually any PC spreadsheet, data base or word
processing program.

The INPUT statement identifies the mainframe file that contains the data that you want to
put into your PC file. In this case, we specified SALES–FILE. This is a sample "sales file"
that is used in many of the examples in this manual. This file contains information about
each sale made by the employees of an imaginary company.

The COLUMNS statement specifies what columns of data we want in our PC spreadsheet.
Here you can name the individual fields from the input file that you want to use to populate
the columns of the spreadsheet. However, in this example we named the input file itself.
That means that we want a column in the spreadsheet for every field in the input file.

With just these three statements, we've given Spectrum Writer everything it needs to turn
mainframe data into a PC file! That's all there is to creating custom PC files with Spectrum
Writer. Three simple statements let you accomplish what would otherwise have taken an
entire COBOL program to do!

Note: The JCL used to create this PC file is shown on page 416 for OS/390 (page 430
for VSE).
88 Spectrum Writer User’s Guide

Lesson 1. How to Produce a PC File in 5 Minutes
Figure 22. An Excel spreadsheet containing the entire mainframe SALES-FILE took only 3 statements

These Control Statements:

OPTION: PC
INPUT: SALES-FILE
COLUMNS: SALES-FILE

Produced this PC File:
" "," ","BACKUP"," "," "," "," "," "," "," "," ","TIME"
"EMPL","EMPL","EMPL"," "," "," ","COMMISSION","SALES","SALES"," "," ","ON"
"NAME","NUM","NUM","REGION","AMOUNT","TAX","RATE","DATE","TIME","CUSTOMER","TELEPHONE","PHONE"
" "," "," "," "," "," "," "," "," "," "," "," "
"JOHNSON ","037","041","SOUTH", 101.38, 6.09, 0.350,"03/12/95","10:25:00","ACE ELECTRICAL ", 2135559871,"00:00:07.9"
"BAKER ","044","045","WEST ", 137.00, 8.22, 0.360,"03/26/95","12:09:09","JACKS CAFE ", 2145551124,"00:00:10.2"
"MORRISON ","042","036","EAST ", 44.35, 2.66, 0.360,"03/29/95","15:30:22","STAR MARKET ", 4085557654,"00:00:59.9"
"MORRISON ","042","045","EAST ", 29.65, 1.78, 0.360,"03/30/95","19:05:41","A1 PHOTOGRAPHY ", 4085557786,"00:01:00.0"

(additional lines not shown)

Which Results in this Excel Spreadsheet:
Chapter 3. How to Request a PC File 89

Lesson 1. How to Produce a PC File in 5 Minutes
Another 5–Minute Example

Now let's make another PC file, this time using a different input file. This time we will
create a Quattro Pro spreadsheet using data from the EMPL–FILE. EMPL–FILE is a sample
employee file. We will create a simple employee directory from that file. In this example,
we don’t need every field from the EMPL-FILE. We just want the spreadsheet to have
columns showing: employee number, last name, first name, sex, social security number,
date hired, and their city and state. We only need the following three statements:

OPTIONS: PC
INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

The OPTIONS statement above again specifies that we want to create a PC file rather than a
report. The INPUT statement above specifies that the data we need for the PC file will come
from the employee file (EMPL–FILE). The COLUMNS statement specifies the columns of data
we want. Notice that we needed two lines for the COLUMNS statement in this example. You
can continue a control statement onto as many lines as you need to. Just leave at least one
blank space at the beginning of each continuation line.

The Quattro Pro spreadsheet resulting from the above statements is shown in Figure 23.

You have now seen two examples showing just how easy it is to create PC files with
Spectrum Writer. That's all there is to it! You now know enough to request basic PC files
from the files at your company.

Using Your Company's Files

You may be wondering how Spectrum Writer knows the names of your company's files
and fields. The answer is that your company's files are defined to Spectrum Writer by other
control statements that are kept in a Spectrum Writer "copy library." For example, the
statements used to define the sample files used in the preceding examples are shown in
Appendix F, "Files Used in Examples" (page 648).

For a list of the file names and field names available for you to use, ask your programmer.
They can print that information from the Spectrum Writer Copy Library, in a format similar
to that shown in Appendix F.

If you already know the name of the file to use, you can use a "dummy" run to easily get a
list of all of its fields. Just use an INPUT statement with the SHOWFLDS(YES) parm, like this:

INPUT: SALES–FILE SHOWFLDS(YES)

The above statement tells Spectrum Writer to print (in the control statement listing) a list
of all of the fields defined for SALES–FILE.

If a file that you need to use has not yet been defined, see Chapter 6, "How to Define Your
Input Files" to learn how to do that.
90 Spectrum Writer User’s Guide

Lesson 1. How to Produce a PC File in 5 Minutes
Figure 23. A Quattro Pro employee directory produced with just three control statements

These Control Statements:
OPTIONS: PC
INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

Result in this Quattro Pro Spreadsheet:
Chapter 3. How to Request a PC File 91

Lesson 1. How to Produce a PC File in 5 Minutes
Summary 3

Here is a summary of what we learned in this lesson:

! the OPTIONS statement lets you request that a PC file be produced, instead of a
report

! the INPUT statement tells Spectrum Writer which mainframe input file contains
the data needed in your PC file

! the COLUMNS statement tells Spectrum Writer what "columns" of data to put in
your PC file

! by using just these three statements you can produce a PC file

The next lesson will teach you how to limit the records that are included in your PC file.

To Learn More
To learn more about writing control statements in general, see Chapter 9, "General Syntax
Rules." In that chapter you will learn such things as:

! how long each line can be (page 443)

! how to continue control statements onto multiple lines (page 444)

There are some additional features associated with the OPTIONS, INPUT and COLUMNS
statements which we have not covered in this lesson. Some of these additional features are
discussed in Chapter 4, "Beyond the Basics." Examples of additional features are:

! how to specify your own column headings for a PC file (page 130)

! how to suppress column headings in your PC file (page 130)

! how to reserve more room for numeric columns in your PC file (page 135)

! how to create a column that contains a literal text (page 126)

! how to produce multiple rows in the PC file for each input record (page 151)

! how to turn data from DB2 tables and views into PC files (page 397)

! how to turn data from existing mainframe reports into PC files (page 258)

! how to customize your PC file, by specifying such things as: the delimiter
character to use, the "text qualifier" character to use (for example, a quotation
mark), the date format to use, whether to enclose dates in quotation marks, etc.
(page 275)

The complete syntax for the OPTIONS, INPUT and COLUMNS statements appears in
Chapter 10, "Control Statement Syntax" (pages 555, 542 and 498 respectively).
92 Spectrum Writer User’s Guide

Lesson 2. How to Include Only Certain
Records In Your PC File

This lesson teaches you how to select only certain records from the input file for inclusion
in your PC file. The control statement discussed is:

! the INCLUDEIF statement

How to Use the INCLUDEIF Statement

In the previous lesson we saw how to select certain fields to be downloaded. (We used the
COLUMNS statement to identify the fields that we wanted.) Now let's look at how to
download only selected records from the mainframe file. We will use the INCLUDEIF
("include if") statement.

When no INCLUDEIF statement is specified, Spectrum Writer includes every record from the
mainframe file. Use the INCLUDEIF statement to tell Spectrum Writer to "include" a record
in the PC file only "if" one or more conditions are met.

This feature is very useful when you are working with large mainframe files. Downloading
the entire file might take a long time (and use up lots of hard disk). Using the INCLUDEIF
statement lets you download only the records that you actually need.

For example, assume that we want to download data from the SALES–FILE to a spreadsheet
similar to the one in Figure 22 (page 89). But this time let's just download the data for the
employee named Jones. We simply add the following INCLUDEIF statement to our other
control statements:

INCLUDEIF: EMPL–NAME = 'JONES'

The above INCLUDEIF statement tells Spectrum Writer to "include" records from the
SALES–FILE “if" the EMPL–NAME field is equal to 'JONES'. Spectrum Writer still reads
through the entire SALES–FILE, just like before. But now it examines each record before
including it in the PC file. If the record's EMPL–NAME field contains the value 'JONES', then
the record is included in the PC file. If the EMPL–NAME field contains any other value, then
that record is not included in the PC file.

Figure 24 shows an Access table produced using the above statement. Only the sales made
by Jones appear in that table.

Note: Notice that we specified an additional option in the OPTIONS statement in this
example. The NOCOLHDG option tells Spectrum Writer that we do not want column
headings in the PC file. Column headings are often desirable in file imported into
spreadsheets. But this PC file is being imported into an Access database. The
records should all contain real data. During the import process, Access let us
manually specify a "field name" to use for each column.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per run, but it may contain as many conditions as you like.
Chapter 3. How to Request a PC File 93

Lesson 2. How to Include Only Certain Records In Your PC File
Figure 24. Using an INCLUDEIF statement to specify which records to include in a PC file

These Control Statements:

OPTIONS: PC NOCOLHDG
INPUT: SALES-FILE
INCLUDEIF: EMPL–NAME = 'JONES'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Access Table:
94 Spectrum Writer User’s Guide

Lesson 2. How to Include Only Certain Records In Your PC File
By the way, the INCLUDEIF statement can refer to any of the fields in the input file (as well
as any COMPUTE field). You are not limited to just the fields that are listed in the COLUMNS
statement.

How to Write Conditional Expressions

The INCLUDEIF statement simply contains a conditional expression. The complete rules for
writing conditional expressions are explained in "Conditional Expressions" (page 459).
Briefly, a conditional expression contains one or more "conditions," separated with the
words AND or OR. A condition usually involves comparing the contents of one field with
the contents of another field, or with a literal value. Let's look at some more examples of
INCLUDEIF statements and their conditional expressions.

Note: If you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1, and
BASIC. If you are familiar with any of these languages, you should find it especially
easy to write INCLUDEIF statements.

You may want your PC file to include all records which do not contain a certain value. Do
this by specifying "not equal" in your condition. For example:

INCLUDEIF: EMPL–NAME ¬= 'JONES'

The above statement specifies that the PC file should include all records from the input file
whose EMPL–NAME field is not equal to 'JONES'.

Note: In addition to ¬=, you can also use <> to indicate "not equal", like this:

INCLUDEIF: EMPL–NAME <> 'JONES'

You may want to include a record in your PC file if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR. Consider
the following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR AMOUNT > 100

The above statement states that a record should be included in the PC file "if the
EMPL–NAME field is equal to 'JONES' or if the AMOUNT field is greater than 100." The word
OR indicates that records from the input file will be included if either one (or both) of the
conditions are true.

Notice in the above statement that we enclosed 'JONES' in single quotation marks, while we
did not use quotation marks around the 100. That is because EMPL–NAME is a character
field, while AMOUNT is a numeric field. Character literals (such as 'JONES') must be
enclosed in quotation marks. You can use either single (') or double (") quotation marks.
But numeric literal (such as 100), as well as date and time literals, are not enclosed in
quotation marks. Numeric literal also must not contain commas. (The rules for writing
literals are thoroughly explained in "How to Write Literals" on page 448.)

As another example, you may want to include records in your PC file when both of two
conditions are true. For example, let's say we want a listing only of sales that were made
by Jones and that were also for an amount over $100. For this PC file, two conditions must
Chapter 3. How to Request a PC File 95

Lesson 2. How to Include Only Certain Records In Your PC File
both be true: the EMPL–NAME field must be equal to 'JONES' and the AMOUNT field must be
over 100. Use the word AND to specify that both conditions must be true, like this:

INCLUDEIF: EMPL–NAME = 'JONES' AND AMOUNT > 100

Now as Spectrum Writer reads each record from the input file, it will include a record in
the PC file only "if the EMPL–NAME field is equal to 'JONES' and the AMOUNT field is greater
than 100."

Here is an example of including records in a PC file based on the contents of a date field:
INCLUDEIF: SALES–DATE > 4/15/1995

The above statement specifies that records should be included in the PC file only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Note: You may be wondering if you need to use a different format for your date
literals when you know that a particular date field is stored in a record as a Julian
date (YYDDD format.) The answer is no. All date literals in your control statements
should be written as MM/DD/YYYY (or MM/DD/YY). Spectrum Writer automatically
takes care of any date conversions that may be required. Thus, you test Julian date
fields just like all other date fields:

INCLUDEIF: JULIAN-START-DATE >= 1/1/2000

Here is an example of including records in a PC file based on the contents of a time field:
INCLUDEIF: SALES–TIME < 17:00:00

The above statement specifies that records should be included in the PC file only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM).

Note: You are allowed to omit the seconds in your time literals, if you prefer. When
the seconds are not specified, zero seconds is assumed. Thus, you could also write
the above statement this way:

INCLUDEIF: SALES–TIME < 17:00

If your INCLUDEIF statement contains both the words OR and AND, you should use
parentheses to indicate the order in which to perform the comparisons. Consider the
following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR
 (SALES–DATE > 4/15/1995 AND SALES–DATE < 4/30/1995)

In the above statement, records will be included if the EMPL–NAME field is equal to 'JONES',
or if both of the SALES–DATE comparisons are true. The parentheses cause the two
SALES–DATE comparisons to be treated as one condition. That condition is true if the
SALES–DATE is greater than April 15, 1995 and is less than April 30, 1995.

Note: In addition to the actual words AND and OR, you can also use the symbols "&"
and "|", respectively, in your conditional expressions.
96 Spectrum Writer User’s Guide

Lesson 2. How to Include Only Certain Records In Your PC File
Summary
Here is a summary of what we learned in this lesson:

! use the INCLUDEIF statement when you want to include only certain records from
the input file in your PC file

! the INCLUDEIF statement contains one or more conditions, separated by the words
AND or OR

! groups of conditions can be enclosed in parentheses, to indicate the order in
which the comparisons should be performed

The next lesson will show you how to compute your own new fields to download to your
PC.

To Learn More
There are some additional features associated with the INCLUDEIF statement which we have
not covered in this lesson. These additional features are discussed in "Conditional
Expressions" (page 459). The additional features include:

! how to use the keyword NOT (or the symbol ¬) to negate a condition (page 469)

! how to scan a character field, to see if a certain text exists anywhere within the
field (page 460)

! how to specify conditions based on bit fields (page 465)

! how to specify a condition based on a field's raw hexadecimal value (page 464)

! what to do if you prefer to specify date literals in DD/MM/YY or DD/MM/YYYY
format (page 140), like this:

INCLUDEIF: SALES–DATE > 15/4/1995

! how the KEYRANGE and STOPWHEN parms of the INPUT statement can be used to
limit the records included in your run (page 542)

The complete syntax for the INCLUDEIF statement appears in Chapter 10, "Control
Statement Syntax" (page 540).
Chapter 3. How to Request a PC File 97

Lesson 3. How to Create Your Own Fields

This lesson teaches you how to create your own fields to include in your PC file. The
control statement discussed is:

! the COMPUTE statement

Sometimes the data you need to download to your PC program is not contained in the input
file. Yet the necessary data might be easily computed from one or more fields which are
in the input file. In such cases, simply create a new field by using the COMPUTE statement.

Creating Numeric Fields

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed in "Computational Expressions" (page 472).
Generally, your expression will consist of one or more arithmetic operations performed on
numeric fields and/or numeric literals.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can
use the COMPUTE statement to create a new field containing the total amount due just by
adding those two fields together, like this:

COMPUTE: TOTAL–AMOUNT = AMOUNT + TAX

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column of data in your PC file; as a sort field; as a control
break field; as part of a conditional expression (in the INCLUDEIF statement); even as an
operand in subsequent COMPUTE statements to create other fields.

The Access table in Figure 25 was obtained by using the above COMPUTE statement.

COMPUTE statements normally appear somewhere after the INPUT statement. The COMPUTE
statement must appear before any other control statement that refers to the field being
created. In Figure 25, the COMPUTE statement for TOTAL–AMOUNT had to come before the
COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE
statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note: When performing subtraction, always put a blank space before and after
the minus sign. Otherwise, the minus sign will appear to be part of a field name.
Blanks are optional around the other arithmetic operators.
98 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 25. Using the COMPUTE statement to create numeric fields for a PC file

These Control Statements:
OPTIONS: PC NOCOLHDG
INPUT: SALES-FILE
COMPUTE: TOTAL-AMOUNT = AMOUNT + TAX
COMPUTE: SALES-COMMISSION(2) = TOTAL-AMOUNT * .33
COLUMNS: EMPL-NAME CUSTOMER AMOUNT TAX TOTAL-AMOUNT SALES-COMMISSION

Result in this Microsoft Access table:
Chapter 3. How to Request a PC File 99

Lesson 3. How to Create Your Own Fields
As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

COMPUTE: SALES–COMMISSION(2) = TOTAL–AMOUNT * .33

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE
statement to perform the computation in this statement.

The "(2)" after SALES–COMMISSION tells Spectrum Writer that we want that field to have 2
decimal places. Without that parm, Spectrum Writer would have defaulted to keeping 4
decimal places (in this example).

The Access table in Figure 25 (page 99) uses the above statement.

In addition to the basic arithmetic operations, there are also a large number of built–in
functions that you can use in the COMPUTE statement. These built–in functions allow you
to perform more complex mathematical operations on numeric operands. A complete list
of built–in functions is found in Appendix D, "Built-In Functions" (page 628).

Creating Character Fields

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you. "Concatenating"
simply means "stringing together" two or more character fields.) The plus sign (+) is used
as the symbol for concatenation. For example:

COMPUTE: WHOLE–NAME = LAST–NAME + FIRST–NAME

The above statement creates a new field named WHOLE–NAME. It is created by
concatenating the contents of the LAST–NAME field and the contents of the FIRST–NAME
field. The result is a single field which now contains both the last and first names of the
employee. The new field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together. For example:
COMPUTE: MAILING–CODE = STATE + '—' + EMPL–NUM

This example creates a new field called MAILING–CODE which consists of the contents of
the STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions that
can be used when creating character fields. For example, the #LEFT function can be used to
extract the leftmost n bytes of a character field. Here is an example of how to use the #LEFT
built–in function:

COMPUTE: FIRST–INITIAL = #LEFT(FIRST–NAME,1)

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.

Figure 26 shows a spreadsheet that uses each of the above COMPUTE statements.
100 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 26. Using the COMPUTE statement to create character fields for a PC file

These Control Statements:
OPTIONS: PC
INPUT: EMPL-FILE
COMPUTE: WHOLE-NAME = LAST-NAME + FIRST-NAME
COMPUTE: MAILING-CODE = STATE + '-' + EMPL-NUM
COMPUTE: FIRST-INITIAL = #LEFT(FIRST-NAME,1)
COLUMNS: EMPL-NUM WHOLE-NAME MAILING-CODE FIRST-INITIAL CITY STATE

Result in this Lotus 1-2-3 spreadsheet:
Chapter 3. How to Request a PC File 101

Lesson 3. How to Create Your Own Fields
Assigning Values to Fields Based on Conditions

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE
statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In conditional
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that you
specify. Conditional COMPUTE statements can be very powerful tools in producing PC files.
Here is an example of a conditional COMPUTE statement:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)

The above statement creates a field named BONUS. However, in this example the BONUS
field can be computed in one of two ways: for employees hired before January 1, 1980, the
bonus is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or after
January 1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Spectrum Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value to
BONUS. (Any remaining WHEN parms are not evaluated.)

You may have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE
statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm. For example:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above statement has the same effect as the previous example, but is a little simpler. It
has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields. For example:
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')

The above statement creates a new field called TITLE. The contents of TITLE will be "MR" if
the SEX field contains an "M", and "MS" otherwise.

Figure 27 shows a Lotus spreadsheet obtained by using some of the conditional COMPUTE
statements just discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces is
assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You
can, however, use any valid conditional expression within the WHEN parm. The conditional
expression can contain as many different conditions as you like, separated with the words
AND and OR, and optionally grouped with parentheses. (A conditional expression is the sort
of expression that is allowed in the INCLUDEIF statement, as was described in "How to Write
102 Spectrum Writer User’s Guide

Lesson 3. How to Create Your Own Fields
Figure 27. Assigning values to computed fields based on conditions

These Control Statements:

OPTIONS: PC
INPUT: EMPL–FILE
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
COLUMNS: TITLE LAST–NAME FIRST–NAME SEX HIRE–DATE TOTAL–SALES BONUS

Result in this Lotus 1-2-3 spreadsheet:
Chapter 3. How to Request a PC File 103

Lesson 3. How to Create Your Own Fields
Conditional Expressions" on page 95.) The complete rules for writing conditional
expressions are given in "Conditional Expressions" (page 459). Additional examples of
COMPUTE statements are shown beginning on page 513.

Summary
Here is a summary of what we learned in this lesson:

! the COMPUTE statement is used to create new fields

! a simple COMPUTE statement assigns the result of a single computational
expression to a new field

! a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will teach you how to sort your PC file into whatever order you want.

To Learn More
There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Examples of additional topics include:

! how to create date fields (page 514)

! how to create time fields (page 272)

! how to create bit (boolean) fields (page 514)

! how to specify how many decimal places a numeric or time field should contain
(page 511)

! how to specify column headings for the fields you create (page 511)

! how to specify how your field should be formatted when it is printed in a report
(page 510)

! how to specify whether a numeric or time field should be totalled in the Grand
Totals line at the end of the report (page 148)

! how to retain the previous value of a COMPUTE field in certain cases (page 234)

The complete syntax for the COMPUTE statement appears in Chapter 10, "Control
Statement Syntax" (page 506).
104 Spectrum Writer User’s Guide

Lesson 4. How to Specify the PC File Order

This lesson teaches you how to sort your PC file into any order you want. The control
statement discussed is:

! the SORT statement

How to Use the SORT Statement

When no SORT statement is specified, Spectrum Writer defaults to writing out the PC file
records in their original input file order. For example, the records in the sample SALES–FILE
are stored in sales date order. Therefore, the sales spreadsheets in the previous lessons (for
example, page 89) all appeared in sales date order. The EMPL–FILE sample file is a VSAM
file stored in EMPL–NUM order. Therefore, the earlier spreadsheets from that file were in
employee number order (see page 101 for an example).

To create a PC file in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per run,
but it may contain as many "sort fields" as you like. Spectrum Writer will sort your PC file
on all of the sort fields.

For example, let's request a PC file from the SALES–FILE and sort it on three fields:
SORT: REGION EMPL–NAME SALES–DATE

To begin with, the PC file will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using
the second sort field, EMPL–NAME. Records having the same value for both the REGION and
the EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE.

Figure 28 shows a Microsoft Works spreadsheet obtained by using the above statement.

By the way, the SORT statement can refer to any of the fields in the input file (as well as
any COMPUTE field). You are not limited to just the fields that are listed in the COLUMNS
statement.

By default, Spectrum Writer sorts PC files into ascending order on each sort field. If you
want to sort the PC file into descending order for a field, put the DESCENDING parm (or
just DESC) in parentheses immediately after the field name. For example, to sort a PC file
into reverse employee number order, you could use this SORT statement:

SORT: EMPL–NUM(DESC)

Automatic Sorting

If you prefer, you can let Spectrum Writer automatically sort your PC file for you. To have
your PC file automatically sorted on its first 5 columns of data, simply specify the
AUTOSORT option, like this:

OPTIONS: AUTOSORT
Chapter 3. How to Request a PC File 105

Lesson 4. How to Specify the PC File Order
Figure 28. Using a SORT statement to specify the sort order of a PC file

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Microsoft Works Spreadsheet:
106 Spectrum Writer User’s Guide

Lesson 4. How to Specify the PC File Order
Summary
Here is a summary of what we learned in this lesson:

! use the SORT statement to sort your PC files

! you can sort on multiple sort fields

! you can sort in either ascending or descending order

The next lesson will teach you how to create control breaks and include subtotals in your
PC file.

To Learn More
There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional features include:

! creating a control break with the SORT statement (page 177)

! requesting totals and statistics with the SORT statement (page 186)

The complete syntax for the SORT statement is given in Chapter 10, "Control Statement
Syntax" (page 595).
Chapter 3. How to Request a PC File 107

Lesson 5. How to Create Control Breaks

This lesson teaches you what control breaks are, and shows how to request them for your
PC file. This lesson also shows how to include subtotals and other statistics in your PC file.
The control statement discussed is:

! the BREAK statement

How to Use the BREAK Statement

If you are not a programmer the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your PC files much more
useful.

Consider the result of sorting a PC file on some field. By sorting on a field, we group
together all the rows that contain a particular value for that field. For example, in the
spreadsheet on page 106 we sorted first of all on the REGION field. As you can see, this
caused the spreadsheet rows to be grouped together by region. All of the rows for the East
region appear together at the beginning of the spreadsheet. Next come all of the rows for
the North region, and so on. By sorting on the REGION field, we grouped together all of the
rows for each region.

Often it is desirable to perform special processing whenever one such group of rows ends
and another group is about to begin. For example, you might want to have a row of totals
for the group that just ended. You might also want a few blank rows after the totals to
separate the different groups. Such processing is called control break processing. A
control break is said to occur whenever one group of rows ends and another group is about
to begin. The field that is being grouped (for example, REGION) is called the control break
field (or often just the break field). A control break field must also be a sort field, since it
is by being sorted that rows are grouped together in the first place.

You may designate any sort field as a control break field. Just name the field in a BREAK
statement:

SORT: REGION EMPL–NAME SALES–DATE
BREAK: REGION

The above statement makes REGION a control break field. Now we will get REGION totals
in the resulting spreadsheet whenever one region ends and another region is about to begin.

Figure 29 shows an Excel spreadsheet obtained by using the BREAK statement above to
produce a control break.

Customizing the Control Break

The Excel spreadsheet in Figure 29 shows what Spectrum Writer's default total row looks
like. It begins with the value of the break field just ended (the REGION field, in this
example). The next column contains the number of items in the control group just ended.
(For example, there are 4 items in the control group for the East region.) Following this are
108 Spectrum Writer User’s Guide

Lesson 5. How to Create Control Breaks
Figure 29. Using the BREAK statement to create a control break with subtotals in a PC file

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Excel Spreadsheet:
Chapter 3. How to Request a PC File 109

Lesson 5. How to Create Control Breaks
columns containing the total values for each numeric column in the spreadsheet (the
AMOUNT and TAX fields, in this example).

The most common use of total rows is in "summary files" where the detail rows are
suppressed, leaving just the total rows (see next lesson). Therefore, this default total row is
designed to contain just the significant information for a control group. It does not contain
any empty columns. If you are producing a spreadsheet that contains both detail rows and
total rows, however, you may want to insert some blank columns in the total row. That lets
you put the numeric totals in the same spreadsheet column as the corresponding detail
values.

You can customize the total line at a control break by using the FOOTING parm in the BREAK
statement. Consider this BREAK statement:

BREAK: REGION NOTOTALS
 FOOTING(REGION ' ' ' ' ' ' ' ' AMOUNT(TOTAL) TAX(TOTAL))

The above statement does two new things:

! the NOTOTALS parm suppresses Spectrum Writer's default total row at the control
break

! the FOOTING parm describes a custom row to replace the default total row at each
control break

The FOOTING parm works very much like the COLUMNS statement. You remember that the
COLUMNS statement tells Spectrum Writer which columns are wanted in the detail rows.
The FOOTING parm tell Spectrum Writer what columns are wanted in the control break row.
The FOOTING parm above specifies that the contents of the REGION field should go in the
first column. Then there will be four blank columns. (Each ' ' is a blank literal which results
in a column that just contains a blank.) After the blank columns, the FOOTING parm
specifies a column containing the total value of the AMOUNT field. And the last column
contains the total value of the TAX field. By inserting four blank columns, the total AMOUNT
and total TAX values line up with the detail rows. You can have as many FOOTING parms as
you want in a BREAK statement. Each FOOTING parm describes one row to insert into the PC
file at the control break.

You can also control the number of blank rows that appear at control breaks. By default,
Spectrum Writer puts two blank rows after the total row at a control break (see page 109).
Use the SPACE parm in your BREAK statement to request a different number of blank lines.
For example:

BREAK: REGION SPACE(1)

The above statement requests just one blank row at the REGION control break. You may also
specify SPACE(0) if you want no blank rows in your spreadsheet.

Figure 30 uses the FOOTING, NOTOTALS and SPACE parms to customize the control break.
110 Spectrum Writer User’s Guide

Lesson 5. How to Create Control Breaks
Figure 30. Using FOOTING parms to customize the total row and create blank rows

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION NOTOTALS
 SPACE(1)
 FOOTING(REGION ' ' ' ' ' ' ' ' AMOUNT(TOTAL) TAX(TOTAL))
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Excel Spreadsheet:
Chapter 3. How to Request a PC File 111

Lesson 5. How to Create Control Breaks
Summary
Here is a summary of what we learned in this lesson:

! use the BREAK statement to specify a control break field

! control break fields must also be sort fields

! use the FOOTING parm to customize the total row at a control break

! use the SPACE parm to specify the number of blank rows at a control break

The next lesson will show you how to turn PC files with control breaks into "summary
files."

To Learn More
There are some additional features associated with the BREAK statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional topics include:

! how to write one or more customized rows at the beginning of a control break
(page 200)

! how to customize the total row, and the other statistical rows (page 182 and
page 186)

! how to suppress the total row at a control break (page 185)

! how to show various statistics at control breaks (page 193)

! how to compute percentages and ratios that apply to an entire control group
(page 202)

! how to have multiple levels of control breaks (page 204)

The complete syntax for the BREAK statement is given Chapter 10, "Control Statement
Syntax" (page 481).
112 Spectrum Writer User’s Guide

Lesson 6. How to Create Summary Files

This lesson teaches you how to produce summary files. The control statement discussed is:

! the OPTIONS statement

How to Create a Summary File

Sometimes you only need summarized data in your PC— not the detail data for each
individual record. Why download the entire mainframe file and summarize the data on
your PC. Instead, let Spectrum Writer perform the summarization for you on the
mainframe. Then just download the small summary file to your PC.

Summarizing a mainframe file with Spectrum Writer is very easy.

For example, consider the Excel spreadsheet we created back on page 109. It is a detail
spreadsheet that lists every sale made in every region. The control break on REGION causes
a total row to appear after the detail rows for each region.

Now let's say we only want to download the total sales amount and tax amount for each
region rather than the amounts for each individual sale. To do that, we need to summarize
the file by region.

By adding the following statement, we can suppress the detail rows and retain just the
region totals:

OPTIONS: SUMMARY

Figure 31 shows a Paradox table obtained by using the above statement. As you can see,
the table has just four rows of actual data — one for each region in the mainframe file. The
first column in each row contains a region name. The second column shows the number of
records that were summarized in order to create that region's total. The last two columns
are the total sales amount and tax amount for the sales in that region.

Using Spectrum Writer's summarization feature can be a tremendous benefit when
working with very large mainframe files (perhaps containing millions of records). The
summarization is done at mainframe speed, and you end up with a much smaller PC file to
download to your PC.
Chapter 3. How to Request a PC File 113

Lesson 6. How to Create Summary Files
Figure 31. A Paradox table containing only summary data

These Control Statements:

OPTIONS: PC SUMMARY NOCOLHDG
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Paradox Table:
114 Spectrum Writer User’s Guide

Lesson 6. How to Create Summary Files
Summary
Here is a summary of what we learned in this lesson:

! use the SUMMARY option (in the OPTIONS statement) to create a summary file

! a summary run must have at least one control break field

The next lesson will show you how to use data from more than one input file in a PC file.

To Learn More
There are some additional features associated with summary files which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Examples of additional features include:

! customizing the summary rows in your PC file (page 182)

! obtaining statistics (such as averages, maximums and minimums) in your
summary file (page 186)

! creating multiple levels of summarization (page 204)

! including a limited number of detail records in each control group, creating
spreadsheets such as "The Top 3 Sales in Each Region" (page 212)
Chapter 3. How to Request a PC File 115

Lesson 7. How to Use Data from More Than One File

This lesson teaches you how to read records from additional input files for use in your PC
file. The control statement discussed is:

! the READ statement

All of the sample PC files produced so far have used data from only one input file. The data
has come from the file specified in the INPUT statement, called the primary input file.
There are times when all of the data needed for a particular PC file will not be found in just
a single file. One of Spectrum Writer's most powerful features is its ability to link to any
number of additional files to produce a PC file.

How Auxiliary Input Files Are Processed

Each PC file is allowed to have only one primary input file, specified in the INPUT
statement. When data from additional input files is required, a READ statement is used. The
READ statement causes a record to be read from another input file, called an auxiliary input
file. You may have as many READ statements as you like in a single run.

By simply adding a READ statement to your request, you automatically make all of the
fields from another whole file available for use in producing your PC file.

Here is how Spectrum Writer processes the primary and auxiliary input files. Spectrum
Writer first reads a single record from the primary input file. (This file is always read
sequentially, beginning with the first record in the file.) Next, if any auxiliary input files
were specified, Spectrum Writer also reads one record from each of those files. (These files
are always read randomly, using a key.) At this point, Spectrum Writer will have read one
record from each of the input files. The fields from all of these records are now available
for use in producing the PC file. These fields can be used:

! as columns of data
! as sort fields
! as control break fields
! in conditional expressions
! in calculations
! and in any other way that fields from the primary input file are used

After processing this set of records, Spectrum Writer then repeats the process. Another
record is read sequentially from the primary input file. Then random reads are performed
to each of the auxiliary input files. This next group of records is then used in making the
PC file, and so on. This process is repeated until there are no more records left in the
primary input file.

By simply adding a READ statement to your request, you automatically make all of the data
fields from another file available for use in producing your PC file.
116 Spectrum Writer User’s Guide

Lesson 7. How to Use Data from More Than One File
There is one important thing about auxiliary input files to keep in mind. Since these files
are ready randomly, they must be keyed files or DB2 tables. (VSAM files are often keyed
files.)

In a keyed file, each record has a unique "key" value associated with it. When a random
read is made to such a file, a read key must be specified to identify which record to read.
What read key should you tell Spectrum Writer to use when reading a record from an
auxiliary input file? In order to be useful, the auxiliary input record should be somehow
related to the primary input record. Usually, the record from the primary input file will
contain the key of a corresponding record in the auxiliary input file. That key from the
primary input file will be used as the read key.

Note: If you are not familiar with such terms as "keyed files" and "read keys," ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement

Now let's look at a concrete example of how to use the READ statement. Begin by
considering Figure 32, which shows a spreadsheet that uses only a primary input file (the
SALES–FILE). This spreadsheet shows information about each sale made by an employee.
This spreadsheet includes columns for two fields that we haven't used in previous
examples, so we'll explain them. They are the EMPL–NUM field and the PRODUCT–CODE
field. The EMPL–NUM is the employee number of the employee who made the sale. The
PRODUCT–CODE is a code that identifies the product that was sold to the customer.

Now, let's assume that we want this spreadsheet to also show each employee's social
security number. The social security number is not available in the SALES–FILE. But it is
a field in the EMPL–FILE. (See page 91.) In order to produce such a spreadsheet, we need
data from a second input file — the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records
in the SALES–FILE also contain an employee number, so we can use that field as the "read
key" to use when we read the EMPL–FILE. That means we can make the EMPL–FILE an
auxiliary input file by simply adding this statement:

READ: EMPL–FILE READKEY(EMPL–NUM)

This READ statement tells Spectrum Writer to use the EMPL–NUM field from the records in
the SALES–FILE as a key to read an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well
as to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

COLUMNS: EMPL–NAME SALES–FILE.EMPL–NUM SOCIAL–SEC–NUM
 SALES–DATE CUSTOMER AMOUNT PRODUCT–CODE

Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (like this: SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the
SALES–FILE and the EMPL–FILE. (See Appendix F, "Files Used in Examples" on page 648.)
Since the EMPL–NUM will have the same value in both of the records, it doesn't really matter
which one we specify in the COLUMNS statement, but we do have to specify a unique name.
Chapter 3. How to Request a PC File 117

Lesson 7. How to Use Data from More Than One File
Figure 32. A spreadsheet that uses only the primary input file

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
COLUMNS: EMPL-NAME EMPL-NUM SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Result in this Excel Spreadsheet:
118 Spectrum Writer User’s Guide

Lesson 7. How to Use Data from More Than One File
Figure 33. A spreadsheet that uses a READ statement to specify an auxiliary input file

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
SORT: SOCIAL-SEC-NUM
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Result in this Excel spreadsheet:
Chapter 3. How to Request a PC File 119

Lesson 7. How to Use Data from More Than One File
In this case we specified the EMPL–NUM field from the SALES–FILE. (For more information
on using "record names" to qualify field names, see "How to Name the Input File Records"
on page 228.)

Figure 33 (page 119) shows an Excel spreadsheet obtained by using the above statements.
The spreadsheet now has the desired new column showing each employee's social security
number. Notice that we also sorted the PC file on SOCIAL–SEC–NUM. Remember that you
can use fields from auxiliary input files in any way that you can use fields from the primary
input file.

"One-to-Many" Random Reads

Normally, Spectrum Writer reads just a single record from your auxiliary input file — the
record whose key field matches the READKEY value. If you want to use all of the records
which match the READKEY (or partial READKEY), add the MULTI parm to your READ
statement. When the READ statement has the MULTI parm, Spectrum Writer creates and
processes "logical input records" by matching the primary input file row with each
qualifying record from the auxiliary input file. For more information on how the MULTI
parm works, see "How to Perform "One–to–Many" Reads" on page 232.

How to Use Multiple READ Statements

You may use as many READ statements as you like in a run. For example, the Excel
spreadsheet in Figure 34 uses two READ statements.

The primary input file is once again the SALES–FILE, which contains one record for each
sale made by an employee. It is specified in the INPUT statement:

INPUT: SALES–FILE

To obtain additional data about the employee who made each sale, we use a READ statement
for the EMPL–FILE (just like in the preceding example). The EMPL–NUM field in the
SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

READ: EMPL–FILE READKEY(EMPL–NUM)

To obtain additional information about each product sold, a second READ statement names
the PRODUCT–FILE as another auxiliary input file. (The PRODUCT–FILE is also described in
Appendix F, "Files Used in Examples" on page 648.)

However, there is one minor complication in reading records from this file. The key in the
PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the
read key to the PRODUCT–FILE. But it does contain the 3–byte PRODUCT–CODE field, which
we can use to build the 4–byte read key. A COMPUTE statement is therefore used to create
a new field (called PKEY) which consists of the letter "P" followed by the product code. This
computed field is then used as the read key in the READ statement for the PRODUCT–FILE:

COMPUTE: PKEY = ’P’ + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PKEY)

By having two READ statements in addition to the INPUT statement, the PC file now uses
data from three input files. Data from all of these files can be used in any of the subsequent
120 Spectrum Writer User’s Guide

Lesson 7. How to Use Data from More Than One File
Figure 34. A spreadsheet that uses two READ statements to specify two auxiliary input files

These Control Statements:

OPTIONS: PC
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
COMPUTE: PKEY = 'P' + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PKEY)
SORT: SOCIAL-SEC-NUM
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT
 PRODUCT-CODE PRODUCT-DESC

Result in this Excel Spreadsheet:
Chapter 3. How to Request a PC File 121

Lesson 7. How to Use Data from More Than One File
control statements. In the Excel spreadsheet in Figure 34, the COLUMNS statement uses one
field from each of the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the
EMPL–FILE and the PRODUCT–DESC field from the PRODUCT–FILE:

COLUMNS: EMPL–NAME
 SALES–FILE.EMPL–NUM
 SOCIAL–SEC–NUM
 SALES–DATE
 CUSTOMER
 PRODUCT–CODE
 PRODUCT–DESC

Summary
Here is a summary of what we learned in this lesson:

! the READ statement is used to read records from auxiliary input files

! the file named in a READ statement must be a keyed file (or a DB2 table)

! you may have as many READ statements as you like in a single run

To Learn More
There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Some additional features include:

! how to assign a record name to the records read from auxiliary input files
(page 228)

! how to read multiple records (containing different keys) from the same auxiliary
input file (page 224)

! how to use data from one auxiliary input file as the read key to another
auxiliary input file (page 226)

! how to specify generic keys and "KGE" keys in the READ statement (page 230)

! how to read multiple records (with the same key or partial key) from the
auxiliary input file (page 232)

! what happens when no record is found for a particular read key (page 229)

! how to determine whether the read for a particular key was successful or not
(page 230)

! how to use the READ statement to obtain data from a DB2 table or view
(page 397)

! how to use the ONIOERROR option to increase the severity of I/O errors on an
input file (page 586)

The complete syntax for the READ statement, as well as a more detailed narrative of how
Spectrum Writer assembles input records during the report process, is given in Chapter 10,
"Control Statement Syntax" (page 578).
122 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 4. Beyond the Basics

Chapter Table of Contents

Chapter 4. Beyond the Basics . 123

Additional Features in the COLUMNS Statement . 125
Writing Print Expressions . 126
How to Change the Column Headings . 130
Special Options Related to Column Headings . 133
How to Change the Width of a Column . 135
How to Change the Way Dates, Times and Numbers Are Formatted . 137
Formatting Tips for International Users . 140
How to Format Data as ASCII . 143
How to Blank Out Repeating Values . 144
How to Change the Justification of Data within a Column . 146
How to Specify Which Columns to Total . 148
How to Produce Multi–Line Reports . 151
How to Change the Report Margins . 154
How to Print Bar Graphs . 154
How to Print Vertical Lines between Report Columns . 156
Including All Fields in the COLUMNS Statement . 158

What If You Run Out of Room? . 160
Why Do I See ****X**** in My Report? . 160
Customizing the Report Titles . 161

How to Include Data from a File in the Title . 161
How to Include the Page Number, Date and Time in a Title . 163
How to Change the Appearance of Items in the Title . 165
How to Split the Title into Left Aligned, Centered, and Right Aligned Parts . 168
Special Options Related to Titles . 175
How to Print "Titles" at the Bottom of Each Page . 175

Customizing the Control Breaks . 177
How to Change the Control Break Spacing . 178
How a Default Total Line Looks . 180
How to Customize the Total Line at a Control Break . 182
How to Suppress the Total Line at a Control Break . 185
How to Customize the Statistical Lines at a Control Break . 186
How to Print Customized Footing Lines at a Control Break . 188
How to Print the Number of Items in a Control Group . 198
How to Print Header Lines at the Beginning of a Control Group . 200

Computing True Percentages and Ratios at Control Breaks . 202
Reports with Multiple Control Breaks . 204
How to Customize the Grand Totals . 207
How to Produce Summary Reports . 209
Printing a "Line Number" in Your Report . 211
How to Create "Top 10" Type Reports . 212
How to Count "Occurrences" in a File . 214
How to Break Totals Down into Categories . 217
How to Make “Crosstab” Reports . 219

A Simple Crosstab Report . 219
Chapter 4. Beyond the Basics 123

Another Crosstab Report . 221
Working With Multiple Input Files . 224

Using Multiple READ Statements for the Same File . 224
How to Chain READ Statements . 226
How to Name the Input File Records . 228
How Missing Records Are Handled . 229
Testing for Missing Records . 230
How I/O Errors Are Handled . 230
Using Generic and KGE Keys . 230
How to Perform "One–to–Many" Reads . 232

Working with "Batched" Input Files . 234
Working With Arrays . 237

Using Normalization to Process Arrays . 237
The NORMALIZE Parm . 240
File Definition Tips for Records with Arrays . 243
Normalizing Nested Arrays . 244
Normalizing Multiple, Non-Nested Arrays . 245
Normalizing only Certain Records . 247
Normalizing an Auxiliary Input File . 248
Normalization Errors . 248

How to Print a Variable Number of Lines Per Input Record . 249
Variable Number of Lines — Strategy 1 . 249
Variable Number of Lines — Strategy 2 . 254
Putting a Variable Number of Items on a Single Line . 257

Creating PC Files from Non-Spectrum Writer Reports . 258
Working with SMF Records . 263
Working with Date Fields . 269
Working with Time Fields . 272
Producing Files for Non-Standard PC Programs . 275
Producing Files for Mainframe Programs . 280

How to "Subset" Mainframe Files . 283
How to Sort Mainframe Files . 283

Computing Percent of Totals . 284
Creating Multiple Reports in a Single Run . 289
124 Spectrum Writer User’s Guide

Chapter 4. Beyond the Basics

This chapter is a user's guide to some of Spectrum Writer's additional features. Many of the
control statements introduced earlier in Chapter 2, "How to Request a Report" and
Chapter 3, "How to Request a PC File" are discussed in more detail in this chapter. Many
reports and PC files won't require these more advanced features. But as your requests
become more and more sophisticated, you may want to use some of the techniques and
features illustrated in this chapter.

Additional Features in the COLUMNS Statement

We saw in previous chapters that the basic purpose of the COLUMNS statement is to name
the columns desired in a report or PC file. The COLUMNS statement also has many other
features that can be used to customize how a report or PC file looks. The following sections
explain:

! how to include a column of literal text in a report or PC file (page 126)

! how to change the spacing between report columns (page 128)

! how to change the column headings (page 130 and page 133)

! how to change the width of a column (page 133)

! how to change the way dates, times and numbers are formatted (page 137)

! how to format dates, times and numbers for international users (page 140)

! how to format data as ASCII rather than EBCDIC (page 143)

! how to blank out repeating values (page 144)

! how to change the justification of data within a column (page 146)

! how to change which columns are totalled (page 148)

! how to produce multi–line reports or multi–row PC files (page 151)

! how to print bar graphs in a report (page 154)

! how to put a text (such as a vertical line) between report columns (page 156)

! how to change the report margins (page 154)

! how to show columns for every field in the input file (page 158)
Chapter 4. Beyond the Basics 125

Writing Print Expressions

This section explains:

! how to write print expressions for the COLUMNS statement

! which fields may appear in the COLUMNS statement

! how to include literal texts in the report lines

! how to specify the number of spaces that should appear between columns

! how parms can be used to customize the way a column is processed

Some of the features discussed in this section are illustrated in the sample report shown in
Figure 35.

The contents of the COLUMNS statement is simply a print expression. Print expressions are
used in a number of different control statements. They tell Spectrum Writer how to build
one print line that will be used in a report. In the COLUMNS statement, the print expression
tells how to build a detail report line for the main body of the report. (When creating PC
files, the print expression tells how to build the detail output records.)

As with other print expressions in Spectrum Writer, just list one or more items to print.
COLUMNS: item1 item2 item3 ...

Each item can be either a literal text or a field name. In addition (only in COLUMNS
statement print-expressions) an item can be a record name.

To put a literal text in a column of the report, simply enclose the text in either apostrophes
or quotation marks. For example, the following statement causes the words NEW TEL:----------
to appear in each line of a report:

COLUMNS: 'NEW TEL:----------'

To put data from a field in the input file into a column of the report, simply list the desired
field name. (Do not put the field name in apostrophes or quotation marks.) For example,
the following statement causes the contents of the TELEPHONE field to appear in a report
column:

COLUMNS: TELEPHONE

Each field listed must be "available" to Spectrum Writer at the time the COLUMNS statement
is processed. That is, each field name must be one of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)

! a built–in field (see Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields)

To automatically create a column in the report (or output file) for every field in the input
file, simply specify the desired record name. (Do not put the record name in apostrophes
126 Spectrum Writer User’s Guide

Writing Print Expressions
Figure 35. Using spacing factors and literal texts in the COLUMN statement

Remarks:
• the LAST–NAME column is 5 spaces over from the EMPL–NUM column
• the literal texts "OLD TEL:" and "NEW TEL: ----------" appear in each line of the report
• the spacing factor of zero puts zero spaces between the "OLD TEL:" column and the TELEPHONE

column
• the literal text columns do not have default column headings

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'TELEPHONE SIGNUP LIST'
COLUMNS: EMPL–NUM 5
 LAST–NAME
 FIRST–NAME
 'OLD TEL:' 0
 TELEPHONE 2
 'NEW TEL: ----------'

Produce this Report:

 TELEPHONE SIGNUP LIST

EMPL LAST FIRST
NUM NAME NAME TELEPHONE

036 JONES JERRY OLD TEL:(415) 555-7653 NEW TEL: ----------
037 JOHNSON THOMAS OLD TEL:(602) 555-6654 NEW TEL: ----------
039 JOHNSON LINDA OLD TEL:(415) 555-6785 NEW TEL: ----------
040 MACDONALD RICHARD OLD TEL:(415) 555-9887 NEW TEL: ----------
041 SIMPSON TIMOTHY OLD TEL:(818) 555-1887 NEW TEL: ----------
042 MORRISON MICHAEL OLD TEL:(818) 555-4748 NEW TEL: ----------
043 CHRISTOPHERSON MELISSA OLD TEL:(602) 555-4556 NEW TEL: ----------
044 BAKER VIVIAN OLD TEL:(415) 555-1209 NEW TEL: ----------
045 THOMAS MARTIN OLD TEL:(415) 555-1152 NEW TEL: ----------

*** GRAND TOTAL (9 ITEMS)
Chapter 4. Beyond the Basics 127

Writing Print Expressions
or quotation marks.) For example, the following statement causes all fields in the SALES-
FILE to appear in report columns:

COLUMNS: SALES-FILE

Use of record names in the COLUMNS statement is discussed further in "Including All Fields
in the COLUMNS Statement" on page 158

As in other print expressions, you may also customize the print line by using optional
spacing factors and parms. So, the full syntax for the COLUMNS statement is this:

COLUMNS: [n] item1(parms) [n] item2(parms) [n] item3(parms) ...

The optional spacing factor [n] is the number of blank spaces to leave between two
columns in the report. If you omit the spacing factor, the default is for one blank space to
appear between columns. (A spacing factor of zero is allowed if you want no spaces
between two columns of your report.) As an example, the following statement causes two
blanks to appear between the LAST–NAME and the FIRST–NAME columns, and causes five
blanks to appear between the FIRST–NAME and the HIRE–DATE columns:

COLUMNS: LAST–NAME 2 FIRST–NAME 5 HIRE–DATE

Note: To change the default spacing factor (between all columns), use the
COLSPACE parm of the OPTIONS statement (page 560).

The optional parms are used to provide details about how to display individual columns in
the report. You may specify one or more parms, enclosed in parentheses, immediately
following an item in the print expression. (Do not leave a space between the item and the
first parenthesis.) You may use any combination of parms, in any order. Separate the parms
with a comma and/or blanks. For example, the following statement has a width parm and
a justification parm for the LAST–NAME field:

COLUMNS: LAST–NAME(50, CENTER) FIRST–NAME

The following table shows the parms that are available in the COLUMNS statement.
Subsequent sections of this chapter explain in detail how to use each of these parms.

COLUMNS STATEMENT PARMS

PARM DESCRIPTION

ACCUM/NOACCUM

Specifies whether the column should be accumulated or not.
Accumulated columns receive totals at control breaks and at
the end of the report. For more information on using these
parms, see page 148. The following example specifies that
the TOTAL–SALES column should not be accumulated (and
therefore not totalled):

COLUMNS: TOTAL–SALES(NOACCUM)

ASCII

Specifies that the field should be formatted in ASCII, rather
than in EBCDIC

COLUMNS: REGION(ASCII) SALES-DATE(LONG1, ASCII)

See page 143 for more information on creating ASCII output
files.
128 Spectrum Writer User’s Guide

Writing Print Expressions
BIZ

Means "blank if zero." Specifies that the column should be
left blank whenever the numeric, date or time item contains
zeros. The following example specifies that the TOTAL-SALES
and SALES-TIME columns should be left blank whenever their
value is zero.

COLUMNS: TOTAL-SALES(BIZ) SALES-TIME(BIZ)

'column
heading'

Specifies the column heading to be used for an item. For
more information on using the column heading parm, see
page 130. The following example specifies that the column
heading for the LAST–NAME column should be "SELLERS LAST
NAME":

COLUMNS: LAST–NAME('SELLERS LAST NAME')

display–format

Specifies how to format the field in the report column. A
complete list of display formats appears in Appendix B,
"Display Formats" (page 617). For more information on
using a display format parm, see page 137. The following
example specifies that the HIRE–DATE column should be
displayed in the LONG1 format, with the month name spelled
out:

COLUMNS: HIRE–DATE(LONG1)

LEFT/
CENTER/
RIGHT

Specifies how to justify the contents of a column. For more
information on using a justification parm, see page 146. The
following example specifies that the contents of the
LAST–NAME column should be center justified:

COLUMNS: LAST–NAME(CENTER)

NOREPEAT/
NOREPEATPAGE

Specifies that "repeating values" in a column should not be
printed. (Blanks will appear instead.) NOREPEAT specifies
that repeated values should not be printed anywhere except in
the first line of each page and the first line of each control
group. NOREPEATPAGE specifies that repeated values should
not be printed anywhere except in the first line of each page.
For example:

COLUMNS: LAST–NAME(NOREPEAT)

width

This numeric parm specifies how wide the report column
should be. For more information on using a width parm, see
page 135. The following example specifies that the
TOTAL–SALES column of the report should be only 6
characters wide:

COLUMNS: TOTALS–SALES(6)

COLUMNS STATEMENT PARMS (CONTINUED)

PARM DESCRIPTION
Chapter 4. Beyond the Basics 129

How to Change the Column Headings

This section explains:

! how Spectrum Writer determines default column headings

! how to specify your own column headings

! how to suppress column headings

Most of the features discussed in this section are illustrated in the sample report in
Figure 36.

If you do not specify a column heading for a field in the COLUMNS statement, Spectrum
Writer uses a default column heading. The default heading will be:

! the column heading (if any) specified when the field was first defined (in a FIELD
or COMPUTE statement), or

! the field name itself, broken apart at each dash or underscore, with each part of
the name going onto a separate heading line. (For example, the default column
heading for LAST–NAME is a two–line heading, with "LAST" on one line and
"NAME" on the next line, as illustrated in Figure 35 on page 127.)

Note: By default, column headings are not automatically generated for multi–line
reports (those using more than one COLUMNS statement). To learn how to create
column headings for multi–line reports, see the section titled "How to Produce
Multi–Line Reports" on page 151.

To specify your own column heading for a field, put your column heading in parentheses
immediately after the field name. (Do not leave a space between the field name and the first
parenthesis.) Enclose the column heading in either apostrophes or quotation marks. For
example:

COLUMNS: LAST–NAME("EMPLOYEE'S LAST NAME")

The above statement would cause the text "EMPLOYEE'S LAST NAME" to be used as the
column heading for the LAST–NAME column. Since this is a rather long heading, you may
want to split it onto two lines. Use the "vertical bar" character (|) within the column heading
text to indicate where to split the text into separate lines. You may use as many lines for
the column heading as you like, but most reports look best with no more than three or four
lines of column headings. Here is an example of the use of the vertical bar to break the
column heading into two lines:

COLUMNS: LAST–NAME("EMPLOYEE'S|LAST NAME")

The example above will cause a two–line column heading to be used for the LAST–NAME
column. The first heading line will contain the word "EMPLOYEE'S" and the second line will
have the words "LAST NAME". The following example shows how to make a three–line
column heading for the SEX column:

COLUMNS: SEX('S|E|X')

In the above statement, each of the three column headings lines now has only one character.
Since the SEX field is also only one character long, the column will now default to being
130 Spectrum Writer User’s Guide

How to Change the Column Headings
Figure 36. Specifying your own column headings

Remarks:
• the LAST-NAME column heading is split onto two lines
• the FIRST–NAME column heading ("NAME") is left–justified
• the EMPL–NUM column has no column heading, but does have the underscores
• the HIRE–DATE column has no column heading and no underscores
• the SEX column with the stacked heading takes up only one character
• the column of literal text now has a column heading

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'

COLUMNS: LAST-NAME("EMPLOYEE'S|LAST NAME")
 FIRST-NAME('NAME ')
 EMPL-NUM(' ')
 HIRE-DATE('')

 SEX('S|E|X')
 SEX

 '----------'('DELIVERY|DATE')

Produce this Report:

 EMPLOYEE LISTING
 S
 EMPLOYEE'S E DELIVERY
 LAST NAME NAME X SEX DATE

JONES JERRY 036 01/31/80 M M ----------
JOHNSON THOMAS 037 06/21/75 M M ----------
JOHNSON LINDA 039 11/25/79 F F ----------
MACDONALD RICHARD 040 07/04/82 M M ----------
SIMPSON TIMOTHY 041 12/01/82 M M ----------
MORRISON MICHAEL 042 11/30/79 M M ----------
CHRISTOPHERSON MELISSA 043 08/15/81 F F ----------
BAKER VIVIAN 044 06/04/82 F F ----------
THOMAS MARTIN 045 06/04/82 M M ----------

*** GRAND TOTAL (9 ITEMS)
Chapter 4. Beyond the Basics 131

How to Change the Column Headings
one character wide, rather than three. Stacking column headings like this can help you
squeeze more columns into your report.

Note: The vertical bar is the "Shift 1" key on most mainframe terminals. When
working at a PC running terminal emulation software, you will probably not see a
key with this symbol on it. Some terminal emulator programs use the "pipeline" key
as the vertical bar key. Some others use the right–hand square bracket key "]" for
this purpose.

Note: You can use the HDGSEP parm of the OPTIONS statement to select a different
character to use as the separator character for column heading texts (page 563).
Here is an example that uses a slash, rather than a vertical bar, to separate column
headings lines:

OPTION: HDGSEP('/')
COLUMNS: LAST–NAME("EMPLOYEE'S/LAST NAME") SEX('S/E/X')

Note: If you find that you frequently have to override column headings in the
COLUMNS statement, consider changing the field's default column heading. Default
column headings are specified in the FIELD statement (page 350) or the COMPUTE
statement (page 506).

Column headings are automatically centered over their columns in reports (but not in PC
files). Therefore, you do not need to try to add extra spaces within your column headings
to force correct alignment. If for some reason you want left– or right–justified column
headings, then you should include enough leading or trailing blanks within the heading text
to take up the whole width of the column. For example, if LAST–NAME is a 15 character
column, and you want the column heading "NAME" to be appear left–justified over it, use
11 trailing blanks within the column heading text, like this:

COLUMNS: LAST–NAME('NAME ')

You can also use leading blanks to force right–justification of a column heading:
COLUMNS: AMOUNT(' AMOUNT')

If you do not want any column heading for a particular column, you can use an all blank
column heading text, like this:

COLUMNS: LAST–NAME(' ')

The above example causes blanks to be used as the column heading for the LAST–NAME
column in the report.

Following the last column heading line, Spectrum Writer prints an additional line of
underscores to indicate the exact width of each column. (This underscore line overprints
the final column heading text line— it is not a separate print line.) These underscores
appear even for columns with blank column heading texts. To suppress even the
underscores for a column, use a null column heading text — without even blanks within
it. For example:

COLUMNS: LAST–NAME('')

The above example causes the LAST–NAME column to appear with no column headings and
with no underscores.
132 Spectrum Writer User’s Guide

How to Change the Column Headings
To suppress all column headings, use the NOCOLHDGS parm of the OPTIONS statement
(page 567). This option means that no column headings (and no underscore line) should
print. This is often used when you want to specify all of the column heading lines yourself,
using TITLE statements (see page 153).

Some printers do not support the overprinting of lines (as is needed to properly print the
underscore line after the column headings). If this is the case and you want to suppress the
entire underscore line, use the NOUNDERSCORES parm of the OPTIONS statement (as
described on page 568).

Column headings are not automatically generated for columns of literal text. You may,
however, specify your own column headings for literal texts just as you would for a field.
The following example illustrates how to specify a column heading for a column of literal
text:

COLUMNS: '----------'('DELIVERY|DATE')

How to Change the Column HeadingsSpecial Options Related to Column Headings

The following table summarizes the options that affect the column headings. Use an
OPTIONS statement to specify these options (page 555).

OPTIONS RELATED TO COLUMN HEADINGS

OPTION DESCRIPTION

COLHDGONCE
Suppresses titles and prints the column headings just once at
the beginning of the report. Report will have no page breaks.

HEADINGSEP('/')
HDGSEP('/')

Specifies the column heading separator character to be used in
the COLUMNS statement. This character indicates where a
column heading text should be split onto a new line. The
default column heading separator character is the vertical bar.

HGCOLHDG

Specifies that "Harvard Graphics style" column headings are
wanted. When specified, only a single line will be used for the
column headings. This is useful when creating PC files whose
first record should contain a "legend" for each of the data
columns.

MULTICOLHDG

Specifies that column headings are wanted for a report that
contains multiple COLUMNS statements. (The default is to
suppress column headings when more than one COLUMNS
statement is specified.) When MULTICOLHDG is specified,
column headings will be generated for the items in the first
COLUMNS statement.

NOCOLHDGS
Suppresses all column headings. Does not affect titles. Report
will have normal page break processing.

NOOVERPRINT
Specifies that no "overprinting" is wanted. When specified,
the underscore line for the column headings will be single
spaced rather than overprinted.
Chapter 4. Beyond the Basics 133

Special Options Related to Column Headings
NOTITLES
Suppresses all titles and column headings. Report will have no
page breaks.

NOUNDERSCORES
Suppresses the underscore line that normally prints "under"
the column headings. This option may be useful when
creating reports that will be viewed online.

TITLEONCE
Prints titles (and any column headings) just once at the
beginning of the report. Report will have no page breaks.

OPTIONS RELATED TO COLUMN HEADINGS (CONTINUED)

OPTION DESCRIPTION
134 Spectrum Writer User’s Guide

How to Change the Width of a Column

This section explains:

! how Spectrum Writer determines the default width of a column

! how to specify your own column width

Most of the features discussed in this section are illustrated in the sample report in
Figure 37.

Spectrum Writer considers several factors when deciding what size to make each column,
including:

! the number of characters in a character field (or literal)

! how many digits will likely be needed to display numeric fields, including the
Grand Total value at the end of the report

! the width of the column heading

Based on these considerations, Spectrum Writer chooses a default width for each column.
You may need to change this width in some cases. Do this by enclosing a numeric width
parm in parentheses immediately after the field name. (Do not leave a space between the
field name and the first parenthesis.)

For example, there may be too much data in a report to fit on the page. In this case, you
might use a width parm to shorten some of the larger character fields. The following
example shortens the LAST–NAME field to only 10 characters:

COLUMNS: LAST–NAME(10)

Of course, any last names containing more than 10 characters will be truncated in the report
column.

Note: Numeric columns are never truncated. Doing so might result in misleading
figures appearing in the report. Instead, if a column is too small to display all
significant digits (or a minus sign) for a numeric field, the column will be filled with
a "size" error indicator (which looks like this: *****S*****). Figure 37 shows an
example of this.

When shortening columns, it is possible to specify a column width that is shorter than the
column headings. In this case, the column headings will also be truncated. Therefore, when
specifying a shorter column width you may also need to specify new column headings. The
new column headings should be broken into parts small enough to fit within the specified
column width. Here is an example of a COLUMNS statement which specifies a column width
of only 3, and also specifies column headings that are only 3 characters long:

COLUMNS: LAST–NAME(3,'LST NAM')

As mentioned above, you may occasionally see a "size" error indicator (****S****) in a
numeric column. This means that the column wasn't wide enough to display all the digits
in the number. Sometimes, a column will be wide enough to display the numeric value in
the regular report lines, but will not be big enough to display the Grand Total value at the
end of the report. In these cases you need to widen the column to provide enough room to
Chapter 4. Beyond the Basics 135

How to Change the Width of a Column
Figure 37. Specifying the width of report columns

Remarks:
• the EMPL–NUM column is 3 bytes wide, causing the default column headings to be truncated
• the second LAST–NAME column has been shortened to 10 bytes
• the third LAST–NAME column is shortened to 3 bytes, and also specifies shortened column headings
• the second HIRE–DATE column has been shortened to 5 characters so that only the month and day

appear
• the first TOTAL–SALES column has been widened to accommodate numbers into the hundreds of

trillions
• the second TOTAL–SALES column has been shortened so much that "size" errors now occur for large

values, resulting in the ****S*** size error indicator

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM(3)
 LAST-NAME
 LAST-NAME(10)

 LAST-NAME(3,'LST|NAM')
 HIRE-DATE
 HIRE-DATE(5)
 TOTAL-SALES(22)
 TOTAL-SALES(8)

Produce this Report:
 EMPLOYEE LISTING

EMP LAST LAST LST HIRE HIRE TOTAL TOTAL
NUM NAME NAME NAM DATE DATE SALES SALES

036 JONES JONES JON 01/31/80 01/31 42,509.89 ****S***
037 JOHNSON JOHNSON JOH 06/21/75 06/21 86,999.24 ****S***
039 JOHNSON JOHNSON JOH 11/25/79 11/25 75,023.55 ****S***
040 MACDONALD MACDONALD MAC 07/04/82 07/04 2,560.98 2,560.98
041 SIMPSON SIMPSON SIM 12/01/82 12/01 8,723.88 8,723.88
042 MORRISON MORRISON MOR 11/30/79 11/30 98,054.99 ****S***
043 CHRISTOPHERSON CHRISTOPHE CHR 08/15/81 08/15 47,665.31 ****S***
044 BAKER BAKER BAK 06/04/82 06/04 92,125.89 ****S***
045 THOMAS THOMAS THO 06/04/82 06/04 60,193.49 ****S***

*** GRAND TOTAL (9 ITEMS) 513,857.22 ****S***
136 Spectrum Writer User’s Guide

How to Change the Width of a Column
display the Grand Total value. For example, the following COLUMNS statement allows 22
characters for the TOTAL–SALES field:

COLUMNS: TOTAL–SALES(22)

Note that this does not mean that there will be room for 22 digits to print in the column.
The 22 character width of the column will also includes such things as commas, a decimal
point, and a minus sign, if necessary.

Another way to widen a numeric column is to use a large PICTURE as an override display
format. (Display formats are discussed in the following section.) The following example
also widens the TOTAL–SALES column to 22 characters, and has the advantage of making it
easier to visualize how many digits that will accommodate:

COLUMNS: TOTAL–SALES(PIC'ZZZ,ZZZ,ZZZ,ZZZ,ZZ9.99')

How to Change the Width of a ColumnHow to Change the Way Dates, Times and Numbers Are Formatted

This section explains:

! what a display format is

! the default display formats used to display data

! how to specify your own display format

PC File Note: Display formats should not normally be used when creating PC files.
Spectrum Writer chooses the display format needed to create an import file for the
PC program specified in the OPTIONS statement. After importing your PC file into a
PC spreadsheet, you can use the PC program's features to change the way dates or
numbers are formatted.

Most of the features discussed in this section are illustrated in the sample report in
Figure 38.

When formatting data in a report (especially dates, times and numbers), there are several
decisions to make. For example, a date might be formatted in any of the following ways (to
list just a few possibilities):

12/31/90
DECEMBER 31, 1990
31 DEC 90

Similarly, a numeric value might be formatted in any of these ways (and others):
1,234
1,234.000
1234
0001234
$1,234
+1234

Time values can be formatted in the following ways, among others:
12:34:56
12:35
Chapter 4. Beyond the Basics 137

How to Change the Way Dates, Times and Numbers Are Formatted
Figure 38. Customizing the way dates and numbers are formatted in a report

Remarks:
• the SOCIAL–SEC–NUM column shows leading zeros, and has dashes in the appropriate places
• the HIRE–DATE columns shows the date in the LONG1 format, with the month name spelled out
• the STATUS–BYTE is shown in its hexadecimal representation
• the TOTAL–SALES column has a floating dollar sign
• the Grand Total line uses the same display format for TOTAL–SALES as the regular report lines

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME
 SOCIAL-SEC-NUM(PIC'999-99-9999')
 HIRE-DATE(LONG1)
 STATUS-BYTE(HEX)
 TOTAL-SALES(DOLLAR)

Produce this Report:
 EMPLOYEE LISTING

 SOCIAL
EMPL LAST SEC HIRE STATUS TOTAL
NUM NAME NUM DATE BYTE SALES

036 JONES 012-09-8765 JANUARY 31, 1980 C1 $42,509.89
037 JOHNSON 912-04-0334 JUNE 21, 1975 C1 $86,999.24
039 JOHNSON 004-77-9981 NOVEMBER 25, 1979 C1 $75,023.55
040 MACDONALD 889-79-0013 JULY 4, 1982 40 $2,560.98
041 SIMPSON 112-05-0456 DECEMBER 1, 1982 C1 $8,723.88
042 MORRISON 900-12-0556 NOVEMBER 30, 1979 C1 $98,054.99
043 CHRISTOPHERSON 415-09-0761 AUGUST 15, 1981 C1 $47,665.31
044 BAKER 878-19-0156 JUNE 4, 1982 C1 $92,125.89
045 THOMAS 776-83-8221 JUNE 4, 1982 C1 $60,193.49

*** GRAND TOTAL (9 ITEMS) $513,857.22
138 Spectrum Writer User’s Guide

How to Change the Way Dates, Times and Numbers Are Formatted
Spectrum Writer supports many different display formats that specify exactly how to
format a field in a report. A complete list of these display formats is found in Appendix B,
"Display Formats" on page 617.

If you do not specify a display format in the COLUMNS statement, Spectrum Writer will use
the display format from:

! the FIELD or COMPUTE statement that defined the field

! an OPTIONS statement FORMAT parm

! the default display format shown in the table on page 618

To specify your own display format for a field, put a display format parm in parentheses
immediately after the field name. (Do not leave a space between the field name and the first
parenthesis.) Be sure to use a display format that is valid for the field's data type. (For
example, you cannot request that a numeric field be displayed with a date display format.)

Here is an example of specifying display formats in the COLUMNS statement:
COLUMNS: LAST–NAME
 SOCIAL–SEC–NUM(PIC'999–99–9999')
 HIRE–DATE(LONG1)
 STATUS–BYTE(HEX)
 TOTAL–SALES(DOLLAR)

The previous statement specifies that:

! the SOCIAL–SEC–NUM field should be formatted with leading zeros not
suppressed, and with dashes in the appropriate positions

! the HIRE–DATE field should be formatted with the month name completely
spelled out

! the STATUS–BYTE field should be shown in it hexadecimal representation

! the TOTAL–SALES field should be formatted with a floating dollar sign.

Note: Many of the date display formats cause dates to be formatted with a
delimiter. By default, the delimiter used is a slash. If you prefer a different delimiter,
use the DATEDELIM option. For example:

OPTIONS: DATEDELIM('—')

The above statement causes a dash (—) to be used as the delimiter, rather than a slash
(/), when formatting dates. Thus, if the above statement was used, a date formatted
with the DD–MM–YY display format might look like this:

31–12–95

Note: Similarly, you can change the delimiter used to format time fields by using
the TIMEDELIM option. For example:

OPTIONS: TIMEDELIM('.')
Chapter 4. Beyond the Basics 139

How to Change the Way Dates, Times and Numbers Are Formatted
The above statement causes a dot (.) to be used as the delimiter, rather than a colon (:), when
formatting times. Thus, if the above statement was used, a time formatted with the HH–MM
display format might look like this:

12.30

Note: The same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see an extra decimal digit
for a column's average value (at a control break), you should specify a PICTURE that
has the correct number of decimal digits in the COLUMNS statement. Figure 42
(page 149) shows an example of this.

Note: You can also specify the BIZ ("blank if zero") parm along with a display
format. That causes all non-zero data to be formatted according to the display
format. However, whenever the value to be formatted is zero, the column will be left
blank. You can use the BIZ parm with numeric, date and time fields. A date is
considered to have a zero value if the month, day and last 2 digits of the year are all
zeros (regardless of the value of the century part of the year).

How to Change the Way Dates, Times and Numbers Are FormattedFormatting Tips for International Users

This section suggests some options that international users may wish to use when creating
reports

The following table lists a number of options of special interest to international users. The
report in Figure 39 (page 142) uses some of these options.

OPTIONS OF INTEREST TO INTERNATIONAL USERS

OPTIONS STATEMENT PARM DESCRIPTION EXAMPLE

FORMAT(DD–MM–YY)

Makes DD–MM–YY the default date
display format. All dates in the
report will now appear as
"DD/MM/YY" by default.

31/12/96

DATEDELIM('.')
DATEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all dates
in the report.

31.12.96
31–12–96

TIMEDELIM('.')
TIMEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all times
in the report.

12.34.56
12–34–56

FORMAT(DOTSEP)

Makes DOTSEP the default display
format for all numeric fields in the
report. A dot is used to separate
thousands and millions, etc. A
comma indicates where the
decimal digits begin.

1.234.567,89
140 Spectrum Writer User’s Guide

Formatting Tips for International Users
Of course, you can use any combination of the above options in a single OPTIONS
statement:

OPTIONS: FORMAT(DOTSEP,DD–MM–YY) DATEDELIM('–') TIMEDELIM('.') DDMMYYLIT

If you would like to use some of these options as the default for all reports in your
company, put the desired OPTIONS statement in a special member of your Spectrum Writer
Copy Library. Then, under OS/390, use the SWOPTION DD to point to that member.
Spectrum Writer will process the statements in that member before it processes the other
control statements (page 424). Under VSE, use a COPY statement to copy that member at
the beginning of your requests.

FORMAT(PIC'ZZZ ZZZ ZZ9.9')

Makes the default numeric
display format the specified
picture. Spaces are used to
separate thousands, millions, etc.

1 234 567.8

FORMAT(PIC'ZZ ZZZ ZZ9V,9')

Makes the default numeric
display format the specified
picture. Spaces are used to
separate thousands, millions, etc.
A comma is used to separate the
decimal digits.

1 234 567,8

PIC'ZZZ.ZZ9V,99 DM'

Use a PICTURE display format
similar to this to print currency
symbols (like DM) after a numeric
value.

123.456,78 DM

DDMMYYLIT

Tells Spectrum Writer that all
date literals in the control
statements are in DD/MM/YY or
DD/MM/YYYY format. Note: the
slash is always used as the
delimiter in date literals. The
DATEDELIM option, if any, only
changes the way dates are
formatted in the output— not the
way date literals are written in
control statements.

INCLUDEIF:
 SALES–DATE
 > 31/12/98
 AND
 < 28/2/2001

OPTIONS OF INTEREST TO INTERNATIONAL USERS (CONTINUED)

OPTIONS STATEMENT PARM DESCRIPTION EXAMPLE
Chapter 4. Beyond the Basics 141

Formatting Tips for International Users
Figure 39. A report with international formatting options

Remarks:
• the FORMAT option makes DOTSEP and DD–MM–YY the default numeric and date display formats for

the report.
• the DATEDELIM('.') option causes all dates to be formatted using dots rather than slashes.
• the DDMMYYLIT options means that all date literals will be in DD/MM/YY (or DD/MM/YYYY) format.

Note that slashes are still required in date literals.
• the INCLUDEIF statement uses a date literal in DD/MM/YY format to select records whose HIRE–DATE

is after December 31, 1975
• the first TOTAL–SALES column uses the default display format (DOTSEP)
• the second TOTAL–SALES column uses an override PICTURE that has blanks as the separator

character and a comma as the decimal character.

These Control Statements:

OPTIONS: FORMAT(DOTSEP, DD-MM-YY) DATEDELIM('.') DDMMYYLIT
INPUT: EMPL-FILE
TITLE: 'INTERNATIONAL EMPLOYEE LISTING'
TITLE: 'HIRED AFTER 31 DECEMBER 1975'
INCLUDEIF: HIRE-DATE > 31/12/1975
COLUMNS: EMPL-NUM
 LAST-NAME
 HIRE-DATE
 TOTAL-SALES
 TOTAL-SALES(PIC'ZZZ ZZ9V,99')

Produce this Report:

 INTERNATIONAL EMPLOYEE LISTING
 HIRED AFTER 31 DECEMBER 1975

EMPL LAST HIRE TOTAL TOTAL
NUM NAME DATE SALES SALES

036 JONES 31.01.80 42.509,89 42 509,89
039 JOHNSON 25.11.79 75.023,55 75 023,55
040 MACDONALD 04.07.82 2.560,98 2 560,98
041 SIMPSON 01.12.82 8.723,88 8 723,88
042 MORRISON 30.11.79 98.054,99 98 054,99
043 CHRISTOPHERSON 15.08.81 47.665,31 47 665,31
044 BAKER 04.06.82 92.125,89 92 125,89
045 THOMAS 04.06.82 60.193,49 60 193,49

*** GRAND TOTAL (8 ITEMS) 426.857,98 426 857,98
142 Spectrum Writer User’s Guide

How to Format Data as ASCII

Most PC's, network servers and mini-computers work with ASCII data, rather than the
EBCDIC data used on mainframes. As a mainframe program, Spectrum Writer writes its
reports out as EBCDIC data. The easiest way to convert Spectrum Writer's output from
EBCDIC to ASCII is to simply let your file transfer program do it for you (as it downloads your
file from the mainframe to your PC. Look for an "ASCII translation" option, or something
similar. You’ll probably also want to use a "CR/LF" option to append ASCII carriage
return/line feeds to the end of each line.)

Unfortunately, this method doesn’t work as well for output files as it does for reports.
That’s because output files often contain binary data mixed in with the character data. In
such situations, you can use the ASCII parm to tell Spectrum Writer to format specific output
columns in ASCII instead of EBCDIC. Then you can download your output file without the
ASCII translation option, thus preserving the binary data in your records.

When the ASCII parm is specified for a column, Spectrum Writer first formats the column
(in EBCDIC) in the normal way. That is, it uses the correct display format, it processes any
BIZ parm, any NOREPEAT parm, and so on. Then, the final, formatted column is translated
from EBCDIC to ASCII.

Here are some other points related to creating ASCII output files:

! the ASCII parm does not affect the column headings for a column. (Of course,
when creating output files, column headings are normally suppressed.)

! the ASCII parm may only be specified for fields appearing in the COLUMNS
statement (not for literals). To put an ASCII literal in your output, first use a
COMPUTE statement to create a character field containing your literal:

COMPUTE: ADDRESS-LIT = 'ADDRESS'
COLUMNS: ADDRESS-LIT(ASCII) ADDR-LINE1(ASCII)

Another way to specify an ASCII literal (especially very short ones like a single
space) is to specify them in ASCII yourself, as hex literals:

COMPUTE: ADDRESS-LIT = 'ADDRESS'
COLUMNS: ADDRESS-LIT(ASCII) 0 X'20' 0 ADDR-LINE1(ASCII)

! use the COLSEP option if you want to separate the columns in your output file
with an ASCII character (such as a space or a comma). For example, to put an
ASCII space (hex '20') between the columns of a report, specify:

OPTIONS: COLSEP(X'20')

! you may want to append ASCII CR/LF ("carriage return/line feed") codes (ASCII
0D0A) to the end of each output record:

COLUMNS: NAME(ASCII) SALES-DATE(ASCII) SALES-TIME(ASCII) X'0D0A'

! the #ASCII built-in function (described in Appendix D, "Built-In Functions" on
page 628) is another tool available for converting data from EBCDIC to ASCII.

! if desired, you can specify your own, custom EBCDIC-to-ASCII translation table
by using the ASCIITABLE option (in an OPTIONS statement).
Chapter 4. Beyond the Basics 143

How to Blank Out Repeating Values

This section explains:

! how to print blanks in a column instead of a repeating value

! how a repeating value in the first line of a new control group is handled

Most of the features discussed in this section are illustrated in the sample report in
Figure 40.

The NOREPEAT parm in a COLUMNS statement tells Spectrum Writer to blank out a column
whenever it would contain the same value as in the previous line. However, the column's
value is always shown (even if it is a repeated value) in two cases:

! in the first detail line of each new page

! in the first detail line of a new control group (that is, in the first detail line after
a control break)

For example:
COLUMNS: LAST–NAME(NOREPEAT)

The above statement tell Spectrum Writer not to print repeating values of the LAST–NAME
field.

If you prefer to also blank out repeating values in the first line of each control group, use
the NOREPEATPAGE parm instead of NOREPEAT. That parm causes repeat values to be
blanked out everywhere except in the first detail line of each new page.
144 Spectrum Writer User’s Guide

How to Blank Out Repeating Values
Figure 40. A report that blanks out repeating values

Remarks:
• the NOREPEAT parm for REGION and EMPL–NAME causes repeated values in those columns to be

blanked out
• the second EMPL–NAME column does not use the NOREPEAT parm, for comparison

These Control Statements:

INPUT: SALES-FILE
TITLE: 'LIST OF SALES BY REGION'
SORT: REGION EMPL-NAME
COLUMNS: REGION(NOREPEAT)
 EMPL-NAME(NOREPEAT)
 EMPL-NAME
 SALES-DATE
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:

 LIST OF SALES BY REGION

 EMPL EMPL SALES
REGION NAME NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON MORRISON 03/30/95 A1 PHOTOGRAPHY 29.65 1.78
 MORRISON 03/29/95 STAR MARKET 44.35 2.66
 SIMPSON SIMPSON 04/30/95 J & S LUMBER 23.87 1.43
 SIMPSON 04/01/95 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON JOHNSON 04/05/95 MARYS ANTIQUES 9.98 0.60
 JOHNSON 04/01/95 VILLA HOTEL 234.45 14.07
 JONES JONES 04/15/95 EZ GROCERY 10.25 0.62
 JONES 04/15/95 TOY TOWN 10.25 0.62
 JONES 04/15/95 TOY TOWN 121.76 7.31
SOUTH JOHNSON JOHNSON 04/16/95 ACME BUILDING 500.00 30.00
 JOHNSON 03/12/95 ACE ELECTRICAL 101.38 6.09
WEST BAKER BAKER 03/26/95 JACKS CAFE 137.00 8.22
 BAKER 04/12/95 JACKS CAFE 135.75 8.15
 THOMAS THOMAS 04/14/95 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 145

How to Change the Justification of Data within a Column

This section explains:

! how data is normally justified within a column

! how to specify that the data within a column should be left–, center–, or
right–justified

Most of the features discussed in this section are illustrated in the sample report in
Figure 41.

By default, Spectrum Writer justifies fields in the following manner:

To change the way data is justified within a column, simply specify a justification parm
(LEFT, CENTER, or RIGHT) in parentheses immediately after the field name. (Do not leave a
space between the field name and the first parenthesis.)

For example, the following statement specifies that the LAST–NAME field should be
right–justified, the FIRST–NAME field should be center–justified, and the TOTAL–SALES field
should be left–justified.

COLUMNS: LAST–NAME(RIGHT) FIRST–NAME(CENTER) TOTAL–SALES(LEFT)

Note: The default justification of "None" (see table above) is not the same as left-
justification. Any leading blanks in a character field, for example, are left as is when
there is no justification. When left-justification is specified, all leading blanks are
removed.

Note: You may also abbreviate LEFT, CENTER and RIGHT as LJ, CJ and RJ,
respectively.

Note: The maximum width allowed for columns that are to be justified is 256
characters.

Note: The use of a large column heading or a large width parm can result in a report
column that is bigger than the area actually needed to display the contents of
character, date and bit fields. In such cases, the field's actual (smaller) display area
is centered within the larger area reserved for the entire column. Justification, if any,
is performed only within this smaller, centered area where the field’s contents
actually appear.

TYPE OF DATA DEFAULT JUSTIFICATION

Character None

Numeric Right–justified

Date None

Time Right–justified

Bit None
146 Spectrum Writer User’s Guide

How to Change the Justification of Data within a Column
Figure 41. Specifying how to justify data within the report columns

Remarks:
• the EMPL–NUM column has no justification parm
• the LAST–NAME column is right–justified
• the FIRST–NAME column is center–justified
• the TOTAL–SALES column is left justified
• the Grand Total line uses the same justification for TOTAL–SALES as the regular report lines

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME(RIGHT)
 FIRST-NAME(CENTER)
 TOTAL-SALES(LEFT)

Produce this Report:

 EMPLOYEE LISTING

EMPL LAST FIRST TOTAL
NUM NAME NAME SALES

036 JONES JERRY 42,509.89
037 JOHNSON THOMAS 86,999.24
039 JOHNSON LINDA 75,023.55
040 MACDONALD RICHARD 2,560.98
041 SIMPSON TIMOTHY 8,723.88
042 MORRISON MICHAEL 98,054.99
043 CHRISTOPHERSON MELISSA 47,665.31
044 BAKER VIVIAN 92,125.89
045 THOMAS MARTIN 60,193.49

*** GRAND TOTAL (9 ITEMS) 513,857.22
Chapter 4. Beyond the Basics 147

How to Specify Which Columns to Total

This section explains:

! how Spectrum Writer determines which columns to print totals (and other
statistics) for

! how to explicitly specify that a column should or should not be included in total
and statistics lines

! how to print totals for time fields

Most of the features discussed in this section are illustrated in the sample report in
Figure 42.

There are a number of statistical lines that can be printed at the end of a report, as well as
at control breaks. The total line is the most common statistical line. By default, a total line
automatically prints at the end of the report (the "Grand Totals") and at each control break.
The other statistical lines are:

! the average line
! the non–zero average line
! the maximum line
! the minimum line
! the non–zero minimum line

These other statistical lines do not print unless specifically requested (in either a SORT or a
BREAK statement).

For a column to appear in any of the statistical lines, Spectrum Writer must accumulate
information about it as the report is being produced. For example, it must accumulate the
column's total value, its average value, etc. Each field that is accumulated automatically
appears in all statistical lines printed.

Which fields are accumulated? By default, all numeric columns are accumulated. So, by
default, all numeric columns appear in the total line, and any of the other statistical lines
that are printed.

The one exception to this rule is numeric fields that are displayed using a PICTURE which
contains special characters. (Special characters include such things as parentheses,
imbedded dashes, asterisks, etc.) By default, numeric fields displayed with such a PICTURE
are not accumulated and therefore do not appear in the total line and other statistical lines.
To illustrate this exception, consider the following COLUMNS statement:

COLUMNS: TELEPHONE(PIC'(999) 999–9999')

The telephone number column in this report would not be accumulated, even though
TELEPHONE is defined as a numeric field (see Appendix F, "Files Used in Examples" on
page 648). The special characters in the PICTURE (namely the parentheses) suggest that
totals, averages, etc. would not be appropriate for this field.

To state Spectrum Writer's default more precisely: all numeric columns except those
formatted with special characters are accumulated and appear in the statistical lines of the
report.
148 Spectrum Writer User’s Guide

How to Specify Which Columns to Total
Figure 42. Specifying which columns to total

Remarks:
• the TELEPHONE field is not accumulated by default, since its PICTURE includes special characters
• the first TOTAL–SALES column is accumulated by default, and appears in the total and average lines
• the second TOTAL–SALES is not accumulated (due to the NOACCUM parm) and does not appear in the

total or average lines
• the NUM–ACCOUNTS column is displayed with a PICTURE that includes one decimal digit, so that

the average line will also contain one decimal digit for that column
• the BREAK: #GRAND statement specifies that averages should print along with the Grand Totals at the

end of the report

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME
 TELEPHONE(PIC'(999) 999-9999')
 TOTAL-SALES
 TOTAL-SALES(NOACCUM)
 NUM-ACCOUNTS(PIC'Z,ZZ9.9')
BREAK: #GRAND AVERAGE

Produce this Report:

 EMPLOYEE LISTING

EMPL LAST TOTAL TOTAL NUM
NUM NAME TELEPHONE SALES SALES ACCOUNTS

036 JONES (415) 555-7653 42,509.89 42,509.89 78.0
037 JOHNSON (602) 555-6654 86,999.24 86,999.24 128.0
039 JOHNSON (415) 555-6785 75,023.55 75,023.55 104.0
040 MACDONALD (415) 555-9887 2,560.98 2,560.98 6.0
041 SIMPSON (818) 555-1887 8,723.88 8,723.88 16.0
042 MORRISON (818) 555-4748 98,054.99 98,054.99 154.0
043 CHRISTOPHERSON (602) 555-4556 47,665.31 47,665.31 65.0
044 BAKER (415) 555-1209 92,125.89 92,125.89 147.0
045 THOMAS (415) 555-1152 60,193.49 60,193.49 118.0

*** GRAND TOTAL (9 ITEMS) 513,857.22 816.0
*** AVERAGE VALUE 57,095.25 90.7
Chapter 4. Beyond the Basics 149

How to Specify Which Columns to Total
You may, however, override this default and explicitly state whether any numeric field is
to be accumulated or not. Take as an example the DEPT–NUM field, which is defined as a
numeric field (see Appendix F, "Files Used in Examples" on page 648). By default, the
DEPT–NUM column would be accumulated since it is a numeric field. Yet, it makes no sense
to total or to average the department number. In the case of this field you want to specify
that the DEPT–NUM field should not be accumulated.

This is normally done when a field is first defined— in either a FIELD or a COMPUTE
statement. Specifying the NOACCUM parm in those statements indicates that the field
should not be accumulated. By specifying this parm when a field is first defined, you avoid
having to specify NOACCUM in the COLUMNS statement of every report that uses that field.
Here is how the DEPT–NUM field was defined so that it is not accumulated (and therefore
does not appear in totals lines):

FIELD: DEPT–NUM LENGTH(1) TYPE(NUM) NOACCUM

A similar parm is available in the COMPUTE statement to specify that a computed field
should not be accumulated:

COMPUTE: NEW–DEPT–NUM(NOACCUM) = 900 + DEPT–NUM

There is also a similar ACCUM parm that can be specified when a field is defined. This parm
explicitly specifies that a numeric field should be accumulated and appear in the total (and
statistical) lines. Use this parm if you do wish to total a field that is formatted with special
characters.

You may also explicitly state whether or not to accumulate a particular numeric field
directly in the COLUMNS statement. Use the ACCUM or NOACCUM parm in parenthesis
immediately after the field name. Such a parm in the COLUMNS statement overrides (for the
current report only) any other parm that may have been specified in the FIELD or COMPUTE
statement. For example:

COLUMNS: TOTAL–SALES(ACCUM) DEPT–NUM(NOACCUM)

In the above example, the total sales column would be accumulated, and the department
number field would not be accumulated, regardless of what was specified in their FIELD
statements. Therefore, the TOTAL–SALES columns would appear in the total and other
statistical lines. And the DEPT–NUM field would not appear in any of the statistical lines.

By default, Spectrum Writer does not total any time fields. However, if you have a time
field which is a duration or interval (as opposed to a time of day), you may want to total it
in your report. You can do this by specifying the ACCUM parm for your time field. For
example:

COLUMNS: TIME–ON–PHONE(ACCUM)

The above statement would cause the TIME–ON–PHONE field to be totalled at the Grand
Total line and at control breaks. It makes sense to total this time field, since it represents a
duration (time spent on the telephone) rather than a time of day.

Note: To suppress the entire Grand Total line, use the NOGRANDTOTAL parm on the
OPTIONS statement. For information on customizing the Grand Totals, see page 207.

Note: To suppress the entire total line at a control break, see page 185.
150 Spectrum Writer User’s Guide

How to Specify Which Columns to Total
Note: The same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see two decimal digits for a
particular field in the average line, you should also specify that two decimal digits
print in the regular report column. Do this by specifying a PICTURE that has two
decimal digits in the COLUMNS statement. An example of this (but using only one
decimal digit) is shown in Figure 42 (page 149). (For more information on
specifying PICTURES, see page 451.)

How to Specify Which Columns to TotalHow to Produce Multi–Line Reports

This section explains:

! how to print more than one report line for each input file record

! how to write more than one output record to a PC file for each input file record

PC File Note: The following discussion of multi–line reports also applies to
creating PC files. With reports, each COLUMNS statement results in one print line
being printed in the report. With PC files, each COLUMNS statement results in one
output record being written to the PC file.

Most of the techniques discussed in this section are illustrated in Figure 43.

All of our report examples until now have used a single COLUMNS statement. However, you
are allowed to specify as many COLUMNS statements for a report as you like. Each
COLUMNS statement results in one print line in the body of the report. Thus, a report with a
single COLUMNS statement will produce a report having a single line for each record
included in the report. A report with three COLUMNS statements will print three lines for
each input record, and so on. The report lines will print in the same order that the COLUMNS
statements appear in.

Note: To print a variable number of lines per input record, see page 249.

Reports with multiple COLUMNS statements are useful when you need to display a large
amount of data from each record. They are also useful when a single record has several
related fields that you want to print stacked on top of each other, rather than listed alongside
each other.

The following tips will help your multi–line reports look better.

Aligning Columns in Multi-Line Reports
To align the columns from the different COLUMNS statements neatly, you may need to use
explicit spacing factors and width parms. (Spacing factors are discussed on page 128;
width parms are discussed on page 135.) Consider the sample report in Figure 43. The first
field listed on each COLUMNS statement is not the same size. If the spacing factors had not
been used after the LAST–NAME, ADDRESS, CITY, and STATE field names, the subsequent
columns on each line (the literal text and the quarterly sales figures) would have been
skewed. The spacing factors compensated for the first columns' different widths and
caused the subsequent columns to line up correctly.
Chapter 4. Beyond the Basics 151

How to Produce Multi–Line Reports
Figure 43. Using multiple COLUMN statements to print multi-line reports

Remarks:
• the DOUBLE option is used to print a blank line between each input record's data
• a spacing factor is used before the second item in each COLUMNS statement, to force correct alignment

of subsequent columns
• a width parm is used to make the STATE "column" only 2 bytes wide. Otherwise, its larger default

column heading ("STATE") would have resulted in a 5–byte column.
• the use of multiple COLUMNS statements suppresses the printing of the default column headings
• the second TITLE statement puts a blank line between the real report title and the title line used to make

column headings
• the third and fourth TITLE statements have a trailing slash, to left–align the column heading text
• the last TITLE statement is "overprinted," since it contains only underscores and spaces

These Control Statements:

OPTIONS: DOUBLE
INPUT: EMPL-FILE

TITLE: 'EMPLOYEE ADDRESSES, WITH QUARTERLY SALES'
TITLE:
TITLE: ' ADDRESS QUARTER SALES ' /
TITLE: '____________________ ____________ _______________' /

COLUMNS: LAST-NAME 6 '1ST QUARTER:' SALES-QTR1
COLUMNS: ADDRESS 1 '2ND QUARTER:' SALES-QTR2
COLUMNS: CITY 6 '3RD QUARTER:' SALES-QTR3
COLUMNS: STATE(2) 19 '4TH QUARTER:' SALES-QTR4

Produce this Report:
 EMPLOYEE ADDRESSES, WITH QUARTERLY SALES

 ADDRESS QUARTER SALES

JONES 1ST QUARTER: 9,956.01
125 MAIN STREET 2ND QUARTER: 10,511.56
SAN FRANCISCO 3RD QUARTER: 8,698.07
CA 4TH QUARTER: 13,334.25

JOHNSON 1ST QUARTER: 21,560.15
4000 LINDA VISTA 2ND QUARTER: 21,350.21
SCOTTSDALE 3RD QUARTER: 19,970.10
AZ 4TH QUARTER: 24,118.78

JOHNSON 1ST QUARTER: 14,590.34
12 LINCOLN DRIVE 2ND QUARTER: 17,220.10
SANTA ROSA 3RD QUARTER: 20,100.08
CA 4TH QUARTER: 23,113.12

 (other report lines not shown)

*** GRAND TOTAL (9 ITEMS) 122,989.16
 140,583.32
 124,677.23
 125,597.60
152 Spectrum Writer User’s Guide

How to Produce Multi–Line Reports
Use the DOUBLE parm of the OPTIONS statement (page 573) to double space the report after
all the report lines for a particular input record have printed. Otherwise, it will be hard to
tell which report lines are related to each other. The DOUBLE option tells Spectrum Writer
to double space before printing a new record's data. It does not mean to double space within
the report lines for the same input record. (To do that, use empty COLUMNS statements
wherever you want a blank line to appear.)

Column Headings in Multi-Line Reports
Another thing to remember about reports with multiple COLUMNS statements: column
headings are not automatically generated. To print column headings in a multi–line report,
you have two options:

! use the MULTICOLHDG parm in an OPTIONS statement

! use TITLE statements to create your own column headings

Let's examine each of these options. The MULTICOLHDG option tells Spectrum Writer to
create column headings as it normally would for the first COLUMNS statement. If those
column headings would be appropriate for your report, this is the easiest method to use. Of
course, you can also use column heading parms in that first COLUMNS statement to specify
exactly the column headings you want.

If the column headings from the first COLUMNS statement would not be appropriate, you
can use the second method to create column headings in a multi–line report. Use additional
TITLE statements to supply your own headings (see Figure 43). After the regular TITLE
statements, add a blank TITLE to cause a blank line to print. Then use one or more TITLE
statements to specify your column headings.

To prevent these titles from being centered (and therefore not lining up correctly with the
report columns) use a trailing slash. The trailing slash causes these title lines to be
left–aligned, rather than centered (page 168).

If you want to underline your columns headings, use a final TITLE statement that contains
nothing but underscores and blanks. Spectrum Writer will "overprint" any title line that
contains only blanks and underscore characters.

You can also use literal texts within the COLUMNS statements as a sort of row heading,
which works in conjunction with the more generalized column heading. (An example of a
row heading is the literal text "1ST QUARTER" in the report in Figure 43.) Together, the row
and column headings make clear exactly what each item of data in the report is.

Notice that the Grand total lines do not contain these literal texts ("1ST QUARTER", etc.)
This is because only numeric columns appear in the Grand totals. To add such texts to the
Grand Total lines, you could use several BREAK statement FOOTING parms, as discussed in
the section beginning on page 207.

Tip: By using a large of number of COLUMNS statements, you can create "reports"
where each input record prints one entire page. Use this technique to print special
forms. Specify one COLUMNS statement per line of the form, mixing literal text and
field names as desired. Use empty COLUMNS statements where blank lines should
appear. Use enough trailing blank COLUMNS statements to fill out the page.
Chapter 4. Beyond the Basics 153

How to Change the Report Margins

This section explains:

! how to increase the left margin in a report

! how to increase the top margin in a report

! how to change the bottom margin in a report

To shift the whole report (including titles, body, Grand Totals, etc.) to the right, use the
LEFTMARGIN parm of the OPTIONS statement (discussed on page 565). For example:

OPTIONS: LEFTMARGIN(10)

The above statement would create a left margin of 10 blank spaces.

The first title in a report is always printed at the "top of form" position. (The exact location
of the "top of form" line depends on the printer you are using.) Putting the first title on the
"top of form" line at your shop may result in the titles printing too high on the page. To
solve this problem, simply use one or more blank TITLE statements before the normal ones.
This has the effect of increasing your report's top margin. The first few titles (which will
still start printing at the "top of form" line) will only be blank lines. The following
statements would cause the report title to print three lines down from where it would
normally print:

TITLE:
TITLE:
TITLE:
TITLE: 'EMPLOYEE DIRECTORY'

Use the PAGELEN option (in the OPTIONS statement) to adjust the report's bottom margin.
The PAGELEN value tells Spectrum Writer how many lines of each page to use when
printing the report. The bottom margin of the report is simply the unused lines at the bottom
of each sheet of paper.

The default PAGELEN value is 60. That means that 60 lines are used on each page.
Specifying a smaller PAGELEN will increase the bottom margin in the report. Specifying a
larger value will decrease the bottom margin. For example, the following statement will
cause 5 additional blank lines to be left at the bottom of each page:

OPTIONS: PAGELEN(55)

How to Change the Report MarginsHow to Print Bar Graphs

In "How to Change the Way Dates, Times and Numbers Are Formatted" (page 137), we
learned how to specify a display format along with a field name in the COLUMNS
statement. The display format specifies just how a field's data should be formatted in a
report. One of the display formats you can use for numeric fields is called BARGRAPH (or
just BAR). It specifies that the field should be formatted as a horizontal bar graph (or
"histogram.") For example:

COLUMNS: EMPL–NAME CUSTOMER AMOUNT(BARGRAPH)

The above statement specifies that the AMOUNT field should appear as a bar graph in the
report. By default, bar graph columns are 20 characters wide. The column will contain a
154 Spectrum Writer User’s Guide

How to Print Bar Graphs
Figure 44. A report with a bar graph column

Remarks:
• the BAR display format (in the COLUMNS statement) causes the second SALES–IN–THOUSANDS

column to be displayed as a bar graph
• the override column width of 30 causes the bar graph column to be 30 characters wide
• a COMPUTE statement is used to create a field whose value is between 0 and 30, to correspond with

the width of the bar graph column
• the (0) parm in the COMPUTE statement results in SALES–IN–THOUSANDS having zero decimal

digits

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'BAR GRAPH OF FIRST QUARTER SALES'
COMPUTE: SALES–IN–THOUSANDS(0) = SALES–QTR1 / 1000
SORT: SALES–QTR1(DESC)
COLUMNS: LAST–NAME FIRST–NAME SALES–QTR1
 SALES–IN–THOUSANDS SALES–IN–THOUSANDS(BAR,30)

Produce this Report:

 BAR GRAPH OF FIRST QUARTER SALES

 SALES SALES
 LAST FIRST SALES IN IN
 NAME NAME QTR1 THOUSANDS THOUSANDS

MORRISON MICHAEL 25,014.19 25 *************************
JOHNSON THOMAS 21,560.15 22 **********************
BAKER VIVIAN 21,336.10 21 *********************
THOMAS MARTIN 14,889.07 15 ***************
JOHNSON LINDA 14,590.34 15 ***************
CHRISTOPHERSON MELISSA 13,807.22 14 **************
JONES JERRY 9,956.01 10 **********
SIMPSON TIMOTHY 1,287.58 1 *
MACDONALD RICHARD 548.50 1 *

*** GRAND TOTAL (9 ITEMS) 122,989.16 124
Chapter 4. Beyond the Basics 155

How to Print Bar Graphs
number of asterisks equal to the rounded value of the numeric field (up to a maximum of
20). For example, when the AMOUNT field is equal to 5.25, the column will contain 5
asterisks: when the AMOUNT field is equal to 17.89, the column will contain 18 asterisks.

Of course many fields will have values much larger than 20. The TOTAL–SALES field, for
example, contains values into the tens of thousands. Use a COMPUTE statement to reduce
large fields down to a value between 0 and 20. Then display that COMPUTE field using the
BAR display format. This is illustrated in Figure 44

Also, you may use an override column width parm to increase (or decrease) the default
column width of 20 characters. The report on page 155 shows a bar graph column that is
30 characters wide. (The use of the width parm was discussed beginning on page 135.)

How to Print Bar GraphsHow to Print Vertical Lines between Report Columns

Spectrum Writer normally leaves one blank space between each report column. You can
use the COLSEP parm of the OPTIONS statement to specify some other "column separator"
text. For example:

OPTIONS: COLSEP(' | ')

The above statement specifies a 3–character text that should appear between each column
of the report. The text consists of a blank, a vertical bar character, and another blank. Using
this OPTIONS statement results in a report with a vertical bar running down between the
report columns. This gives the report a spreadsheet–like appearance.

The report in Figure 45 shows a report that uses the above statement.

Note: The vertical bar is the "Shift 1" key on most mainframe terminals. When
working at a PC running terminal emulation software, you will probably not see a
key with this symbol on it. Some terminal emulator programs use the "pipeline" key
as the vertical bar key. Some others use the right–hand square bracket key "]" for
this purpose.

PC File Note: The COLSEP parm should not be used when creating PC files.
Spectrum Writer will choose an appropriate column delimiter for your PC program.
156 Spectrum Writer User’s Guide

How to Print Vertical Lines between Report Columns
Figure 45. A report with vertical lines separating the columns

Remarks:
• the COLSEP option specifies a 3–character "column separator" text, consisting of a vertical bar

surrounded by blanks

These Control Statements:

OPTIONS: COLSEP(' | ')
INPUT: EMPL-FILE
TITLE: 'DEMONSTRATION OF VERTICAL BARS BETWEEN COLUMNS'
COLUMNS: EMPL-NUM LAST-NAME FIRST-NAME DEPT-NUM
 SEX HIRE-DATE TOTAL-SALES

Produce this Report:
 DEMONSTRATION OF VERTICAL BARS BETWEEN COLUMNS

EMPL LAST FIRST DEPT HIRE TOTAL
NUM NAME NAME NUM SEX DATE SALES

036 | JONES | JERRY | 2 | M | 01/31/80 | 42,509.89
037 | JOHNSON | THOMAS | 1 | M | 06/21/75 | 86,999.24
039 | JOHNSON | LINDA | 2 | F | 11/25/79 | 75,023.55
040 | MACDONALD | RICHARD | 2 | M | 07/04/82 | 2,560.98
041 | SIMPSON | TIMOTHY | 3 | M | 12/01/82 | 8,723.88
042 | MORRISON | MICHAEL | 3 | M | 11/30/79 | 98,054.99
043 | CHRISTOPHERSON | MELISSA | 1 | F | 08/15/81 | 47,665.31
044 | BAKER | VIVIAN | 4 | F | 06/04/82 | 92,125.89
045 | THOMAS | MARTIN | 4 | M | 06/04/82 | 60,193.49

*** GRAND TOTAL (9 ITEMS) 513,857.22
Chapter 4. Beyond the Basics 157

Including All Fields in the COLUMNS Statement

How can you get all of the fields from an input record into the COLUMNS statement without
having to type each field name individually? Just put the record name in the COLUMNS
statement. (An input’s record name is, by default, the same as the file name.)

Example: OPTION: PC
INPUT: SALES-FILE
COLUMNS: SALES-FILE

The three statements above reformats the entire contents of the SALES-FILE into a comma-
delimited "PC" file. Figure 22 (page 89) shows a run that uses the above statements.

Record Name Parms
There are a number of optional parms you can specify when you use a record name in the
COLUMNS statement. Use these parms to:

! specify how overlapping fields should be handled

! specify individual fields to exclude from the output

! specify what order the columns (fields) should appear in

Here is the full syntax of the record name option of the COLUMNS statement:
COLUMNS: record-name[([exclude-field1 exclude-field2 ...]

 [OUTER/INNER] [BYDEF/BYNAME/BYCOL] [LIST/NOLIST])] ...

Excluding Duplicate Data from Overlapping Fields
Specifying a record name in the COLUMNS statement is a quick way to get all of the data
from an input record into your output file. But in most cases there will be some fields that
you don’t really need or want in your output.

One common example of this are fields that overlap with other fields in the input record.
For example, consider this definition of a date field:

Example: FIELD: SALES-DATE TYPE(YYMMDD)
FIELD: SALES-YY LEN(2) COLUMN(SALES-DATE)
FIELD: SALES-MM LEN(2)
FIELD: SALES-DD LEN(2)

The SALES-DATE field defines the whole 6-byte date field in the record. Then, the next three
fields redefine the individual YY, MM and DD components of the same field.

By default, Spectrum Writer writes all of the fields defined for a file to the output. That
means it will write all four of the above fields, even though it is a duplication of the same
data.

If that is not what you want, specify either the OUTER or INNER parm.The OUTER parm tells
Spectrum Writer to exclude outer fields when overlaps occur.

Example: COLUMNS: SALES-FILE(OUTER)

The above statement would result in SALES-YY, SALES-MM and SALES-DD being written to
the output file, but not SALES-DATE.

The INNER parm does just the opposite. It excludes inner fields when overlaps are detected.
In the above example, it would result in only SALES-DATE being written to the output file.
158 Spectrum Writer User’s Guide

Including All Fields in the COLUMNS Statement
Excluding Individual Fields
There are times when you can not get the exact results you want with either the INNER or
OUTER parm. This may happen when there are multiple levels of overlapping fields, or
partially overlapping fields. Or when you want to exclude certain fields for some other
reason. In such cases, you can name individual fields as "exclude fields." Any field name
specified in the parms for a record name will not be included in the output. You can specify
as many exclude fields as you like, in any order.

Example: COLUMNS: SALES-FILE(BACKUP-EMPL-NUM COMMISSION-RATE TIME-ON-PHONE)

The above statement would write out all fields from the SALES-FILE except for the three
fields named in the parms as exclude fields.

Note: if you have actual fields named INNER, OUTER or any of the other parm
names, Spectrum Writer assumes you are naming the field by that name (as an
exclude field), rather than naming the parm. If you have fields with the same name
as a parm, you can indicate that you mean the parm by preceding it with a pound
sign (#). For example:

Example: COLUMNS: SALES-FILE(#INNER #BYNAME)

Specifying the Field Order in the Output
By default, the fields appear in the output record in the order in which they were defined
(the default BYDEF option). Specify the BYNAME parm if you want the fields to appear in the
alphabetical order of the field names. Or specify BYCOL to put them in starting column
order (that is, the order in which they occur in the input record).

Example: COLUMNS: SALES-FILE(BYCOL)

Listing the Fields in the Control Listing
By default, Spectrum Writer lists the names of all of the fields it is automatically including
in the output (the default LIST option). This might be a long list for some files. If you prefer
to suppress the list of field names in the control listing, use the NOLIST parm:

Example: COLUMNS: SALES-FILE(NOLIST)

Including All COMPUTE Fields
COMPUTE fields that are part of a file definition (that is, that are kept in the copy library
along with the FIELD statements for a file) are generally included with the rest of the fields
when a record name is specified in the COLUMNS statement.

But there are some COMPUTE fields that are not considered to be part of any file’s
definition. Examples of such COMPUTE fields are those which are computed without using
any fields as operands (that is, they use only literals) and those which are defined out of
sequence for an earlier file (while a different file is the "current" file being defined).

Spectrum Writer has a special "record name" called #COMPUTES that includes all COMPUTE
fields that are not a part of a file definition. Use this special record name to output all
COMPUTE fields that are not part of any file’s definition. The syntax is:

Example: COLUMNS: #COMPUTES[([exclude-field1 ...] [BYDEF/BYNAME] [LIST/NOLIST])] ...

Note that the INNER, OUTER and BYCOL parms do not apply to this special record name.
Chapter 4. Beyond the Basics 159

What If You Run Out of Room?

The standard size of a report line is 132 characters. Therefore, the print expressions you
specify (in COLUMNS statements, TITLE statements, etc.) must produce a line no longer than
132 characters. If it exceeds 132 characters, Spectrum Writer will truncate part of the line.
If you have trouble fitting all the information you need into a report, try some of the
following solutions:

If you are printing on a laser printer:

! try using a condensed font (or "form") that allows more than 132 characters per
line. Also change the JCL (under OS/390) to specify a larger LRECL for the
SWOUTPUT DD (page 417). Spectrum Writer will then allow your report to be as
wide as the LRECL value that you specify. It will not be limited to 132 characters
in that case.

VSE Note: Increase the RECSIZE value in the OUTATTR parm and in the JCL to
achieve the same result (page 431).

Note: You may need to send a "setup string" to your laser printer at the
beginning of the report in order to use the desired printer form. See the PRTSETUP
option (page 572) for information on doing this.

If you are printing on a regular line printer:

! shorten long column headings, by abbreviating them, or by breaking the heading
up into several lines (see Figure 36 on page 131). See "How to Change the
Column Headings" on page 130.

! shorten the width of one or more columns. See "How to Change the Width of a
Column" on page 135.

! use smaller spacing factors between the report columns

! move constant information (information that does not change from page to page)
out of the individual report lines and into the title lines or break lines. For an
example of putting data in the title, see Figure 54 (page 179).

! use multiple COLUMNS statements to create a report with more than one report
line for each input file record. See "How to Produce Multi–Line Reports" on
page 151.

How to Print Vertical Lines between Report ColumnsWhy Do I See ****X**** in My Report?

This section explains:

! why asterisks sometimes appear in your report

Sometimes an error prevents Spectrum Writer from being able to display the desired data
in a report. Rather than abandon the whole report, Spectrum Writer prints a number of
asterisks where that data should have appeared. A single letter will be imbedded in the
160 Spectrum Writer User’s Guide

Why Do I See ****X**** in My Report?
asterisks. That letter is an error code which tells you exactly what kind of error occurred.
The following table lists these error codes. Appendix E, "Error Indicators" (page 644)
discusses each of these errors in more detail, including suggestions for correcting the error.
A discussion on propagating error conditions is also found in that Appendix.

Why Do I See ****X**** in My Report?Customizing the Report Titles

The following sections show various ways that you can customize the titles in a report. The
following sections explain:

! how to include file data in a title (below)

! how to put the page number, date and time in your titles (page 165)

! how to change the spacing and formatting of data in the titles (page 165)

! how to split the title into left aligned, centered, and right aligned parts
(page 168)

! various special options that relate to titles and column headings (page 175)

How to Include Data from a File in the Title

 This section explains:

! how to print literal texts in a title

! how to print data from an input file in a title

The contents of the TITLE statement is simply a print expression. Print expressions tell
Spectrum Writer how to build one print line that will be used in a report. The print
expression in a TITLE statement specifies how to build a title line.

Note: the contents of the COLUMNS statement is also a print expression— one that
tells how to build the report lines for the main body of the report. Thus, the contents

ERROR CODE MEANING

****A**** Ambiguous reference to a field.

****E**** Error in field’s definition.

****F**** Error computing a field's offset value.

****I**** Invalid data in the field.

****S**** Size error (not enough room to print all the digits).

****U**** Undefined field.

****V**** Overflow occurred.

****Z**** Divide by zero occurred.
Chapter 4. Beyond the Basics 161

How to Include Data from a File in the Title
Figure 46. A report title that includes data from a file

Remarks:
• the value used for LAST–NAME in the title is taken from the next report line to print
• by default, the literal text is separated from the LAST–NAME field by one blank
• by default, the title is centered over the report

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

 EMPLOYEE DIRECTORY - BAKER

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
162 Spectrum Writer User’s Guide

How to Include Data from a File in the Title
of a TITLE statement is very similar to the contents of a COLUMNS statement, which
you are already familiar with.

As with other print expressions in Spectrum Writer, just list one or more items to print.
TITLE: item1 item2 item3 ...

Each item can be either a literal text or a field name.

To put a literal text in the title, simply enclose the text in either apostrophes or quotation
marks. For example, the following statement causes the words EMPLOYEE DIRECTORY to
appear in the title:

TITLE: 'EMPLOYEE DIRECTORY'

To put data from an input file in your title, simply list the desired field name. (Do not put
the field name in apostrophes or quotation marks.) For example, the following statement
causes the contents of the LAST–NAME field to appear in the report title.

TITLE: LAST–NAME

The data that appears in the title will be taken from the first record whose data prints on the
new page.

By the way, the TITLE statement can refer to any field from the input file(s). You are not
limited to just those fields that are listed in the COLUMNS statement. Field names used in
the TITLE statement may be any of the following:

! any field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (created in a preceding COMPUTE statement)

! a built–in field. (See Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields.)

Figure 46 (page 162) shows an example of a title which uses one literal text and one data
field from the input file. (Another example of printing data from a file in the title is shown
in Figure 54 on page 179.)

How to Include Data from a File in the TitleHow to Include the Page Number, Date and Time in a Title

This section explains:

! how to include data from built–in fields in a title

Most reports will include the page number and the current date and time somewhere in the
title. Spectrum Writer has a number of built–in fields that can be used for this purpose.
Chapter 4. Beyond the Basics 163

How to Include the Page Number, Date and Time in a Title
Figure 47. A title that shows the current day of the week, date, time and page number

Remarks:
• the #DAYNAME built–in field causes the day of the week to appear in the title
• the #TODAY built–in field causes the current date to appear in the title
• the #TIME built–in field causes the current time to appear in the title
• the #PAGENUM built–in field causes the page number to appear in the title

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY'
TITLE: #DAYNAME #TODAY #TIME
TITLE: 'PAGE' #PAGENUM
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

 EMPLOYEE DIRECTORY
 FRIDAY 04/27/92 2:35 PM
 PAGE 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD PHOENIX
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
164 Spectrum Writer User’s Guide

How to Include the Page Number, Date and Time in a Title
You may use these fields in your TITLE statement just like real fields from input files. The
built–in fields available are:

The sample report in Figure 47 shows report titles that use several of these built–in fields.

 The techniques discussed in the following sections of this chapter can be used to improve
the appearance of the current date in your title. For example, you may want to spell out the
name of the month in the current date. You may also want to align the date and page
number with the left or right report margin.

Note: These built–in fields can also be used in the FOOTNOTE statement. Use the
FOOTNOTE statement when you want to print the date, page number, etc. at the
bottom of your report pages. (See page 175.)

How to Include the Page Number, Date and Time in a TitleHow to Change the Appearance of Items in the Title

This section explains how to:

! specify the number of spaces that should appear between items in a title

! specify the width of an item in the title

! specify the display format to use when formatting dates, times and numbers in
the title

BUILT-IN FIELDS AVAILABLE IN THE TITLE STATEMENT

BUILT-IN
FIELD NAME DESCRIPTION

#PAGENUM
a numeric field containing the current page number. (May also
be abbreviated #PAGE.)

#TODAY
a date field containing the system date on which the program
began execution

#COMDATE
(VSE only) a date field containing the date from the DATE JCL
statement, if any

#DAYNAME
a character field containing the day of the week (Monday, etc.)
on which the program began execution

#TIME
a character field containing the formatted time of day at which
the program began execution (formatted in 12–hour format
including AM or PM)

#TIME24
a character field containing the formatted time of day at which
the program began execution (in 24–hour format)

#HHMMSS
a time field containing the time of day on which the program
began execution

#JOBNAME
an 8–byte character field containing the jobname of the job
executing Spectrum Writer
Chapter 4. Beyond the Basics 165

How to Change the Appearance of Items in the Title
Figure 48. Using width, display format and justification parms in the title

Remarks:
• the width of the LAST–NAME field in the first title has been shortened to 1 byte
• the LONG1 display format causes the current date (#TODAY) to be spelled out in the second and third

titles
• the CENTER justification parm causes the current date to be correctly centered in the third title line

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME(1)
TITLE: #TODAY(LONG1)
TITLE: #TODAY(CENTER,LONG1)
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

 EMPLOYEE DIRECTORY - B
 JUNE 4, 1990
 JUNE 4, 1990

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
166 Spectrum Writer User’s Guide

How to Change the Appearance of Items in the Title
! justify the contents of fields printed in the title

! specify that data should be ASCII instead of EBCDIC

As in other print expressions, you may customize the title line by using optional spacing
factors and parms. So, the full syntax for the TITLE statement is this:

TITLE: [n] item1(parms) [n] item2(parms) [n] item3(parms) ...

The optional spacing factor [n] is the number of blank spaces to leave between items in a
title. If you omit the spacing factor, the default is for one blank space to appear between
each item. (A spacing factor of zero is allowed if you want no spaces to appear between
two items in a title.) For example, the following statement causes 5 blanks to appear
between the literal text "EMPLOYEE DIRECTORY" and the contents of the LAST–NAME field in
the title:

TITLE: 'EMPLOYEE DIRECTORY' 5 LAST–NAME

The optional parms are used to provide details about how to display data fields in a title.
You may specify one or more parms, enclosed in parentheses, immediately following a
field name. (Do not leave a space between the field name and the first parenthesis.) You
may use any combination of parms, in any order. Separate the parms with a comma and/or
blanks. For example, the following statement has both a width parm and a justification
parm for the LAST–NAME field:

TITLE: LAST–NAME(50, CENTER)

The following table shows the parms that are available in the TITLE statement. The sample
report in Figure 48 (page 166) illustrates the use of many of these parms.

TITLE STATEMENT PARMS

PARM DESCRIPTION

ASCII

Specifies that the field should be formatted in ASCII, rather than in
EBCDIC

COMPUTE: TITLE-LIT = 'DATE: '
TITLE: TITLE-LIT(ASCII) 0 SALES-DATE(ASCII)

See page 143 for more information on creating ASCII output files.

BIZ

Means "blank if zero." Specifies that the title area should be left
blank whenever the numeric, date or time item contains zeros. The
following example specifies that the SALES-DATE field should be
left blank whenever its value is zero.

TITLE: ‘DATE:‘ SALES-DATE(BIZ)

display-
format

Specifies how to format a field in the title. A complete list of
display formats is found in Appendix B, "Display Formats" on
page 617. This parm works just like the display format parm in the
COLUMNS statement, which is explained in more detail beginning
on page 137. The following example specifies that the current date
field (#TODAY) should be displayed in the LONG1 format –– with
the month name spelled out:

TITLE: #TODAY(LONG1)
Chapter 4. Beyond the Basics 167

How to Change the Appearance of Items in the Title
If a field is specified in a TITLE statement without any parms, Spectrum Writer chooses a
default width, display format and justification.

Notice in the sample report in Figure 48 that the #TODAY field in the second title line does
not appear to be exactly centered over the report. This is because the contents of the #TODAY
field does not fill the whole area reserved for it in the title. The default width reserved for
a date in the LONG1 format is 18 characters — big enough to handle the largest possible
value (for example "SEPTEMBER 31, 1999"). When a smaller value (for example "MAY 1,
1999") appears in this 18–character area with no justification, it is padded with blanks on
the right. Therefore the date does not look like it is centered.

In other words, the 18–character area reserved to display the #TODAY field is centered over
the report. But, the value within the 18–character area is not centered. To correct this, a
justification parm of CENTER was specified for the #TODAY field in the third title line of that
report. The CENTER justification parm causes the contents of the 18–character #TODAY field
to be centered.

To solve a similar problem that can arise when dates are lined up over the right margin of
a report, see page 173.

How to Change the Appearance of Items in the TitleHow to Split the Title into Left Aligned, Centered, and Right Aligned Parts

This section explains:

! how to split the title into left aligned, centered, and right aligned parts

LEFT/
CENTER/
RIGHT

Specifies how to justify a field's data within the area reserved for
it in the title. These parms work just like the justification parms in
the COLUMNS statement, which are explained in more detail
beginning on page 146. The section titled "How to Split the Title
into Left Aligned, Centered, and Right Aligned Parts" (page 168)
also illustrates the use of justification parms. The following
example specifies that the contents of the current date field
(#TODAY) should be center justified (as well as being formatted in
the LONG1 display format).

TITLE: #TODAY(CENTER,LONG1)

width

This numeric parm specifies how many characters should be
reserved for an item in the title. This parm works just like the
width parm in the COLUMNS statement, which is explained in more
detail beginning on page 135. As an example, the following
statement specifies that only one character of the LAST–NAME field
should appear in the title:

TITLE: LAST–NAME(1)

TITLE STATEMENT PARMS (CONTINUED)

PARM DESCRIPTION
168 Spectrum Writer User’s Guide

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
Until now, all of our TITLE statements have consisted of a single print expression. The
contents of that print expression has been centered over the reports.

A TITLE statement is actually allowed to have up to three print expressions, separated with
slashes (/).

TITLE: print–expression1 [/ print–expression2] [/ print–expression3]

Note: Do not confuse multiple items within a single print expression with multiple
print expressions. A single print expression may contain as many items (literal texts
and field names) as you like. A new print expression begins only when a slash is
encountered. See "How to Include Data from a File in the Title" on page 161 for a
review of what a print expression is.

Each print expression is called a title part. Spectrum Writer aligns each title part
differently, depending on how many parts there are. Here is how title parts are aligned:

Thus, a simple TITLE statement with no slashes (and therefore with just a single part) will
result in a title that is centered across the report. The sample reports in the preceding pages
show examples of titles with only a single part.

A TITLE statement with two parts (separated by a slash) results in a title that has a left
aligned part and a right aligned part. The report in Figure 49 shows an example of such a
title.

And a TITLE statement with three parts results in a title with: a left aligned part, a centered
part, and a right aligned part. The report in Figure 50 shows an example of a title that has
three parts.

What if you want your whole title to be left aligned or right aligned, without splitting it into
multiple parts? Use a leading or a trailing slash. This has the effect of creating a TITLE
statement with two parts, but with one of the parts being an empty print expression. Since
the TITLE statement has two parts, one will be left aligned and one will be right aligned. But
the part that has no print expression will be all blank.

For example, a trailing slash causes a title to be left aligned. Figure 51 (page 172) shows
an example of this.

This use of a trailing slash to prevent the centering of a single title part is also helpful when
creating column headings with the TITLE statement. An example of this appears in
Figure 43 (page 152).

NUMBER OF
TITLE PARTS ALIGNMENT

1 the title is centered

2 the first part is left aligned, and the second part is right aligned

3
the first part is left aligned, the second part is centered, and the
third part is right aligned
Chapter 4. Beyond the Basics 169

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
Figure 49. A report with left and right title parts

Remarks:
• the slash in the TITLE statement splits the title into left and right parts

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME / 'ABC COMPANY'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

EMPLOYEE DIRECTORY - BAKER ABC COMPANY

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
170 Spectrum Writer User’s Guide

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
Figure 50. A report with left, center, and right title parts

Remarks:
• the two slashes in the TITLE statement split the title into three parts
• the first title part is aligned with left margin of the report
• the second title part is centered
• the third title part is aligned with the right margin of the report

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'ABC COMPANY' /
 'EMPLOYEE DIRECTORY –' LAST–NAME /
 'SALES DEPARTMENT'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

ABC COMPANY EMPLOYEE DIRECTORY - BAKER SALES DEPARTMENT

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
Chapter 4. Beyond the Basics 171

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
Figure 51. Titles with the date, 24-hour time, and page number on the left side of the report

Remarks:
• the built–in fields #TODAY, #TIME24, and #PAGENUM are included in the title
• using #TIME24 results in a 24–hour time, without the AM or PM
• the use of a trailing slash in the first title produces a left aligned and a centered title part
• the use of a trailing slash in the second and third titles produces a left aligned title

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'DATE:' #TODAY / 'EMPLOYEE DIRECTORY' /
TITLE: 'TIME:' #TIME24 /
TITLE: 'PAGE:' #PAGENUM /
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

DATE: 04/27/92 EMPLOYEE DIRECTORY
TIME: 14:35
PAGE: 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
172 Spectrum Writer User’s Guide

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
You can also use a trailing slash in conjunction with a spacing factor to print a title in a
certain column. For example, to print the text "REGION" in column 62 of the title, you would
use this statement:

TITLE: 61 'REGION' /

The above statement specifies that 61 blanks should be left before the first item in the title.
Therefore, the word "REGION" would begin in column 62. The trailing slash prevents
Spectrum Writer from trying to center the title.

On the other hand, you can use a leading slash to force the whole title to be aligned on the
right side of the report. Figure 52 (page 174) shows an example of this.

The reports on page 172 and page 174 also illustrate one other possibility. By using an
empty print expression in the appropriate place, you can also create titles that have a left
and a center aligned part, but no right aligned part. Or, you can create a title with a center
and a right aligned part, but with no left aligned part.

Correcting Right Alignment Problems
You may sometimes specify a right aligned title only to find that the last character in the
title does not line up with the last character of the body of the report. Two things can cause
this to occur:

! the body of the report may be smaller than the total length of the title parts. By
necessity the title will extend beyond the right margin of the report.

! the last field listed in the title may not have completely filled the area reserved
for it. Thus, there would be trailing blanks within the last field in the title, and
the title would not appear to be right aligned. In other words, while the end of the
field lined up with the right edge of the report, the data within the field did not
extend to its last character. You should right–justify the contents of the last field
by specifying the RIGHT parm for that field. This will make the last characters in
the title line up with the right edge of the report. Figure 52 (page 174) shows a
sample report that uses this technique to correctly right align the current date in
a title.

Correcting Centering Problems
A similar problem can occur with centered title parts. Sometimes they do not appear to be
centered correctly. Two things can cause this to occur:

! this can happen when the contents of a centered field does not completely fill the
area reserved for it in the title. In that case, the field may be centered correctly,
but the data within the field may not be centered. Use the CENTER parm to center
the contents of the field. The second title line in the report in Figure 48
(page 166) exhibits this problem. The third title line in that same report uses the
CENTER parm to correct the problem.

! sometimes correctly centering a title part would cause it to overlap with long title
parts that are aligned over the left or right margins. In these cases, Spectrum
Writer shifts the center title part to prevent the titles parts from overlapping.
Chapter 4. Beyond the Basics 173

How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
Figure 52. A title with date (spelled out), time, and page number on the right side of report

Remarks:
• the built–in fields #TODAY, #TIME, and #PAGENUM are displayed in the titles
• the system date field (#TODAY) is displayed using the LONG1 format, and is right–justified
• the page number field (#PAGENUM) is only 2 characters wide
• the use of a leading slash in the first title produces a centered and a right aligned title part
• the use of a leading slash in the second and third titles produces a right aligned title

These Control Statements:

INPUT: EMPL–FILE
TITLE: / 'EMPLOYEE DIRECTORY' / #TODAY(LONG1,RIGHT)
TITLE: / #TIME
TITLE: / 'PAGE:' #PAGENUM(2)
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

 EMPLOYEE DIRECTORY APRIL 27, 1992
 2:35 PM
 PAGE: 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
174 Spectrum Writer User’s Guide

Special Options Related to Titles

The following table summarizes the options that affect the titles. (For a similar list of
options that affect column headings, see page 133) Use an OPTIONS statement to specify
these options (page 555).

How to Print "Titles" at the Bottom of Each Page

To print "titles" at the bottom of each page of the report, use the FOOTNOTE statement. The
FOOTNOTE statement works just like the TITLE statement, except that the footnote lines print
at the bottom of each page, rather than at the top. For example:

FOOTNOTE: 'THE INFORMATION IN THIS REPORT IS CONFIDENTIAL'
FOOTNOTE: 'PAGE' #PAGENUM

The two FOOTNOTE statements above cause two lines to print at the bottom of each page of
the report. The first footnote line contains the literal text ("THE INFORMATION IN THIS
REPORT IS CONFIDENTIAL") centered under the report. The second footnote line has the
word "PAGE", followed by the page number. Figure 53 shows a sample report which uses
these two FOOTNOTE statements. FOOTNOTE statements may appear anywhere after the
INPUT statement.

All of the features allowed in TITLE statements are also allowed in FOOTNOTE statements.
(Using the TITLE statement is discussed beginning on page 161.) Specifically, you can:

! include the current date, time, page number, etc. in the footnote, by using the
built–in fields #TODAY, #DAYNAME, #TIME, #TIME24, #HHMMSS and #PAGENUM.
(page 163)

! separate the footnote line into left, center, and right aligned parts, by using
slashes within the FOOTNOTE statement. (page 168)

! include data from the input file(s) in your footnote line. Just list the desired field
name in the FOOTNOTE statement. The data that will appear in the footnote will
be the field's value from the previous report record. (page 161)

! specify exactly how data should be formatted in the footnote, by using the width,
display–format, and justification parms. (page 165)

OPTIONS RELATED TO TITLES

OPTION DESCRIPTION

COLHDGONCE
Suppresses titles. Prints the column headings just once at the
beginning of the report. Report will have no page breaks.

NOCOLHDGS
Suppresses column headings, but does not affect titles. Report
will have normal page break processing.

NOTITLES
Suppresses all titles and column headings. Report will have no
page breaks.

TITLEONCE
Prints titles (and any column headings) just once at the
beginning of the report. Report will have no page breaks.
Chapter 4. Beyond the Basics 175

How to Print "Titles" at the Bottom of Each Page
Figure 53. Using the FOOTNOTE statement to add footnotes to a report

Remarks:
• the report has two footnote lines that correspond to the two FOOTNOTE statements
• since no slashes are used, each footnote is centered under the report

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'ABC COMPANY -- EMPLOYEE DIRECTORY'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME EMPL–NUM SEX DEPT–NUM
 HIRE–DATE CITY STATE
FOOTNOTE: 'THE INFORMATION IN THIS REPORT IS CONFIDENTIAL'
FOOTNOTE: 'PAGE' #PAGE

Produce this Report:

 ABC COMPANY -- EMPLOYEE DIRECTORY

 LAST FIRST EMPL DEPT HIRE
 NAME NAME NUM SEX NUM DATE CITY STATE

BAKER VIVIAN 044 F 4 06/04/82 WALNUT CREEK CA
CHRISTOPHERSON MELISSA 043 F 1 08/15/81 PHOENIX AZ
JOHNSON LINDA 039 F 2 11/25/79 SANTA ROSA CA
JOHNSON THOMAS 037 M 1 06/21/75 SCOTTSDALE AZ
JONES JERRY 036 M 2 01/31/80 SAN FRANCISCO CA
MACDONALD RICHARD 040 M 2 07/04/82 PLEASANTON CA
MORRISON MICHAEL 042 M 3 11/30/79 GLENDALE CA
SIMPSON TIMOTHY 041 M 3 12/01/82 ARCADIA CA
THOMAS MARTIN 045 M 4 06/04/82 CONCORD CA

*** GRAND TOTAL (9 ITEMS)

 THE INFORMATION IN THIS REPORT IS CONFIDENTIAL
 PAGE 1
176 Spectrum Writer User’s Guide

Customizing the Control Breaks

This section discusses:

! using the SORT statement to request a control break

! using the BREAK statement to request a control break

! some of the parms available for customizing control breaks

The easiest way to request a control break is to specify a break parm after a field name right
in the SORT statement. For example, the TOTAL parm in the following SORT statement
requests that a control break occur whenever the REGION field changes value:

SORT: REGION(TOTAL)

At a control break, the following things happen by default:

! a total line prints, showing the number of items in the control group, as well as
the totals for all numeric columns in the report

! two blank lines print, before continuing with the report

Another way to request a control break is to use the BREAK statement. The BREAK statement
names a sort field and makes that field a control break field. Only a field named in an earlier
SORT statement can appear in a BREAK statement. For example, the following two
statements have the same effect as the above SORT statement.

SORT: REGION
BREAK: REGION

We could also have included the TOTAL parm on the BREAK statement. However, since
TOTAL is the default, it was not necessary.

There are several advantages to using a BREAK statement. The BREAK statement has parms
that gives you complete control over what prints at control breaks. These parms are
discussed in the sections that follow:

! how to specify the report spacing at a control break with the SPACE parm
(page 178)

! how the default total line looks, and tips on getting the most out of it (page 180)

! how to print control-group-wide percentages and ratios in the total line
(page 202)

! how to customize the total line using the TOTAL parm (page 182)

! how to suppress totals at a control break (page 185)

! how to print statistical lines using the AVERAGE, MAXIMUM, MINIMUM,
NZAVERAGE and NZMINIMUM parms (page 186)

! how to print customized "footing" lines at the end of a control group using the
FOOTING parm (page 188)

! how to print the number of items contained in a control group (page 198)
Chapter 4. Beyond the Basics 177

Customizing the Control Breaks
! how to print customized "heading" lines at the beginning of a control group
using the HEADING parm (page 200)

Customizing the Control BreaksHow to Change the Control Break Spacing

This section explains:

! the default control break spacing in a report

! how to specify your own control break spacing in a report

! the SPACE parm in the BREAK statement

By default, Spectrum Writer prints two blank lines whenever a control break occurs.
(These blank lines print after any footing lines, total lines and statistical lines for the
control break have printed.) For example, the sample report in Figure 13 (page 66) uses
default spacing at control breaks.

If you want something other than two blank lines, specify a spacing option in either the
SORT or the BREAK statement. (A complete list of spacing options is shown on page 180.)
By coding the appropriate value for this parm, you can request that a different number of
blank lines print (including zero lines), or you can request one of several types of "page
breaks."

If you only want to customize the spacing of a control break, you do not need to use a
BREAK statement. All break spacing options can be specified directly in the SORT statement.
Simply put the spacing parm in parentheses immediately after the appropriate field name.
For example, the following SORT statement requests that five blank lines print whenever
the REGION field changes value:

SORT: REGION(5)

The mere presence of the break spacing factor in the SORT statement above implies that
REGION should be a control break field. The following SORT statement requests a page
break. That is, whenever a new region starts printing, it will begin on a new page.

SORT: REGION(PAGE)

In a BREAK statement, use the SPACE parm to specify the desired control break spacing. The
following statements specify that 5 blank lines should print whenever the REGION field
changes value:

SORT: REGION
BREAK: REGION SPACE(5)

And the following statements request a page break for the REGION field.
SORT: REGION
BREAK: REGION SPACE(PAGE)

Figure 54 shows a sample report that uses a similar BREAK statement to request a page
break.

There are other spacing options that are especially useful for reports that are printed on the
front and back of the paper. You may want to distribute the individual pages of your report
to, for example, a company's various regions. To do this, the different regions must print
178 Spectrum Writer User’s Guide

How to Change the Control Break Spacing
Figure 54. A BREAK statement that requests a page break and resets the page number

Remarks:
• specifying PAGE1 (in the BREAK statement) causes the report to skip to a new page whenever the

REGION field changes value, and also resets the page number to 1
• since we printed the REGION in the title of each page, we could now eliminate the REGION column

making room in the report for other data

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES FOR REGION:' REGION / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION SPACE(PAGE1)

Produce this Report:
SALES FOR REGION: EAST PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

SALES FOR REGION: NORTH PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SALES FOR REGION: SOUTH PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09

 (other report lines not shown)
Chapter 4. Beyond the Basics 179

How to Change the Control Break Spacing
on separate sheets of paper, not just on a new page. (A new page might only be the back
side of the same sheet of paper where another region printed.) The NEWSHEET spacing
option does this.

There are also spacing options that will reset the page number after a control break. When
skipping to a new page after a control break, you may also want to start the page numbering
over again with page one. This is especially useful when you will be distributing the
various sections of the report to different people, and you want each section to start with
page one. The PAGE1, NEWSHEET1 and ODDPAGE1 options do this.

The following table lists the control break spacing options available:

PC File Note: Only the n spacing parm (meaning "n" blank lines) is allowed when
creating PC files. Since PC files do not have "pages," the other spacing parms are
meaningless for PC files.

How to Change the Control Break SpacingHow a Default Total Line Looks

This section explains:

! how the default total line looks

! tips on making the default total line look its best

SPACING OPTIONS AVAILABLE AT CONTROL BREAK

SPACING
OPTION DESCRIPTION

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

PAGE1 Works like PAGE, but also resets the page number to "one."

NEWSHEET

Skips to a new sheet of paper. In order for this feature to work,
you must also use the OPTIONS statement's PRTSHEET parm to
specify a character string that can be sent to your printer to tell it
to skip to a new sheet of paper. (See page 572.)

NEWSHEET1 Works like NEWSHEET, but also resets the page number to "one."

ODDPAGE

Skips to the next odd numbered page. This parm accomplishes
the same thing as the NEWSHEET parm, but can be used even if
you do not have a character string to send to your printer to force
it to skip to a new sheet. However, for this option to work you
must ensure that the first page of your report prints on the front
side of a sheet of paper. As long as page 1 of your report prints
on the front side of a sheet of paper, all other odd numbered
pages will also be on front sides.

ODDPAGE1 Works like ODDPAGE, but also resets the page number to "one."
180 Spectrum Writer User’s Guide

How a Default Total Line Looks
Before we examine the various custom lines that we can print at a control break, let's look
at what happens by default at a control break.

By default, Spectrum Writer prints one total line at every control break. The report in
Figure 54 (page 179) shows an example of the default total lines. They look something
like this:

*** TOTAL FOR EAST (4 ITEMS) 112.86 6.79

Default total lines contain the following information:

! a number of asterisks (three, in this example) which serve to set the total line off
from the regular report lines. The asterisks also serve as a visual indicator of the
"level" of the break. The higher the break level, the more asterisks that print.
(Break levels are discussed in "Reports with Multiple Control Breaks" on
page 204.)

! the words TOTAL FOR, which identifies this as the total line

! the value of the break field in the control group that just ended (in this example
EAST).

! the number of items that were included in the control group (in this example 4).
The number of items is the number of primary input file records included in the
control group. Usually, it is also the number of report lines printed for the control
group.

! the control group total for each numeric column in the report (in this example
the AMOUNT and TAX columns). (For more information on exactly which columns
are totalled, see "How to Specify Which Columns to Total" on page 148.)

Split Total Lines
Sometimes the text at the beginning of the total line will extend into the area where the first
column total should print. This normally happens when the first numeric column is fairly
close to the left margin of the report. When the total line text would overlap with one or
more actual column totals, Spectrum Writer uses two lines to print the totals. The first line
contains the initial total line text (including the number of items). The second line then
shows the actual totals for all of the numeric columns.

To prevent this splitting of the total line, design your reports so that the first numeric
column is well away from the left margin of the report. You might do this by printing large
character fields (such as names, descriptions, etc.) in the first columns of the report, and
putting the numeric columns after that. That is what we have done for most examples in
this manual. Or, you can use an initial spacing factor in the COLUMNS statement to shift all
columns to the right, like this:

COLUMNS: 40 AMOUNT TAX

The report in Figure 65 (page 210) uses a COLUMNS statement with a large initial spacing
factor.

To prevent splitting the total line, you could also specify a shorter text to being the total
line with. Use the TOTAL parm to specify a shorter text (page 182).
Chapter 4. Beyond the Basics 181

How a Default Total Line Looks
Size Errors in Total Lines
When printing large reports you may see a number of asterisks in the total line. For
example, you might see a total line that looks like this:

*** TOTAL FOR EAST (4 ITEMS) ******S****** 6.79

The "size" error indicator (***S***) indicates that there wasn't enough room to display
all of the digits in a number. In this case, the report column is not wide enough to display
the total value. Use a width parm in the COLUMNS statement to make the column wider
(see page 135). For example, the following COLUMNS statement makes the AMOUNT column
20 characters wide, so that even huge numbers will fit in the total line:

COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT(20) TAX

If there is a very large number of records in a control group, there may not be enough room
to print the number of items in the total line. In that case you might see something like this:

*** TOTAL FOR EAST (**S** ITEMS) 112.86 6.79

To correct this problem, specify your own total line text using the TOTAL parm (see
page 182). Be sure to specify a width parm that leaves plenty of room to display the #ITEMS
built–in field, like this:

BREAK: REGION
 TOTAL('*** TOTAL FOR' REGION #ITEMS(10) 'ITEMS')

The built–in field #ITEMS is discussed on page 198.

How a Default Total Line LooksHow to Customize the Total Line at a Control Break

This section explains:

! how to customize the total line at a control break

! how to use the TOTAL parm in the BREAK statement

Spectrum Writer automatically prints a total line at the end of each control group. As we
saw earlier, the default total line begins with a text something like this:

*** TOTAL FOR EAST (4 ITEMS)

This text is then followed by the actual totals for each numeric column. You may prefer to
print your own text at the beginning of the total line. Use the TOTAL parm of the BREAK
statement to do that.

Here is an example of a BREAK statement with a TOTAL parm:
BREAK: REGION
 TOTAL('REGION TOTALS')

When you specify a text in a TOTAL parm, Spectrum Writer uses your text, rather than the
default text, in its total line. The above statement specifies that the total line should begin
with the words REGION TOTALS. After that, the actual totals appear, lined up under the
appropriate report columns. Figure 55 shows a sample report that uses the above BREAK
statement.
182 Spectrum Writer User’s Guide

How to Customize the Total Line at a Control Break
Figure 55. A report with a customized total line at the control breaks

Remarks:
• the total line now begins with the text "REGION TOTALS" as specified in the TOTAL parm of the

BREAK statement

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION TOTAL('REGION TOTALS')

Produce this Report:
 SALES BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
REGION TOTALS 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
REGION TOTALS 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
REGION TOTALS 601.38 36.09

WEST BAKER 03/26/92 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/92 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/92 YOGURT CITY 9.98 0.60
REGION TOTALS 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 183

How to Customize the Total Line at a Control Break
The contents of the TOTAL parm is actually a print expression. Print expressions tell
Spectrum Writer how to build one print line to use in a report. In the TOTAL parm, the print
expression tells how to build the first part of the total line.

Note: The contents of the COLUMNS statement is also a print expression— one that
tells how to build the report lines for the main body of the report. Thus, the contents
of the TOTAL parm is very similar to the contents of a COLUMNS statement, which you
are already familiar with.

Briefly, the TOTAL parm print expression can contain literal text, data from input records,
data from built–in fields, and certain statistical values for numeric data fields. The section
titled "How to Print Customized Footing Lines at a Control Break" (page 188) describes in
detail how to write a FOOTING parm print expression. Those same rules apply to writing
TOTAL parm print expressions.

Here is an example of a TOTAL print expression which consists of one literal item and one
field name:

BREAK: REGION
 TOTAL('TOTALS FOR REGION:' REGION)

The total line produced by the statement above would begin with:
TOTALS FOR REGION: xxxxx

where xxxxx would be the name of the region that had just finished printing.

You may also put a blank print expression in the TOTAL parm, like this:
BREAK: REGION TOTAL(' ')

The example above results in a total line with no beginning text— just the actual numeric
totals themselves.

Only one TOTAL parm is allowed in the BREAK statement. If you need to print more than one
line at a control break, use one or more FOOTING parms along with the TOTAL parm.
(FOOTING parms are discussed beginning on page 188.) For example:

BREAK: REGION
 FOOTING('END OF REGION:' REGION)
 FOOTING('VERIFY THE FOLLOWING TOTALS WITH ACCOUNTING')
 TOTAL('TOTAL SALES')

The statement above would cause three lines to print at the control break: the two footing
lines first, followed by the total line. The total line would begin with the text TOTAL SALES,
followed by the numeric totals.

The total line at a control break always prints immediately after the last footing line (if
any), regardless of where the TOTAL parm is specified in the BREAK statement.

If you want the total line to be separated from the footing lines, (or from the last detail
report line) use a blank FOOTING parm, like this:

BREAK: REGION
 FOOTING('END OF REGION' REGION')
 FOOTING('VERIFY THE FOLLOWING TOTALS WITH ACCOUNTING')
 FOOTING(' ')
 TOTAL('TOTAL SALES AS OF' #TODAY)
184 Spectrum Writer User’s Guide

How to Customize the Total Line at a Control Break
This will cause a blank footing line to print after the first two footings and before the total
line.

Notice in the above statement that we used the built–in field #TODAY to print the current
date in the total line.

Note: To customize the Grand Totals line, see page 207.

How to Customize the Total Line at a Control BreakHow to Suppress the Total Line at a Control Break

This section explains:

! how to suppress the total line at a control break

! the NOTOTAL parm in the BREAK and SORT statements

Even when a report has no numeric columns, a total line still prints at control breaks. That
is because the total line contains other useful information such as the value of the break
field, and the number of items in the control group.

To suppress the total line at a control break, specify NOTOTAL in the SORT or BREAK
statement. For example, if you did not want to see region totals at the REGION control break,
you would write:

BREAK: REGION NOTOTAL

The above example would still result in a control break whenever the REGION field changed
value. But region totals would not print at the break. Two blank lines (the default spacing
option) is all that would print at the control break.

You can also use the NOTOTAL parm directly in the SORT statement, either alone or in
combination with a break spacing parm. Here are two examples:

SORT: REGION(NOTOTAL)
SORT: REGION(PAGE, NOTOTAL)

The first example causes a control break to occur whenever the REGION field changes
value, but prevents region totals from printing. (The presence of the NOTOTAL parm implies
that a control break should occur.) The default spacing of two blank lines will be printed at
the control break.

The second example above also causes a control break on the REGION field, but specifies
that each new region should start printing on a new page. Again, no region totals would
print at the control break.

Note: To suppress totals just for particular columns, see page 148.

Note: To suppress the Grand Total line, see the section beginning on page 207.
Chapter 4. Beyond the Basics 185

How to Customize the Statistical Lines at a Control Break

This sections explains:

! how to print statistical lines at a control break

! how these statistical lines look by default

! how to customize the statistical lines

! the AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM parms in the
SORT and BREAK statements

The sample report in Figure 56 illustrates most of the features discussed in this section.

There are a number of statistical lines that can be printed at a control break. The total line
is the most common statistical line. By default, the total line automatically prints at each
control break, as well as at the end of the report. The other statistical lines do not appear
unless specifically requested. You may request them by specifying the appropriate parm in
either the BREAK statement or the SORT statement. The statistical parms (and their
abbreviations) are shown in the following table.

o

The following example requests that a line showing averages and a line showing maximum
values be printed at the control break. (Of course, the total line will also print, since the
NOTOTAL parm was not specified to suppress it.)

BREAK: REGION AVERAGE MAXIMUM

It is also possible to request the same thing directly in the SORT statement:
SORT: REGION(AVERAGE, MAXIMUM)

The presence of the statistical parms in the above SORT statement imply that REGION should
be a break field.

STATISTICAL PARMS AVAILABLE IN THE BREAK STATEMENT

PARM STATISTIC LINE

AVERAGE
AVG average line

NZAVERAGE
NZAVG

non–zero average line. A non–zero average is the average
obtained when zero values are excluded from the calculation. This
value may be useful when the data in some records is missing.

MAXIMUM
MAX maximum line

MINIMUM
MIN minimum line

NZMINIMUM
NZMIN

non–zero minimum line. A non–zero minimum is the minimum
value, not considering zero values. This value may be useful when
the data in some records is missing.
186 Spectrum Writer User’s Guide

How to Customize the Statistical Lines at a Control Break
Figure 56. A report that prints statistical lines (average, maximum, minimum) at control breaks

Remarks:
• the print expression in parentheses after each statistical parm determines the initial wording of the

statistical lines
• to similarly customize the Grand Total statistical lines, we could add another BREAK statement (see

page 207)

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES STATISTICS BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 TOTAL('--- TOTAL SALES FOR REGION:' REGION)
 AVERAGE('--- AVERAGE SALE IN REGION')
 MAXIMUM('--- BIGGEST SALE IN REGION')
 MINIMUM('--- SMALLEST SALE IN REGION')

Produce this Report:

 SALES STATISTICS BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
--- TOTAL SALES FOR REGION: EAST 112.86 6.77
--- AVERAGE SALE IN REGION 28.22 1.69
--- BIGGEST SALE IN REGION 44.35 2.66
--- SMALLEST SALE IN REGION 14.99 0.90

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
--- TOTAL SALES FOR REGION: NORTH 386.69 23.22
--- AVERAGE SALE IN REGION 77.34 4.64
--- BIGGEST SALE IN REGION 234.45 14.07
--- SMALLEST SALE IN REGION 9.98 0.60

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
****** AVERAGE VALUE 98.83 5.93
****** MAXIMUM VALUE 500.00 30.00
****** MINIMUM VALUE 9.98 0.60
Chapter 4. Beyond the Basics 187

How to Customize the Statistical Lines at a Control Break
When the average line prints at a control break, it begins with the text AVERAGE VALUE,
followed by the averages themselves lined up under the numeric columns. Just as with the
total line, you can change the beginning text to be anything you like. Simply specify a print
expression in parentheses immediately after the AVERAGE parm:

BREAK: REGION AVG('AVERAGES FOR REGION:' REGION)

The other statistical lines (maximum, minimum, etc.) begin with similar texts (MAXIMUM
VALUE, MINIMUM VALUE, etc.) You can override the text for any of these lines in the same
way as for total or average lines:

BREAK: REGION MAXIMUM('BIGGEST SALE IN REGION:' REGION)
 MINIMUM('SMALLEST SALE IN REGION:' REGION)

As with the TOTAL parm discussed earlier, the contents of these additional statistical parms
is simply a print expression. Briefly, the print expression can contain literal text, data from
input records, data from built–in fields, and certain statistical values for numeric and time
fields. The section titled "How to Print Customized Footing Lines at a Control Break"
(page 188) describes in detail how to write a FOOTING parm print expression. Those same
rules apply to writing print expressions for the statistical parms.

Any statistical lines requested at a control break will print after all footing lines have
printed. The statistical lines always print in the following order:

! the total line
! the average line
! the non–zero average line
! the maximum line
! the minimum line
! the non–zero minimum line

Note: For information on which columns receive averages and other statistics, see
page 148.

Note: Notice the statistical lines after the Grand Totals on page 187. They still
begin with the default wording (****** AVERAGE VALUE, etc.) You can also customize
these Grand Totals lines to match the statistics lines at the control breaks. (See
page 207.)

How to Customize the Statistical Lines at a Control BreakHow to Print Customized Footing Lines at a Control Break

This section explains:

! how to specify customized "footing" lines to print at the end of a control group

! the detailed syntax for print expressions used within the BREAK statement's
FOOTING, TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM
parms

PC File Note: This section discusses the FOOTING parm as it is used when creating
reports. Some of this discussion does not apply to creating PC files. The use of the
FOOTING parm for PC files is discussed on page 108.
188 Spectrum Writer User’s Guide

How to Print Customized Footing Lines at a Control Break
Spectrum Writer automatically prints a total line at the end of each control group. You may
want to print certain lines of your own at a control break (either in place of, or in addition
to, the total line). Use the FOOTING parm of the BREAK statement to print such lines.

The FOOTING parm of the BREAK statement lets you specify a control break "footing line."
This line prints just before the totals line (if any) at a control break. This line can contain
literal text, data from input records, data from built–in fields, and certain statistical values
for numeric and time fields.

Here is an example of a BREAK statement with a simple FOOTING parm:
BREAK: REGION
 FOOTING('END OF SALES IN REGION:' REGION)

This FOOTING parm causes a line reading END OF SALES IN REGION: xxxxx to print
immediately after the last report line in each region (where xxxxx is the name of the region).
The report in Figure 57 uses the above BREAK statement.

Note: The following discussion of the BREAK statement's FOOTING parm syntax also
applies to the TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE, and NZMINIMUM
parms (discussed in the sections beginning on page 182 and page 186). In addition,
the syntax of the HEADING parm is almost identical–– the only differences are
explained in the section on the HEADING parm, beginning on page 200.

The contents of the FOOTING parm is simply a print expression. Print expressions tell
Spectrum Writer how to build one print line to use in a report. In a FOOTING parm, the print
expression tells how to build a line to print at a control break.

Note: The contents of the COLUMNS statement is also a print expression–– one that
tells how to build the report lines for the main body of the report. Thus, the contents
of the FOOTING parm is very similar to the contents of a COLUMNS statement, which
you are already familiar with.

As with other print expressions in Spectrum Writer, just list one or more items to print.
FOOTING(item1 item2 item3 ...)

Each item can be either a literal text or a field name.

To include a literal text in a footing line, simply enclose the text in either apostrophes or
quotation marks. For example the following statement causes the words END OF SALES IN
REGION: to appear in the footing line:

BREAK: REGION FOOTING('END OF SALES IN REGION:')

To put data from an input file in your footing line, simply list the desired field name. (Do
not put the field name in apostrophes or quotation marks.) For example the following
statement causes the contents of the REGION field to appear in the footing line:

BREAK: REGION FOOTING(REGION)

Field names used in the FOOTING parm may be any of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)
Chapter 4. Beyond the Basics 189

How to Print Customized Footing Lines at a Control Break
Figure 57. Using the FOOTING parm to print a customized line at a control break

Remarks:
• the footing line (specified in the BREAK statement) prints before the total line at each control break

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF A SINGLE FOOTING LINE'
SORT: REGION
BREAK: REGION FOOTING('END OF SALES IN REGION:' REGION)
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX

Produce this Report:

 SALES BY REGION
 EXAMPLE OF A SINGLE FOOTING LINE

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
END OF SALES IN REGION: EAST
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
END OF SALES IN REGION: NORTH
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
END OF SALES IN REGION: SOUTH
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
190 Spectrum Writer User’s Guide

How to Print Customized Footing Lines at a Control Break
! a built–in field (see Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields)

By default, the data that appears in the footing line will be the field's value from the last
record of the preceding control group. For numeric and time fields you may use a statistical
parm to cause the field's total value, average value, etc. to print in the footing line.
Statistical parms are discussed later in this section.

Figure 57 shows an example of a footing line that uses one literal text and one data field
from the input file.

As in other print expressions, you may customize your footing line by using optional
spacing factors and parms. So, the full syntax for the FOOTING parm is this:

FOOTING([n] item1(parms) [n] item2(parms) [n] item3(parms) ...)

The optional spacing factor [n] is the number of blank spaces to leave between items in
the footing line. If you omit the spacing factor, the default is for one blank space to appear
between each item. (A spacing factor of zero is allowed if you want no spaces to appear
between two items in a footing.) The following statement causes 5 blanks to appear
between the literal text END OF SALES IN REGION: and the contents of the REGION field:

BREAK: REGION FOOTING('END OF SALES IN REGION:' 5 REGION)

The optional parms are used to provide details about how to display data fields in the
footing. You may specify one or more parms, enclosed in parentheses, immediately
following a field name. (Do not leave a space between the field name and the open
parenthesis.) You may use any combination of parms, in any order. Separate the parms
with a comma and/or blanks. For example, the following FOOTING parm uses both a
statistical parm and a display format parm for the AMOUNT field:

BREAK: REGION
 FOOTING('AVERAGE SALE FOR REGION:' AMOUNT(AVG,DOLLAR))

The following table shows the parms that may be used in BREAK statement print
expressions:

BREAK STATEMENT PRINT EXPRESSION PARMS

PARM DESCRIPTION

ASCII

Specifies that the field should be formatted in ASCII, rather than in
EBCDIC

COMPUTE: BREAK-LIT = 'TOTAL AMOUNT IS '
BREAK: REGION
 FOOTING(BREAK-LIT(ASCII) 0 AMOUNT(TOTAL,ASCII))

See page 143 for more information on creating ASCII output files.

AVERAGE
AVG

Allowed only with numeric and time fields. Specifies that the
field's average value for the control group should be printed. The
following example specifies that the average value of the AMOUNT
field should print in the footing line:

BREAK: REGION
 FOOTING('AVERAGE AMOUNT IS' AMOUNT(AVG))
Chapter 4. Beyond the Basics 191

How to Print Customized Footing Lines at a Control Break
BIZ

Means "blank if zero." Specifies that a field in the footing should
be left blank whenever the numeric, date or time item contains
zeros. The following example specifies that the HIRE-DATE field
should be left blank whenever its value is zero.

BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED'
 HIRE–DATE(BIZ))

display–form
at

Specifies how to format a field in the footing. A complete list of
display formats appears in Appendix B, "Display Formats"
(page 617). This parm works just like the display format parm in
the COLUMNS statement, which is explained in more detail
beginning on page 135. The following example specifies that the
HIRE–DATE field should be displayed in the LONG1 format–– with
the month name spelled out:

BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED'
 HIRE–DATE(LONG1))

LEFT/CENTER/
RIGHT

Specifies how to justify a field's data within the area reserved for
it in the footing. These parms work just like the justification
parms in the COLUMNS statement, which are explained in more
detail beginning on page 146. The following example specifies
that the contents of the HIRE–DATE field should be center justified
(as well as being formatted in the LONG1 display format):

BREAK: HIRE–DATE
 FOOTING(HIRE–DATE(LONG1, CENTER))

MAXIMUM
MAX

Allowed only with numeric and time fields. Specifies that the
field's maximum value in the control group should be printed.
The following example specifies that the maximum value of the
AMOUNT field should print in the footing line:

BREAK: REGION
 FOOTING('MAXIMUM AMOUNT IS' AMOUNT(MAX))

MINIMUM
MIN

Allowed only with numeric and time fields. Specifies that the
field's minimum value in the control group should be printed. The
following example specifies that the minimum value of the
AMOUNT field should print in the footing line:

BREAK: REGION
 FOOTING('MINIMUM AMOUNT IS' AMOUNT(MIN))

BREAK STATEMENT PRINT EXPRESSION PARMS (CONTINUED)

PARM DESCRIPTION
192 Spectrum Writer User’s Guide

How to Print Customized Footing Lines at a Control Break
The ASCII, BIZ, display–format, justification and width parms all specify how a data field
looks in the footing line. The other statistical parms determine what value will appear in
the footing line. Normally when a field is used as an item in a footing print expression, the

NZAVERAGE
NZAVG

Allowed only with numeric and time fields. Specifies that the
field's non–zero average value for the control group should be
printed. (A non–zero average is the average obtained when zero
values are excluded from the calculation.) The following
example specifies that the non–zero average value of the AMOUNT
field should print in the footing line:

BREAK: REGION
 FOOTING('AVERAGE AMOUNT IS' AMOUNT(NZAVG))

NZMINIMUM
NZMIN

Allowed only with numeric and time fields. Specifies that the
field's non–zero minimum value in the control group should be
printed. (A non–zero minimum is the minimum value, not
considering zero values.) The following example specifies that
the non–zero minimum value of the AMOUNT field should print in
the footing line:

BREAK: REGION
 FOOTING('MINIMUM AMOUNT IS' AMOUNT(NZMIN))

TOTAL
TOT

Allowed only with numeric and time fields. Specifies that the
field's total value for the control group should be printed. The
following example specifies that the total value of the AMOUNT
field should print in the footing line:

BREAK: REGION
 FOOTING('TOTAL AMOUNT IS' AMOUNT(TOTAL))

Note: When using TOTAL with computed fields defined
with the DIVTOTS parm, be aware that the "total" value is
not simply the sum of each individual value. Instead, the
total value of the compute expression's numerator is
divided by the total value of its denominator. This control-
group-wide calculation is used whenever the "total" value
of such fields is called for.

width

This numeric parm specifies how many characters should be
reserved for an item in the footing. This parm works just like the
width parm in the COLUMNS statement, which is explained in
more detail beginning on page 135. As an example, the following
statement specifies that only one character of the REGION field
should appear in the footing:

BREAK: REGION
 FOOTING('END OF SALES IN REGION:' REGION(1))

BREAK STATEMENT PRINT EXPRESSION PARMS (CONTINUED)

PARM DESCRIPTION
Chapter 4. Beyond the Basics 193

How to Print Customized Footing Lines at a Control Break
value for the field is taken from the last record in the control group. By using one of the
statistical parms (TOTAL, AVERAGE, etc.) for a numeric field, you can print a statistical value
for the field, instead of its value from the last record.

Consider the following example:
BREAK: REGION
 FOOTING('AVERAGE SALE FOR' REGION 'REGION IS' AMOUNT(AVG))

This footing print expression consists of 4 items: two literals, and two field names. Here is
how each item will be processed:

! the two literals (AVERAGE SALE FOR and REGION IS) appear in the footing line just
as they are.

! the first field (REGION) has no parms in parentheses after it. Therefore, the value
used for REGION in the footing line will be taken from the REGION field in the last
record of the control group. Since REGION is the break field, all records in the
control group have the same value for region. So in this case, taking the value
from the last record is fine.

! the second field in the print expression (AMOUNT) has the AVG parm in
parentheses after it. This means that the average of all AMOUNT fields in the
control group will appear in the footing line. For this field, it would have been
meaningless to simply print the AMOUNT field from the last record in the control
group.

Figure 58 shows a sample report which uses the above statement.

Notice that the statistical keywords (TOTAL, AVERAGE, MAXIMUM, etc.) can be used in two
different ways:

! We have just discussed their use as a parm within parentheses after a specific
field name. When used this way, they specify what value to print for a particular
field in a print line at a control break. For example:

BREAK: REGION FOOTING('REGION TOTAL IS' AMOUNT(AVERAGE))

! The other use is as a BREAK statement parm (similar to the FOOTING parm). In that
use, the single keyword causes a whole line of totals, averages, maximum values,
etc. to print at the control break. (See page 182 and page 186 for more
information on this.) For example:

BREAK: REGION AVERAGE

Let's look at some more examples of FOOTING parms. Here's an example of using three
parms with the AMOUNT field.

BREAK: REGION
 FOOTING('AVERAGE SALE FOR' REGION 'REGION IS'
 AMOUNT(AVERAGE, PIC'$$$,$$$', LEFT))

The AVERAGE parm tells Spectrum Writer to print the average value of AMOUNT for the
control group.

The PIC'$$$,$$$' parm shows how to format the average sales amount in the footing line. It
specifies that a floating dollar sign should be used, and that only whole dollars be
194 Spectrum Writer User’s Guide

How to Print Customized Footing Lines at a Control Break
Figure 58. A report which prints a field’s average value in a footing line

Remarks:
• the footing line contains the AMOUNT field's average value for each region
• the example on page 197 shows how to remove the excess space that appears between the text and the

average value in the footing line

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF PRINTING AVERAGES IN FOOTING LINES'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION FOOTING('AVERAGE SALE FOR'
 REGION
 'REGION IS'
 AMOUNT(AVG))

Produce this Report:

 SALES BY REGION
 EXAMPLE OF PRINTING AVERAGES IN FOOTING LINES

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
AVERAGE SALE FOR EAST REGION IS 28.22
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
AVERAGE SALE FOR NORTH REGION IS 77.34
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
AVERAGE SALE FOR SOUTH REGION IS 300.69
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 195

How to Print Customized Footing Lines at a Control Break
displayed. The size of the PICTURE (7 characters) also determines how many characters are
reserved in the footing line for that field.

The LEFT justification parm specifies that the average AMOUNT field should be left–justified
within the 7 characters reserved for it in the footing line. This eliminates the extra blank
spaces that appeared between the literal text and the actual amount in Figure 58.
Figure 59 (page 197) shows an example of a footing line that uses the LEFT parm.

Here is another example of a FOOTING parm. In this example, we print a footing line instead
of a total line at the control break. The footing line will contain the total sales amount, the
average sales amount, and the maximum sales amount for a region.

 BREAK: REGION NOTOTAL
 FOOTING('SALES STATISTICS FOR' REGION 5
 'TOTAL:' AMOUNT(TOT,LEFT)
 'AVG:' AMOUNT(AVG,LEFT)
 'MAX:' AMOUNT(MAX,LEFT))

There are several things to notice about this example:

! the NOTOTAL parm prevents the normal total line from printing at the control
break

! within the FOOTING print expression, the spacing factor of 5 helps separate the
REGION field from the statistics that follow.

! the LEFT parm used along with the statistical parms (TOT, AVG, and MAX) causes
the statistical value to be left justified. This arranges each value closer to its
"identifier" in the footing line.

The sample report on page 197 uses a BREAK statement similar to the one above.

You may specify as many FOOTING parms as you like in a single BREAK statement. Each
FOOTING parm describes one footing line. At the control break, the footing lines will print
in the order of their occurrence in the BREAK statement.

The first footing line always prints immediately after the last regular report line of the
control group. If you want the first footing line to be separated from the regular report lines,
specify a blank footing line in your first FOOTING parm, like this:

BREAK: REGION
 FOOTING(' ')
 FOOTING('END OF REGION:' REGION)
 FOOTING('AVERAGE SALE:' AMOUNT(AVG))

The example above will cause a blank footing line to print immediately after the last
regular report line, followed by the other two footing lines. See Figure 59 for a sample
report that uses a blank FOOTING parm.

Note: In the FOOTING line, you may print statistical values for any numeric or time
field in the input file(s). You are not limited to just those fields that appear in the
COLUMNS statement.
196 Spectrum Writer User’s Guide

How to Print Customized Footing Lines at a Control Break
Figure 59. Printing a field’s total, average, and maximum values on a single line

Remarks:
• the blank FOOTING parm causes a blank line to print before the real footing line
• the NOTOTAL parm in the BREAK statement suppresses the normal total line at the control break
• the footing line now displays the total, average, and maximum values for the AMOUNT field
• the LEFT justification parm causes the numeric values to be left justified, and therefore closer to their

respective identifiers

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF A FOOTING LINE WITH STATISTICS'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION NOTOTAL
 FOOTING(' ')
 FOOTING('SALES STATISTICS FOR' REGION 5
 'TOTAL:' AMOUNT(TOT,LEFT)
 'AVG:' AMOUNT(AVG,LEFT)
 'MAX:' AMOUNT(MAX,LEFT))

Produce this Report:
 SALES BY REGION
 EXAMPLE OF A FOOTING LINE WITH STATISTICS

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43

SALES STATISTICS FOR EAST TOTAL: 112.86 AVG: 28.22 MAX: 44.35

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31

SALES STATISTICS FOR NORTH TOTAL: 386.69 AVG: 77.34 MAX: 234.45

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00

SALES STATISTICS FOR SOUTH TOTAL: 601.38 AVG: 300.69 MAX: 500.00

 (other report lines not shown)
Chapter 4. Beyond the Basics 197

How to Print the Number of Items in a Control Group

This section explains:

! how to use the special built–in fields that are available for use in the BREAK
statement

We saw earlier that the default total line shows the number of items that appear in a control
group. If you choose to specify a custom total line, you may also want to show the number
of items that are in a control group. The special built–in field #ITEMS allows you to do this.
There are also some other related built–in fields that you may wish to use in BREAK
statement print expressions. These are:

You can use these built–in fields just like real data fields in the print expressions for the
FOOTING parm, TOTAL parm, AVERAGE parm, etc. For example:

BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS 'SALES')

As with other fields, you may also include a parm list in parentheses after the built–in field
name. The following example requests that only 2 bytes be reserved in the footing line for
displaying the number of items in the control group:

BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2) 'SALES')

Note that if a control group only contains one record, the preceding total line would read
"xxxxx REGION HAS 1 SALES" (which "ain't" good English). We can use the #ITEM–ENDING
built–in field to so that the word SALE appears in the text when the control group contains
only 1 record, and the word SALES appears when the control group contains multiple
records. Notice that we use a spacing factor of zero, to prevent a blank space from
appearing between "SALE" and the ending "S".

BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2) 'SALE' 0 #ITEM–ENDING)

Figure 60 shows a sample report that uses the above BREAK statement.

BUILT-IN
FIELD NAME DESCRIPTION

#ITEMS
this numeric field contains the number of records included in the
current control group.

#ITEM–ENDIN
G

This 1-byte character field contains either the letter "S", or a blank,
depending on the value of #ITEMS. When #ITEMS equals one,
#ITEM–ENDING is a blank. Otherwise, #ITEM–ENDING is an "S". This
field can be concatenated to another word to form the proper plural
or singular ending for that word.

#COUNTER
this numeric field always contains the total number of records
included in the report so far. It is similar to #ITEMS except that it is
not reset to zero after a control break.
198 Spectrum Writer User’s Guide

How to Print the Number of Items in a Control Group
Figure 60. A report that prints the number of items in a control group

Remarks:
• the customized total line uses the #ITEMS field to show the number of records included in the control

group
• the width parm after #ITEMS causes only two spaces to be reserved for the number of items
• the #ITEM–ENDING built–in field contains the proper ending for the word "SALE" in the total line
• the spacing factor of 0 in the TOTAL parm puts zero spaces between the word "SALE" and the contents

of the #ITEM–ENDING built–in field

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2)
 'SALE' 0 #ITEM–ENDING)

Produce this Report:

 SALES BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
EAST REGION HAS 4 SALES 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
NORTH REGION HAS 5 SALES 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
SOUTH REGION HAS 2 SALES 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 199

How to Print the Number of Items in a Control Group
Note: The special built–in fields discussed in this section may not be used in
HEADING print expressions. Since the heading lines print before a control group, the
number of items that the control group will contain is not yet known.

How to Print the Number of Items in a Control GroupHow to Print Header Lines at the Beginning of a Control Group

This section explains:

! how to print header lines at the beginning of a control group

! how to print header lines at the top of each page

! how to use the HEADING and REPEAT parms of the BREAK statement

In earlier sections we learned how to print lines at the end of a control group. You may also
want to print one or more lines of text at the beginning of a control group. For example,
you might want to print EAST REGION SALES FOLLOW at the beginning of the report lines for
the East region. Use the HEADING parm of the BREAK statement to accomplish this. For
example:

BREAK: REGION
 HEADING(REGION 'REGION SALES FOLLOW')

Figure 61 shows a sample report that uses the above BREAK statement.

You may have as many HEADING parms in a BREAK statement as you like. Each HEADING
parm describes one heading line that will print at the beginning of a control group. The
heading lines will print in the order of their occurrence in the BREAK statement.

The contents of the HEADING parm is simply a print expression. Print expressions tell
Spectrum Writer how to build one print line to use in a report. In the HEADING parm, the
print expression tells how to build a line that will print at the beginning of a new control
group.

Note: The contents of the COLUMNS statement is also a print expression–– one that
tells how to build the report lines for the main body of the report. Thus, the contents
of the HEADING parm is very similar to the contents of a COLUMNS statement, which
you are already familiar with.

Briefly, the HEADING print expression can contain literal text and data from input records.
The section titled "How to Print Customized Footing Lines at a Control Break" on
page 188 describes how to write a FOOTING parm print expression in detail. Most of the
same rules apply to writing HEADING parm print expressions.

There are, however, certain restriction on the print expression allowed in a HEADING parm.
The special built–in fields #ITEMS, #COUNTER, and #ITEM–ENDING may not be used in a
HEADING parm. Similarly, the statistical parms (TOTAL, AVERAGE, MAXIMUM, etc.) may not
be used in the HEADING parm's print expression. The reason, of course, is that Spectrum
Writer will not know what those values are until all of the records in the control group have
been processed.

The value used for all fields appearing in a heading line will be taken from the first record
of the control group that follows. If you want the heading lines for a control group to be
200 Spectrum Writer User’s Guide

How to Print Header Lines at the Beginning of a Control Group
Figure 61. A report that prints control group headings

Remarks:
• the text specified in the HEADING parm (of the BREAK statement) prints at the beginning of each

control group
• the data used for the REGION field in the heading line comes from the first record in the following

control group
• the spacing factor of 5 in the COLUMNS statements shifts the report columns to the right, so that the

heading lines and total lines stand out

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: 5 REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 HEADING(REGION 'REGION SALES FOLLOW')

Produce this Report:

 SALES BY REGION

 EMPL SALES
 REGION NAME DATE CUSTOMER AMOUNT TAX

EAST REGION SALES FOLLOW
 EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
 EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
 EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
 EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH REGION SALES FOLLOW
 NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
 NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
 NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
 NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
 NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH REGION SALES FOLLOW
 SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
 SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 201

How to Print Header Lines at the Beginning of a Control Group
printed at the top of each page of the report, add the REPEAT ("repeat headings") parm to
the BREAK statement:

BREAK: REGION REPEAT
 HEADING('SALES IN REGION' REGION)

The above statement specifies a heading line to print at the beginning of each region's
control group. If any such control group is large enough to print on multiple pages, the
heading line will also be printed at the top of each subsequent page for that control group.
Such heading lines print after the report titles and column headings, and before the first
detail line of the report. The value used for a field appearing in a repeated heading line is
taken from the next detail record after the heading line.

How to Print Header Lines at the Beginning of a Control GroupComputing True Percentages and Ratios at Control Breaks

By default, Spectrum Writer prints the total value of each numeric column at control
breaks. For some computed fields this is not what is really desired. Consider the following
COMPUTE statement:

COMPUTE: PERCENT–TAX = TAX / AMOUNT

The above statement computes a field called PERCENT–TAX, which is computed by dividing
the amount of the tax by the amount of the sale. At control breaks, it is probably not helpful
to see the sum of all of the PERCENT–TAX percentages. Instead it would be helpful to see the
PERCENT–TAX percentage for the entire control group. To get this value, we need to divide
the control group's total value for TAX by the control group's total value for AMOUNT.

You can do this by specifying the DIVTOTS ("divide totals") parm in the COMPUTE
statement, like this:

COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT

The above statement tells Spectrum Writer to divide the total value of the numerator by the
total value of the denominator at control breaks. In this case the total value of TAX will be
divided by the total value of AMOUNT. This control-group-wide percentage is what will
appear in the total line at the control breaks and in the Grand Total line. You may also
abbreviate DIVTOTS as DT.

Figure 62 shows a report that uses the DIVTOTS parm.

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

! At its highest level, the expression must consist of a single division operation.
The numerator and/or denominator themselves, however, can be expressions
within parentheses. All of the following statements qualify as consisting of a
"single high level division":

COMPUTE: A = B / C
COMPUTE: A = B / (C + D + E)
COMPUTE: A = (B + C) / (D + E)
COMPUTE: A = (B/C) / (D/E)
202 Spectrum Writer User’s Guide

Computing True Percentages and Ratios at Control Breaks
Figure 62. Using the DIVTOTS parm to get accurate percentages at control breaks

Remarks:
• The PERC–TAX field is computed by dividing TAX by AMOUNT.
• The PERCENT–TAX is computed the same way, but has the DIVTOTS parm.
• The total lines show the sum of the PERC–TAX field, which is meaningless for a percentage.
• The DIVTOTS parm means the PERCENT–TAX value in the total lines is computed by dividing the

region's total TAX by the region's total AMOUNT.
• The PERCENT–TAX field in the Grand Total line is similarly computed by dividing the Grand Total

TAX by the Grand Total AMOUNT.

These Control Statements:

INPUT: SALES–FILE
TITLE: 'COMPUTING BREAK–WIDE PERCENTAGES'
COMPUTE: PERC–TAX = TAX / AMOUNT
COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT
SORT: REGION(TOTAL)
COLUMNS: EMPL–NAME REGION CUSTOMER TAX AMOUNT
 PERC–TAX PERCENT–TAX

Produce this Report:

 COMPUTING BREAK–WIDE PERCENTAGES

 EMPL PERC PERCENT
 NAME REGION CUSTOMER TAX AMOUNT TAX TAX

MORRISON EAST STAR MARKET 2.66 44.35 0.059977 0.059977
MORRISON EAST A1 PHOTOGRAPHY 1.76 29.65 0.060034 0.060034
SIMPSON EAST EUROPEAN DELI 0.90 14.99 0.060040 0.060040
SIMPSON EAST J & S LUMBER 1.43 23.87 0.059908 0.059908
*** TOTAL FOR EAST (4 ITEMS) 6.77 112.86 0.239959 0.059986

JOHNSON NORTH VILLA HOTEL 14.07 234.45 0.060013 0.060013
JOHNSON NORTH MARYS ANTIQUES 0.60 9.98 0.060120 0.060120
JONES NORTH EZ GROCERY 0.62 10.25 0.060488 0.060488
JONES NORTH TOY TOWN 0.62 10.25 0.060488 0.060488
JONES NORTH TOY TOWN 7.31 121.76 0.060036 0.060036
*** TOTAL FOR NORTH (5 ITEMS) 23.22 386.69 0.301145 0.060048

 (other report lines not shown)

*** GRAND TOTAL (14 ITEMS) 83.05 1,383.66 0.841332 0.060022
Chapter 4. Beyond the Basics 203

Computing True Percentages and Ratios at Control Breaks
! Neither the numerator nor the denominator may be literal values. Each must be
either a field or an expression. Thus, DIVTOTS would not be allowed for the
following:

COMPUTE: A = B / 100

Computations involving division by a literal value (like the one above) are not ratios
or percentages. A regular total for such fields is more appropriate at control breaks.
If you need a literal in a DIVTOTS COMPUTE statement for some reason, assign the
literal value to a field and then refer to that field in the COMPUTE statement:

COMPUTE: HUNDRED= 100
COMPUTE: A(DIVTOTS) = B / HUNDRED

! Only simple COMPUTE statements may use the DIVTOTS parm. It is not allowed in
conditional COMPUTE statements. (Conditional COMPUTE statements are those
that use the WHEN and ASSIGN parms to assign different values to a field.)
However, either or both of the numerator and the denominator can be COMPUTE
fields that may have been computed with conditional COMPUTE statements.

Computing True Percentages and Ratios at Control BreaksReports with Multiple Control Breaks

This section explains:

! what break levels are

! what happens when a higher level break occurs

You may have more than one control break in a report. Spectrum Writer allows an
unlimited number of control breaks. Just remember that each of the break fields must be a
sort field.

When a report has more than one control break, each break is thought of as having a
"level." The order in which the break fields are listed in the SORT statement determines
each break's level. The break field appearing first in the SORT statement is considered the
"highest" level break field. The break field appearing next in the SORT statement is
considered the "next highest" level break field, and so on to the lowest level break field.
For example, consider the following SORT statement:

SORT: REGION(TOTAL) EMPL–NAME(TOTAL) CUSTOMER

This SORT statement contains three sort fields. The TOTAL parm after the first two fields
makes them control break fields. REGION is the higher level break field, since it appears
first in the SORT statement. EMPL–NAME is the lower level break field.

Even when BREAK statements are used to identify break fields, it is still the order of the
fields in the SORT statement that determines the level of the break fields. The order in which
204 Spectrum Writer User’s Guide

Reports with Multiple Control Breaks
Figure 63. A report with two levels of control breaks

Remarks:
• the total line for EMPL–NAME, the lower level break, begins with three asterisks
• the total line for REGION begins with six asterisks, indicating its higher level
• the SORT statement specifies that 3 blank lines should print after the REGION totals, and only 1 blank

line after the EMPL–NAME totals

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY EMPLOYEE WITHIN REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION(3) EMPL–NAME(1) CUSTOMER

Produce this Report:

 SALES BY EMPLOYEE WITHIN REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44

EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33

****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67

NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55

****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

 (other report lines not shown)

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 4. Beyond the Basics 205

Reports with Multiple Control Breaks
the BREAK statements appear is not significant. (All BREAK statements must, however,
appear after the SORT statement.) Consider the following statements:

SORT: REGION EMPL–NAME CUSTOMER
BREAK: EMPL–NAME
BREAK: REGION

The preceding statements produce the very same result as the earlier example that used a
SORT statement alone. REGION will be the high level break field, and EMPL–NAME will be a
lower level break field (due to their relative position in the SORT statement).

Here is why a break's level is important: whenever a control break occurs for a particular
break field, all lower level breaks are "forced." That is, a control break is automatically
processed for all lower level control breaks, whether or not the contents of those break
fields changed value.

For example, consider the report shown in Figure 63 which uses a SORT statement to
request two levels of control breaks. By making both REGION and EMPL–NAME break
fields, the report shows the totals sales for each employee within a region, as well as for
each region.

Consider what happens as Spectrum Writer is printing the report and the REGION field
changes value. The control break for REGION must be processed, with region totals being
printed. But, there is a lower level break than REGION, namely EMPL–NAME. So, Spectrum
Writer will first process the EMPL–NAME control break, printing the sales totals for the last
employee within the region. Then the control break for REGION will be processed, with the
sales totals being printed for the whole region.

Now consider a place in the report, where the EMPL–NAME field changes, but the REGION
field does not change. In this case Spectrum Writer will process only the EMPL–NAME
control break, because there are no lower level breaks to be forced.

As a means of helping you visualize the level of the control breaks, Spectrum Writer uses
a slightly different total line for each level of control break. For the lowest level control
break, the total line begins with three asterisks. The total line for the next higher level break
begins with six asterisks. Each higher level control break gets three additional asterisks.
This helps when you are scanning a report for a particular level of break totals. Just scan
down the left side of the report looking for the total line with the appropriate number of
asterisks.

When more than one control break is used in a report, it is often desirable to use a larger
spacing factor for the higher level break(s). For example we might want to just skip 1 line
whenever the EMPL–NAME changes, but skip to a whole new page whenever the REGION
changes. This would be specified by using a break spacing parm in either the SORT
statement or the BREAK statement (see page 178). For example:

SORT: REGION EMPL–NAME CUSTOMER
BREAK: REGION SPACE(PAGE)
BREAK: EMPL–NAME SPACE(1)

Or, to specify the same spacing parms directly in the SORT statement:
SORT: REGION(PAGE) EMPL–NAME(1) CUSTOMER
206 Spectrum Writer User’s Guide

How to Customize the Grand Totals

This section explains:

! how the Grand Totals are processed by default

! how to print additional statistical lines (average, maximum and minimum) at
the Grand Total

! how to customize the Grand Total lines

! how to suppress the Grand Totals

Spectrum Writer treats the end of a report like one final "control break". The "control
group" for this break includes the entire report. As with any other control break, Spectrum
Writer prints a total line at this special control break. This total line is what appears as the
"Grand Total" line in your report.

You can customize the Grand Total control break, just like you do for regular control
breaks. Just use the special field name #GRAND in a BREAK statement. For example:

BREAK: #GRAND AVERAGE MAXIMUM MINIMUM

In the above statement the field name #GRAND specifies that the information on this BREAK
statement pertains to the Grand Total break at the end of the report. The AVERAGE parm
specifies that a line of averages should print at the control break (that is, at the end of the
report). The MAXIMUM and MINIMUM parms specify that a line of maximums and a line of
minimums should also print. Figure 64 shows a sample report that uses this BREAK
statement.

You may use all of the normal BREAK statement parms (except for SPACE) in the BREAK
statement for #GRAND. See the section titled "Customizing the Control Breaks" (page 177)
to learn what all you can do with a BREAK statement.

Here is another example of a #GRAND BREAK statement:
BREAK: #GRAND TOTAL(#ITEMS 'SALES LISTED IN REPORT')
 AVERAGE('AVERAGE SALE IN REPORT')

The above statement uses the TOTAL parm to specify a custom total line. The text "nnn,nnn
SALES LISTED IN REPORT" will now appear in the Grand Total line rather than the usual "***
GRAND TOTAL (nnnnn ITEMS)". The AVERAGE parm causes a line of averages to print at the
end of report. It also specifies what text the average line should begin with ("AVERAGE SALE
IN REPORT").

The FOOTING parm may also be specified in the #GRAND BREAK statement. Footing lines
print at the end of a control group. The entire report is the "control group" for the Grand
Total control break. Therefore, any footing lines specified in this statement will print only
once –– at the end of the report.

Note: If you want to a line at the bottom of every page, use a FOOTNOTE statement.

The HEADING parm may also be used in the #GRAND BREAK statement. Any HEADING lines
specified will print once at the very beginning of the report (after the title lines and column
Chapter 4. Beyond the Basics 207

How to Customize the Grand Totals
Figure 64. A report with customized Grand Totals

Remarks:
• the BREAK statement for #GRAND specifies how to process the Grand Total "control break"
• the AVERAGE, MAXIMUM and MINIMUM parms cause those statistical lines to print along with the

Grand Total line
• the TOTAL parm was not needed, since total lines print at control breaks by default

These Control Statements:

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'SHOWING COMPANY–WIDE STATISTICS'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION EMPL–NAME SALES–DATE
BREAK: #GRAND AVERAGE MAXIMUM MINIMUM

Produce this Report:

 SALES BY REGION
 SHOWING COMPANY-WIDE STATISTICS

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
WEST BAKER 03/26/92 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/92 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
*** AVERAGE VALUE 98.83 5.93
*** MAXIMUM VALUE 500.00 30.00
*** MINIMUM VALUE 9.98 0.60
208 Spectrum Writer User’s Guide

How to Customize the Grand Totals
headings). If the REPEAT parm is also specified, these HEADING lines will also be repeated
at the top of each page of the report.

As mentioned earlier, a total line prints at the Grand Total control break by default. In
addition, any other statistical lines that printed at a standard control break will also print by
default at the Grand Total control break. Thus, for example, if an average line and a
maximum line printed at a REGION control break, an average line and maximum line will
also print at the Grand Total control break. As shown in the previous example, you may
also explicitly request any of these statistical lines, even if no other control break specified
them.

The SPACE parm in a BREAK statement is used to specify the spacing to perform after a
control break. Since there is no more report following the Grand Total control break, any
SPACE parm specified for it will be ignored.

Spacing before the Grand Total break is determined as follows. If any other control break
specified a SPACE parm of NEWSHEET, then the Grand Totals will also be printed on a new
sheet of paper. Otherwise, if any other control break specified ODDPAGE, then the Grand
Total will also go on the next odd page. Otherwise, if any other control break specified
PAGE, then the Grand Totals will go on a new page. (If the NEWSHEET1, ODDPAGE1, or
PAGE1 variation of these parms was used, then the Grand Total page will be numbered page
1 as well.)

If no real control breaks used any of the page spacing options, then the Grand Totals will
be printed after skipping two blank lines.

To suppress the Grand Total line altogether, you can do one of two things.

You can use the NOGRANDTOTAL parm in an OPTIONS statement, like this:
OPTIONS: NOGRANDTOTAL

Figure 66 (page 213) uses the above statement.

Or, you can use a BREAK statement for the #GRAND break and specify the NOTOTAL parm,
like this:

BREAK: #GRAND NOTOTAL

How to Customize the Grand TotalsHow to Produce Summary Reports

This section explains:

! what a summary report is

! how to convert a regular report into a summary report

A summary report is one which does not show detail information about every record
included in the report. Instead, the detail information is summarized, with just the totals
actually appearing in the report. Chapter 2, "How to Request a Report" included a lesson
on creating summary reports (page 73). And a lesson in "How to Request a PC File" on
page 83 showed how to create summary PC files (page 113).
Chapter 4. Beyond the Basics 209

How to Produce Summary Reports
Figure 65. A summary report that uses two levels of control breaks

Remarks:
• no regular report lines print–– only the total lines from the two levels of control breaks
• the total line for EMPL–NAME, the lower level break, begins with three asterisks
• the total line for REGION begins with six asterisks, indicating its higher level
• the spacing factor of 40 (in the COLUMNS statement) move the AMOUNT column over 40 spaces,

leaving room for the total line text to print on the same line as the totals themselves
• note that it is okay to sort a report on fields which do not appear in the COLUMNS statement

These Control Statements:

OPTION: SUMMARY
INPUT: SALES–FILE
TITLE: 'EMPLOYEE SALES SUMMARY'
COLUMNS: 40 AMOUNT TAX
SORT: REGION(TOTAL) EMPL–NAME(TOTAL)

Produce this Report:
 EMPLOYEE SALES SUMMARY

 AMOUNT TAX

*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33
****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55
****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

*** TOTAL FOR JOHNSON (2 ITEMS) 601.38 36.09
****** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

*** TOTAL FOR BAKER (2 ITEMS) 272.75 16.37
*** TOTAL FOR THOMAS (1 ITEM) 9.98 0.60
****** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05
210 Spectrum Writer User’s Guide

How to Produce Summary Reports
In each case, an OPTIONS statement with the SUMMARY parm was used:
OPTIONS: SUMMARY

The SUMMARY parm causes two things to happen:

! it specifies that zero detail lines (per control group) will print. This is the same
as specifying:

OPTIONS: DETAIL(0)

The only lines that print in such a report are the lines that are associated with control
breaks: heading lines, footing lines, totals line, average lines, etc.

! it sets the break spacing value for the lowest level break to zero blank lines
(instead of the normal default of two blank lines). This prevents two blank lines
from appearing between every line in the summary report.

Figure 65 shows an example of a summary report. This report contains two levels of
breaks. It is very similar to the detail report shown earlier in Figure 63 (page 205). The
main difference is that in Figure 65 the detail lines have been suppressed and only the
EMPL–NAME and REGION total lines are printed.

Notice that in summary reports only numeric columns are filled in. That is because only
numeric columns can be totalled, or "summarized." Therefore, in this report we removed
the non–numeric columns (REGION, EMPL–NAME, SALES–DATE and CUSTOMER) from the
COLUMNS statement. We added a spacing of 40 to the COLUMNS statement ahead of the first
field in order to push that field 40 spaces over in the report. That was necessary to prevent
overlap between the total line text ("*** TOTAL FOR...") and the first actual total (in the
AMOUNT column). If we had not done that, the control break total lines would have split
onto two lines, making a less attractive report. (See page 181.)

Note: If you request a SUMMARY report and do not specify any control breaks, your
report will contain only the Grand Total line. This is useful when you want to
summarize all of the detail lines in the entire report.

How to Produce Summary ReportsPrinting a "Line Number" in Your Report

You have already seen how to use the #ITEM built–in field in BREAK statements (page 198).
In the BREAK statement, #ITEM represents the total number of records in a control group.
This is the same value that appears in the default total line printed at control breaks.

You can also specify #ITEM as a field in your COLUMNS statement. It's value will be an
ascending, sequential "item number" representing the number of items included in the
control group so far. That is, it will be "1" for the first item printed in a control group, "2"
for the next item and so on. #ITEM's value is reset to zero after each control break. It then
begins again numbering the items in the next control group. (Of course, if your report has
no control breaks, the value of #ITEM will not be reset.)

Using #ITEM in your COLUMNS statement allows you to print a "rank" or a "line number" for
each record printed in your report.
Chapter 4. Beyond the Basics 211

Printing a "Line Number" in Your Report
You might also want to print an "item number" and not have it reset at each control break.
To allow this, there are additional built–in fields named #ITEM2, #ITEM3, and so on through
#ITEM9. #ITEM2 is similar to #ITEM, but is not reset at the lowest level of control break.
However, if you have two levels of control breaks in your report, #ITEM2 will be reset to
zero whenever the higher level control break occurs. Similarly, #ITEM3 is not reset at the
two lowest level control breaks, but is reset when the third level of control break occurs.
By using the appropriate #ITEM built–in field, you can print item numbers and have them
reset whenever you like for reports with up to 9 levels of control breaks.

The report in Figure 66 (page 213) uses the #ITEM built–in field.

Note: #ITEM may also be spelled #ITEM1.

Printing a "Line Number" in Your ReportHow to Create "Top 10" Type Reports

This section explains:

! how to create "Top 10" type reports

! how to use the DETAIL parm in the OPTIONS statement

The DETAIL(nnn) option tells Spectrum Writer to print only a limited number of detail
records in the report for each control group. We saw in an earlier section that specifying
the SUMMARY option causes the DETAIL(0) option to be in effect. DETAIL(0) requests that no
detail records be printed for each control group in the report.

To produce a "Top 5" or "Top 10" type of report, use the DETAIL parm with whatever value
is appropriate for your report. For example:

OPTIONS: DETAIL(3)

In the above example we request that only 3 detail lines print for each control group. That
will cause just the first 3 records in each control group to print in our report.

Consider the "Top 3 Sales" report in Figure 66 which uses the above statement. This report
is sorted first in REGION order, and then in descending AMOUNT order. We also made
REGION a control break. The result is that within each REGION, the largest sale prints first,
the next largest sale prints next, and so on. By using the DETAIL(3) option, our report shows
only the 3 largest sales in each region.

Here are a few other things to note about this kind of report:

! the DETAIL option specifies the maximum number of records to print per control
group. If a control group does not contain that many records, all records for that
control group are printed. (In Figure 66, the "SOUTH" region is an example of
this. There are only two sales for that region.)

! the control group totals line will still contain the total value of the entire control
group –– not just the total of those detail records that are actually printed. You
can use the NOTOTALS parm in the BREAK statement to suppress the totals if you
prefer (as we did in Figure 66).
212 Spectrum Writer User’s Guide

How to Create "Top 10" Type Reports
Figure 66. “Top 3 Sales in Region” report

Remarks:
• the DETAIL(3) option causes a maximum of 3 detail lines per control group to print
• the #ITEM built–in field (in the COLUMNS statement) lets us print a "rank" for each detail record
• the NOTOTALS parm (in the BREAK statement) suppresses the control break totals (which would not

be the sum of the detail records printed)
• the NOGRANDTOTAL option suppresses the Grand Totals, which would not be the sum of the detail

records printed

These Control Statements:

OPTIONS: DETAIL(3) NOGRANDTOTAL
INPUT: SALES-FILE
TITLE: 'TOP 3 SALES IN EACH REGION'
SORT: REGION AMOUNT(DESC)
BREAK: REGION NOTOTALS
COLUMNS: #ITEM('RANK')
 REGION EMPL-NAME SALES-DATE CUSTOMER AMOUNT TAX

Produce this Report:

 TOP 3 SALES IN EACH REGION

 EMPL SALES
 RANK REGION NAME DATE CUSTOMER AMOUNT TAX

 1 EAST MORRISON 03/29/95 STAR MARKET 44.35 2.66
 2 EAST MORRISON 03/30/95 A1 PHOTOGRAPHY 29.65 1.78
 3 EAST SIMPSON 04/30/95 J & S LUMBER 23.87 1.43

 1 NORTH JOHNSON 04/01/95 VILLA HOTEL 234.45 14.07
 2 NORTH JONES 04/15/95 TOY TOWN 121.76 7.31
 3 NORTH JONES 04/15/95 TOY TOWN 10.25 0.62

 1 SOUTH JOHNSON 04/16/95 ACME BUILDING 500.00 30.00
 2 SOUTH JOHNSON 03/12/95 ACE ELECTRICAL 101.38 6.09

 1 WEST BAKER 03/26/95 JACKS CAFE 137.00 8.22
 2 WEST BAKER 04/12/95 JACKS CAFE 135.75 8.15
 3 WEST THOMAS 04/14/95 YOGURT CITY 9.98 0.60
Chapter 4. Beyond the Basics 213

How to Create "Top 10" Type Reports
! if a report with a DETAIL(nnn) option does not have any control breaks, the whole
report is treated as a single control group. In that case, just the first "nnn" records
of the entire report will print.

How to Create "Top 10" Type ReportsHow to Count "Occurrences" in a File

This section explains:

! how to count the number of times a certain value occurs in a file

Say that we wanted to know how many of the employees in the EMPL–FILE are based in
California. Or, what if we wanted to know the count of male and female employees. To get
statistics like these from a file, we use a special type of summary report. Figure 67 and
Figure 68 (page 216) show examples of such reports.

In these reports, we first create a number of new fields using conditional COMPUTE
statements. These fields are used as "counter" fields. They count the number of times that
a certain field contains a particular value. For example, the NUMBER–OF–MALE field counts
the number of times that the SEX field in the EMPL–FILE contains "M". Consider the
following statement:

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)

After each record is read from the input file, the value of the NUMBER–OF–MALE field is
computed. Its value will always be either 1 or 0. When the SEX field contains the value "M",
the NUMBER–OF–MALE field will contain a 1. Otherwise, the NUMBER–OF–MALE field will
contain a 0 (the default value when no WHEN expressions are true). By adding up all of the
NUMBER–OF–MALE fields in the report, we can get a total count of the records whose SEX
field contained an "M".

We set up a similar counter field for each statistic that we are interested in. These counter
fields are then listed in the COLUMNS statement. The Grand Total line shows us the total
value for each of these "counters".

You would normally use the SUMMARY option to suppress all of the detail lines leaving just
the statistics. In Figure 67 we printed the detail lines to better illustrate how the counter
fields work.

You can break your statistics down further by simply adding one or more control breaks
to such a report. For example, by sorting and breaking on the DEPT–NUM field, we can get
the same statistics by department number. That is, we can see the number of males and
females in each department. The sample report in Figure 68 (page 216) shows an example
of printing statistics by department number. In this report we used the SUMMARY option to
suppress the individual detail lines. We also removed from the COLUMNS statement those
fields which do not print in the total lines.

Note: Another way to get "count" statistics is to simply sort the report on the item
you want to count (the STATE field, for instance), and make it a control break. Each
time the STATE field changes value, a control break will occur and the number of
"items" in that state will print. The disadvantage of this method is that only one
"thing" can be counted at a time.
214 Spectrum Writer User’s Guide

How to Count "Occurrences" in a File
Figure 67. Counting how many times various values occur in a file

Remarks:
• several "counter" fields are created using conditional COMPUTE statements
• the counter fields are totalled at the end of the report, giving us our statistics
• you would normally use an OPTIONS: SUMMARY statement to suppress the detail lines from such a

report

These Control Statements:

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE FILE COUNTS'

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)
COMPUTE: NUMBER–OF–FEMALE = WHEN(SEX='F') ASSIGN(1)
COMPUTE: NUMBER–IN–CALIFORNIA = WHEN(STATE='CA') ASSIGN(1)
COMPUTE: NUMBER–IN–ARIZONA = WHEN(STATE='AZ') ASSIGN(1)
COMPUTE: NUMBER–OF–FULLTIME = WHEN(FULL–TIME) ASSIGN(1)

COLUMNS: LAST–NAME FIRST–NAME DEPT–NUM STATE
 NUMBER–OF–MALE NUMBER–OF–FEMALE
 NUMBER–IN–CALIFORNIA NUMBER–IN–ARIZONA
 NUMBER–OF–FULLTIME

Produce this Report:

 EMPLOYEE FILE COUNTS

 NUMBER NUMBER NUMBER NUMBER NUMBER
 LAST FIRST DEPT OF OF IN IN OF
 NAME NAME NUM STATE MALE FEMALE CALIFORNIA ARIZONA FULLTIME

JONES JERRY 2 CA 1 0 1 0 1
JOHNSON THOMAS 1 AZ 1 0 0 1 1
JOHNSON LINDA 2 CA 0 1 1 0 1
MACDONALD RICHARD 2 CA 1 0 1 0 0
SIMPSON TIMOTHY 3 CA 1 0 1 0 1
MORRISON MICHAEL 3 CA 1 0 1 0 1
CHRISTOPHERSON MELISSA 1 AZ 0 1 0 1 1
BAKER VIVIAN 4 CA 0 1 1 0 1
THOMAS MARTIN 4 CA 1 0 1 0 1

*** GRAND TOTAL (9 ITEMS) 6 3 7 2 8
Chapter 4. Beyond the Basics 215

How to Count "Occurrences" in a File
Figure 68. Breaking down “count” statistics further

Remarks:
• this report is similar to the report in the preceding figure
• in this report we added a control break for DEPT–NUM, giving us department totals as well as Grand

Totals
• the OPTIONS: SUMMARY statement suppressed all detail lines from the report
• the COLUMNS statement only lists the counter fields, since no detail records are printed
• the initial spacing factor of 40 (in the COLUMNS statement) moves the first column 40 spaces to the

right, leaving room for the total line text to print

These Control Statements:

OPTIONS: SUMMARY
INPUT: EMPL–FILE
TITLE: 'EMPLOYEE FILE COUNTS, BY DEPARTMENT'

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)
COMPUTE: NUMBER–OF–FEMALE = WHEN(SEX='F') ASSIGN(1)
COMPUTE: NUMBER–IN–CALIFORNIA = WHEN(STATE='CA') ASSIGN(1)
COMPUTE: NUMBER–IN–ARIZONA = WHEN(STATE='AZ') ASSIGN(1)
COMPUTE: NUMBER–OF–FULLTIME = WHEN(FULL–TIME) ASSIGN(1)

SORT: DEPT–NUM
BREAK: DEPT–NUM TOTAL('COUNTS FOR DEPARTMENT' DEPT–NUM)

COLUMNS: 40
 NUMBER–OF–MALE NUMBER–OF–FEMALE
 NUMBER–IN–CALIFORNIA NUMBER–IN–ARIZONA
 NUMBER–OF–FULLTIME

Produce this Report:
 EMPLOYEE FILE COUNTS, BY DEPARTMENT

 NUMBER NUMBER NUMBER NUMBER NUMBER
 OF OF IN IN OF
 MALE FEMALE CALIFORNIA ARIZONA FULLTIME

COUNTS FOR DEPARTMENT 1 1 1 0 2 2
COUNTS FOR DEPARTMENT 2 2 1 3 0 2
COUNTS FOR DEPARTMENT 3 2 0 2 0 2
COUNTS FOR DEPARTMENT 4 1 1 2 0 2

****** GRAND TOTAL (9 ITEMS) 6 3 7 2 8
216 Spectrum Writer User’s Guide

How to Break Totals Down into Categories

This section explains:

! how to break a total down "by category" (such as "by sex")

In the preceding section, we saw how to count the number of males and females in a control
group. Now let's take that a step further. What if we wanted to calculate the total sales made
by males and females? We are no longer simply counting occurrences, but accumulating
some field's total by category.

Of course, one way to do that is to sort and break on the SEX field. That would cause all
records for each sex to be grouped and printed together, with control break totals printed
for each group. If we listed TOTAL–SALES in the report, the control break totals would show
the total sales for each sex. But assume we want such totals by sex without having to sort
on the SEX field? And assume we want to see the male and female totals together in the
same line, rather than in separate total lines.

There is another technique we can use to accomplish this. Again, we use a conditional
COMPUTE statement:

COMPUTE: MALE–SALES = WHEN(SEX='M') ASSIGN(TOTAL–SALES)

After each new record is read from the input file, the value of MALE–SALES will be
computed. Its value will always be either zero or the employee's total sales amount (from
the TOTAL–SALES field). When the SEX field contains an "M" the MALE–SALES field will
contain the TOTAL–SALES value. Otherwise, the MALE–SALES field will contain a zero. By
adding up all of the MALE–SALES fields in the report, we can get the total sales made by all
males.

To get the amount sold by females, we use a similar statement:
COMPUTE: FEMALE–SALES = WHEN(SEX='F') ASSIGN(TOTAL–SALES)

Figure 69 shows a report that uses the above statements. We put the MALE–SALES and
FEMALE–SALES field in the COLUMNS statement. Those fields are then automatically totalled
and printed at each control break, as well as at the Grand Totals.

By adding the SUMMARY option, we could suppress the detail lines and see just the total
lines.

This technique can often be used to total a field by category, instead of just getting a single
total for it. Use one COMPUTE statement for each possible value of the "category" field. Of
course, this technique cannot be used if all of the possible values of the category field are
not known in advance.

Note: Figure 69 is an example of a "crosstab report." Crosstab reports are
discussed in more depth in the following sections.
Chapter 4. Beyond the Basics 217

How to Break Totals Down into Categories
Figure 69. Subtotaling fields by a category (such as gender)

Remarks:
• in the detail lines, MALE–SALES and FEMALE–SALES contain either zero or the value from the

TOTAL–SALES field.
• the totals for those fields show the total sales made by male and female employees

These Control Statements:

INPUT: EMPL-FILE
TITLE: 'SALES TOTALS, BY GENDER'

COMPUTE: MALE-SALES = WHEN(SEX='M') ASSIGN(TOTAL-SALES)
COMPUTE: FEMALE-SALES = WHEN(SEX='F') ASSIGN(TOTAL-SALES)

SORT: DEPT-NUM
BREAK: DEPT-NUM TOTAL('SALES IN DEPARTMENT' DEPT-NUM)

COLUMNS: LAST-NAME FIRST-NAME DEPT-NUM SEX
 TOTAL-SALES(12) MALE-SALES(12) FEMALE-SALES(12)

Produce this Report:
 SALES TOTALS, BY GENDER

 LAST FIRST DEPT TOTAL MALE FEMALE
 NAME NAME NUM SEX SALES SALES SALES

JOHNSON THOMAS 1 M 86,999.24 86,999.24 0.00
CHRISTOPHERSON MELISSA 1 F 47,665.31 0.00 47,665.31
SALES IN DEPARTMENT 1 134,664.55 86,999.24 47,665.31

JONES JERRY 2 M 42,509.89 42,509.89 0.00
JOHNSON LINDA 2 F 75,023.55 0.00 75,023.55
MACDONALD RICHARD 2 M 2,560.98 2,560.98 0.00
SALES IN DEPARTMENT 2 120,094.42 45,070.87 75,023.55

SIMPSON TIMOTHY 3 M 8,723.88 8,723.88 0.00
MORRISON MICHAEL 3 M 98,054.99 98,054.99 0.00
SALES IN DEPARTMENT 3 106,778.87 106,778.87 0.00

BAKER VIVIAN 4 F 92,125.89 0.00 92,125.89
THOMAS MARTIN 4 M 60,193.49 60,193.49 0.00
SALES IN DEPARTMENT 4 152,319.38 60,193.49 92,125.89

****** GRAND TOTAL (9 ITEMS) 513,857.22 299,042.47 214,814.75
218 Spectrum Writer User’s Guide

How to Make “Crosstab” Reports

This section explains

! what crosstab reports are

! a method of formatting crosstab reports with Spectrum Writer

Crosstab reports show information in a tabular format, based on two groupings of data. One
grouping runs down the left side of the report; the other grouping runs across the top of the
report. The intersections of these two grouping contains the report data — the data
applicable to that combination of group values.

Spectrum Writer does not have an automatic "crosstab" report option. However, in many
cases you can create a report in crosstab format yourself.

The next sections illustrate a method of making reports in crosstab format. There are two
requirements for using this method:

! you must know in advance the number of different values that the “across the
top” field might contain

! and you must know in advance what all of those values will be

If the crosstab report you want to produce meets these two conditions, then use the method
described in the following examples.

A Simple Crosstab Report

Let’s start with a simple example. Assume that we want to produce a crosstab report from
the sales file. We want to group the sales by month going down the page and by region
going across the page. This report is shown in Figure 70.

Note that this report meets the requirements mentioned above. The “across” field in this
case is REGION. And we do know both the number of different values it can have (four) and
what those values will be (EAST, NORTH, SOUTH and WEST).

We first use COMPUTE statement to create four region “buckets” to hold the sales data.
These correspond to the four values that the REGION field can have. As each record is read
from the input file, we assign its AMOUNT field to one of those four buckets, depending on
the value of the REGION field.

COMPUTE: EAST-AMT = WHEN(REGION = “EAST”) ASSIGN(AMOUNT)
COMPUTE: NORTH-AMT = WHEN(REGION = “NORTH”) ASSIGN(AMOUNT)
COMPUTE: SOUTH-AMT = WHEN(REGION = “SOUTH”) ASSIGN(AMOUNT)
COMPUTE: WEST-AMT = WHEN(REGION = “WEST”) ASSIGN(AMOUNT)

We don’t want to print detail records for this report. We only to print to print a summary
report showing one line of totals for each month. Therefore we do not need a COLUMNS
statement. We also specify the SUMMARY option. We use TITLE statements to produce our
“column headings.” The trailing slashes in these statements prevent these "titles" from
centered. (See page 153 for further explanation. Column headings are not produced
automatically for this report, since there is no COLUMNS statement.)
Chapter 4. Beyond the Basics 219

A Simple Crosstab Report
Figure 70. A Simple Crosstab Report

Remarks:
• this crosstab report has months running down the page and regions running across the page

These Control Statements:

OPT: SUMMARY DATEDELIM('-') NOGRAND
INPUT: SALES-FILE
COMPUTE: EAST-AMT = WHEN(REGION='EAST') ASSIGN(AMOUNT)
COMPUTE: NORTH-AMT = WHEN(REGION='NORTH') ASSIGN(AMOUNT)
COMPUTE: SOUTH-AMT = WHEN(REGION='SOUTH') ASSIGN(AMOUNT)
COMPUTE: WEST-AMT = WHEN(REGION='WEST') ASSIGN(AMOUNT)
COMPUTE: MONTH = #LEFT(#FORMAT(SALES-DATE, YYYY-MM-DD),7)
TITLE: 'CROSSTAB SALES REPORT'
TITLE: 'REGIONAL TOTALS BY MONTH'
TITLE: ' '
TITLE: ' MONTH EAST NORTH SOUTH W
 EST' /
TITLE: '_______ ____________ ____________ ___________ _________
 ___' /
SORT: MONTH
BREAK: MONTH NOTOTALS
 FOOTING(MONTH EAST-AMT(TOTAL) NORTH-AMT(TOTAL)
 SOUTH-AMT(TOTAL) WEST-AMT(TOTAL))

Produce this Report:

 CROSSTAB SALES REPORT
 REGIONAL TOTALS BY MONTH

 MONTH EAST NORTH SOUTH WEST

1995-03 74.00 0.00 101.38 137.00
1995-04 38.86 386.69 500.00 145.73
220 Spectrum Writer User’s Guide

A Simple Crosstab Report
We use a COMPUTE statement to extract the month from the SALES-DATE field. (Note that
we also include the year along with the month. That allows this report to work even if the
input data spans multiple years.)

COMPUTE: MONTH = #LEFT(#FORMAT(SALES-DATE, YYYY-MM-DD),7)

This statement first formats the SALES-DATE in YYYY-MM-DD format. (We used the
DATEDELIM option to cause dates to be formatted with a dash, instead of the standard slash.)
The #LEFT function then takes just the YYYY-MM portion of that date. We then use this
MONTH field as our sort field and our break field.

As Spectrum Writer processes all of the sales records for a given month, it simply
distributes the AMOUNT fields into the correct region buckets. No report lines are printed.

Then, when the MONTH changes value, we are ready to print one line of our crosstab report.
Since this is a summary report, we don’t use a COLUMNS statement to describe this print
line. Instead we describe the line using the BREAK statement FOOTING parm:

BREAK: MONTH NOTOTALS FOOTING(MONTH EAST-AMT(TOTAL) NORTH-AMT(TOTAL)
 SOUTH-AMT(TOTAL) WEST-AMT(TOTAL))

As you can see in the FOOTING parm above, our report lines will start with the contents of
the MONTH field that just ended. That takes care of the “down the page” group in our
crosstab report. Then we print the total values of the four regional buckets where we earlier
distributed the AMOUNT field. This provides the "across the page" grouping. The result is
one line of our crosstab report. (The NOTOTAL parm in the above statement prevents the
default total line from printing at the control break.)

Note: The small SALES-FILE only contains data for two months. Therefore, the
crosstab report only has two lines of data. But this report would work equally well
for a file containing many months (even years) of data.

A Simple Crosstab ReportAnother Crosstab Report

Our second crosstab example is similar to the previous example. This time, however, we
switch the “down” and “across” groups (see Figure 71). In addition, we made some other
changes to illustrate additional features and variations. The changes in this report example
are:

! The regions now run down the page, and the months run across the page

! we show two totals at each intersection (AMOUNT and TAX), instead of just one

! instead of “hardcoding” the two months to appear as the “across” values, we
code the report to always report on the “previous two months” (based on the
system date of the run)

! this report also shows Grand Totals

Following are some remarks about the control statements used to produce this report. (The
control statements are shown in Figure 72 on page 223.)
Chapter 4. Beyond the Basics 221

Another Crosstab Report
First we needed to determine the month number of the two previous months. Note that the
#MONTHNUM built-in function returns a number from 1 to 12 for a given date. In this case,
it returns the month number of the system date (#TODAY).

COMPUTE: SYSTEM-MONTH-NUM = #MONTHNUM(#TODAY))
COMPUTE: PREV1-MONTH-NUM = WHEN(SYSTEM-MONTH-NUM = 1) ASSIGN(12)
 ELSE ASSIGN(SYSTEM-MONTH-NUM - 1)
COMPUTE: PREV2-MONTH-NUM = WHEN(PREV1-MONTH-NUM = 1) ASSIGN(12)
 ELSE ASSIGN(PREV1-MONTH-NUM - 1)

Similarly, we compute the year associated with each of the two previous months. (They
might be in the same year as the system date, or one or both of them could be in the
previous year.) The #YEARNUM built-in function returns the numeric year of a given date.

COMPUTE: SYSTEM-YEAR-NUM = #YEARNUM(#TODAY))
COMPUTE: PREV1-YEAR-NUM = WHEN(SYSTEM-MONTH-NUM > 1) ASSIGN(SYSTEM-YEAR-NUM)
 ELSE ASSIGN(SYSTEM-YEAR-NUM - 1)
COMPUTE: PREV2-YEAR-NUM = WHEN(SYSTEM-MONTH-NUM > 2) ASSIGN(SYSTEM-YEAR-NUM)
 ELSE ASSIGN(SYSTEM-YEAR-NUM - 1)

Since this report has the previous two months as the "across" group, we need two buckets
for months (PREV1-AMT and PREV2-AMT). We compare the previous months’ numeric
month and year values to the sales date to determine which monthly bucket to assign the
amount value to.

COMPUTE: RECORD-MONTH-NUM = #MONTHNUM(SALES-DATE)
COMPUTE: RECORD-YEAR-NUM = #YEARNUM(SALES-DATE)
COMPUTE: PREV1-AMT = WHEN(RECORD-MONTH-NUM = PREV1-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV1-YEAR-NUM)
 ASSIGN(AMOUNT)
COMPUTE: PREV2-AMT = WHEN(RECORD-MONTH-NUM = PREV2-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV2-YEAR-NUM)
 ASSIGN(AMOUNT)

You will see in Figure 72 that we also used two similar monthly “buckets” to hold the TAX
data. This allows us to print two data values for each intersection in the crosstab report.

RUN: 05/17/95 CROSSTAB SALES REPORT
 PREVIOUS TWO MONTHS BY REGION

 APR 1995 MAR 1995
REGION AMOUNT TAX AMOUNT TAX

EAST 38.86 2.33 74.00 4.44
NORTH 386.69 23.22 0.00 0.00
SOUTH 500.00 30.00 101.38 6.09
WEST 145.73 8.75 137.00 8.22

TOTAL 1,071.28 64.30 312.38 18.75

Figure 71. Another sample crosstab report
222 Spectrum Writer User’s Guide

Another Crosstab Report
OPTIONS: SUMMARY
INPUT: SALES-FILE

COMPUTE: SYSTEM-MONTH-NUM = #MONTHNUM(#TODAY)
COMPUTE: PREV1-MONTH-NUM = WHEN(SYSTEM-MONTH-NUM = 1) ASSIGN(12)
 ELSE ASSIGN(SYSTEM-MONTH-NUM - 1)
COMPUTE: PREV2-MONTH-NUM = WHEN(PREV1-MONTH-NUM = 1) ASSIGN(12)
 ELSE ASSIGN(PREV1-MONTH-NUM - 1)

COMPUTE: SYSTEM-YEAR-NUM = #YEARNUM(#TODAY)
COMPUTE: PREV1-YEAR-NUM =
 WHEN(SYSTEM-MONTH-NUM > 1) ASSIGN(SYSTEM-YEAR-NUM)
 ELSE ASSIGN(SYSTEM-YEAR-NUM - 1)
COMPUTE: PREV2-YEAR-NUM =
 WHEN(SYSTEM-MONTH-NUM > 2) ASSIGN(SYSTEM-YEAR-NUM)
 ELSE ASSIGN(SYSTEM-YEAR-NUM - 1)

COMPUTE: RECORD-MONTH-NUM = #MONTHNUM(SALES-DATE)
COMPUTE: RECORD-YEAR-NUM = #YEARNUM(SALES-DATE)

COMPUTE: PREV1-AMT = WHEN(RECORD-MONTH-NUM = PREV1-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV1-YEAR-NUM)
 ASSIGN(AMOUNT)
COMPUTE: PREV2-AMT = WHEN(RECORD-MONTH-NUM = PREV2-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV2-YEAR-NUM)
 ASSIGN(AMOUNT)

COMPUTE: PREV1-TAX = WHEN(RECORD-MONTH-NUM = PREV1-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV1-YEAR-NUM)
 ASSIGN(TAX)
COMPUTE: PREV2-TAX = WHEN(RECORD-MONTH-NUM = PREV2-MONTH-NUM AND
 RECORD-YEAR-NUM = PREV2-YEAR-NUM)
 ASSIGN(TAX)

COMPUTE: PREV1-DATE = #MAKEDATE(#FORMAT(PREV1-YEAR-NUM, P'9999') +
 #FORMAT(PREV1-MONTH-NUM, P'99') + "01")
COMPUTE: PREV1-COL-HDG = #SUBSTR(#FORMAT(PREV1-DATE, SHORT2), 4, 8)

COMPUTE: PREV2-DATE = #MAKEDATE(#FORMAT(PREV2-YEAR-NUM, P'9999') +
 #FORMAT(PREV2-MONTH-NUM, P'99') + "01")
COMPUTE: PREV2-COL-HDG = #SUBSTR(#FORMAT(PREV2-DATE, SHORT2), 4, 8)

TITLE: 'RUN:' #TODAY / 'CROSSTAB SALES REPORT' /
TITLE: 'PREVIOUS TWO MONTHS BY REGION'
TITLE: ' '
TITLE: 16 PREV1-COL-HDG 19 PREV2-COL-HDG /
TITLE: ' ________________________ _________________________' /
TITLE: 'REGION AMOUNT TAX AMOUNT TAX' /
TITLE: '______ ____________ _________ _____________ _________' /

SORT: REGION
BREAK: REGION NOTOTALS
 FOOTING(REGION PREV1-AMT(TOTAL) PREV1-TAX(TOTAL)
 PREV2-AMT(TOTAL) PREV2-TAX(TOTAL))
BREAK: #GRAND NOTOTALS
 FOOTING('TOTAL' PREV1-AMT(TOTAL) PREV1-TAX(TOTAL)
 PREV2-AMT(TOTAL) PREV2-TAX(TOTAL))

Figure 72. Control statements to produce the crosstab report on page 222
Chapter 4. Beyond the Basics 223

Another Crosstab Report
In this report, we wanted to show the previous months’ abbreviated names (and not just
month numbers) in the column headings. To do that we used these compute statements:

COMPUTE: PREV1-DATE = #MAKEDATE(#FORMAT(PREV1-YEAR-NUM, P'9999') +
 #FORMAT(PREV1-MONTH-NUM, P'99') + "01")
COMPUTE: PREV1-COL-HDG = #SUBSTR(#FORMAT(PREV1-DATE, SHORT2), 4, 8)

The first COMPUTE statement above creates a date field based on the previous month’s year
number, month number and a constant "01" for the day number. The second COMPUTE
statement then formats this date into "DD MMM YYYY" format and extracts just the last 8 bytes.
We used this field (and a similar one for the second previous month’s name) in the TITLE
statement for our column headings.

The NOTOTALS parm in the BREAK statement for REGION tells Spectrum Writer not to print
its own default total line. Instead we printed our own custom footing line, using the
FOOTING parm.

At the Grand Totals, we wanted to print the monthly totals for all the regions. So we added
a BREAK statement for the special #GRAND control break. It is identical to the BREAK
statement for the REGION break, except that it prints the word "TOTAL" instead of the name
of a region.

Another Crosstab ReportWorking With Multiple Input Files

The following sections discuss various topics involving runs that use multiple input files.
The topics discussed are:

! how to use multiple READ statements for the same auxiliary input file
(page 224)

! how to use a field from one auxiliary input file as the READKEY for another
auxiliary file (page 226)

! how to assign and use record names (page 228)

! how "missing" records are handled (page 229)

! how to test for missing records (page 230)

! how I/O errors are handled (page 230)

! how to read records using generic and KGE (key greater than or equal) keys
(page 230)

! how to perform "one–to–many" reads by reading more than one record for each
READKEY value (page 232)

Using Multiple READ Statements for the Same File

This section explains:

! how to read more than one record (each with a different read key) from the same
auxiliary input file
224 Spectrum Writer User’s Guide

Using Multiple READ Statements for the Same File
Figure 73. A report with multiple READ statements for the same file

Remarks:
• for every SALES–FILE record read, two records are read from the EMPL–FILE
• each EMPL–FILE record has a different name, assigned by the RECNAME parm (in the READ

statement)
• the COLUMNS statement uses a record name to prefix each field name from the EMPL–FILE (to

eliminate ambiguity)

These Control Statements:

INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM) RECNAME(SALESMAN)
READ: EMPL-FILE READKEY(BACKUP-EMPL-NUM) RECNAME(BACKUP)

COMPUTE: PRODKEY = 'P' + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PRODKEY)

TITLE: 'LISTING OF RECENT SALES, WITH BACKUP EMPLOYEE INFO'
COLUMNS: EMPL-NAME
 SALES-FILE.EMPL-NUM
 SALESMAN.HIRE-DATE
 BACKUP-EMPL-NUM
 BACKUP.LAST-NAME
 BACKUP.HIRE-DATE
 PRODUCT-CODE
 PRODUCT-DESC

Produce this Report:

 LISTING OF RECENT SALES, WITH BACKUP EMPLOYEE INFO

 SALES
 FILE SALESMAN BACKUP BACKUP BACKUP
 EMPL EMPL HIRE EMPL LAST HIRE PRODUCT PRODUCT
 NAME NUM DATE NUM NAME DATE CODE DESC

JOHNSON 037 06/21/75 041 SIMPSON 12/01/82 952 PENCILS (NO. 1)
BAKER 044 06/04/82 045 THOMAS 06/04/82 978 HOLE PUNCHERS
MORRISON 042 11/30/79 036 JONES 01/31/80 907 INKPADS
MORRISON 042 11/30/79 045 THOMAS 06/04/82 919 GREEN PENS
SIMPSON 041 12/01/82 039 JOHNSON 11/25/79 916 RED PENS
JOHNSON 039 11/25/79 036 JONES 01/31/80 926 DESK CALENDARS
JOHNSON 039 11/25/79 044 BAKER 06/04/82 997 MAILING LABELS
BAKER 044 06/04/82 037 JOHNSON 06/21/75 916 RED PENS
THOMAS 045 06/04/82 037 JOHNSON 06/21/75 997 MAILING LABELS
JONES 036 01/31/80 042 MORRISON 11/30/79 977 PAPER CLIPS
JONES 036 01/31/80 039 JOHNSON 11/25/79 907 INKPADS
JONES 036 01/31/80 039 JOHNSON 11/25/79 977 PAPER CLIPS
JOHNSON 037 06/21/75 042 MORRISON 11/30/79 976 CHAIRS
SIMPSON 041 12/01/82 042 MORRISON 11/30/79 916 RED PENS

*** GRAND TOTAL (14 ITEMS)
Chapter 4. Beyond the Basics 225

Using Multiple READ Statements for the Same File
In Chapter 2, "How to Request a Report" we learned how to produce a report using two
auxiliary input files. (See Figure 20 on page 81.) We used two fields from the primary
input file (SALES–FILE) as keys to read records from other files. The SALES–FILE contains
yet another field that could be used as a read key for an auxiliary input file. That is the
BACKUP–EMPL–NUM field, which is the employee number of the backup salesperson for a
sale. This field can be used as a read key to the EMPL–FILE.

But our report already has one READ statement for the EMPL–FILE. That READ statement uses
the EMPL–NUM field as the read key. This is no problem. Spectrum Writer allows you to
have an unlimited number of READ statements for the same file. The sample report in
Figure 73 shows the addition of a second READ statement for the EMPL–FILE.

The second READ statement uses a different read key from the earlier READ statement, in
order to read a different record from the EMPL–FILE. This means that two different
EMPL–FILE records will be available for use in subsequent control statements. The first
READ statement will read the employee file record for the main salesperson. The second
READ statement will read the employee file record for the backup salesperson.

There is one thing to be careful about when you use more than one READ statement from
the same file. All of the data fields from that auxiliary input file will now exist multiple
times –– once in each record. You can't simply specify HIRE–DATE, for example, in the
COLUMNS statement now, because there are two such fields.

To solve this problem of ambiguous field names, we used the RECNAME parm in each of
the READ statements for the EMPL–FILE. This parm assigns unique names to the two records.
The record read using the EMPL–NUM field as the read key is named SALESMAN. The record
read using the BACKUP–EMPL–NUM field as the read key is named BACKUP.

In the COLUMNS statement, we qualified all references to fields from the EMPL–FILE with
one of these two record names. The use of the record name made it clear which record's
data was intended in each instance.

Using Multiple READ Statements for the Same FileHow to Chain READ Statements

This section explains:

! how to use fields from one auxiliary input file to read a record from another
auxiliary input file

The sample report in the previous section used all of the fields in the primary input file that
could be used as read keys to other files. But we can still read another record from an
auxiliary input file. How? By using a field from an existing auxiliary input file as the key
to another auxiliary input file. This is called "file chaining."

File chaining is when one auxiliary file contains the key used to read a record from another
auxiliary input file, which may contain the key to yet another auxiliary input file, and so
on. Spectrum Writer allows file chaining to any level.

Let's look at an example of file chaining. In the sample report in Figure 73, the EMPL–FILE
is an auxiliary input file. The EMPL–FILE contains the address of the employee, including
his 2–byte STATE. But the STATE field can be used as a key to read from another auxiliary
input file –– the STATE–FILE (described in Appendix F, "Files Used in Examples" on
226 Spectrum Writer User’s Guide

How to Chain READ Statements
Figure 74. A report with chained READ statements

Remarks:
• a record is read from the EMPL–FILE using the employee number from the primary input file as the key
• the STATE field from the EMPL–FILE is then used to read an additional record from the STATE–FILE
• an override column heading is specified for EMPL–NUM in the COLUMNS statement (for aesthetic

purposes only)

These Control Statements:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
READ: STATE–FILE READKEY(STATE)

TITLE: 'LISTING OF RECENT SALES'
TITLE: 'WITH EMPLOYEE ADDRESS INFORMATION'
COLUMNS: EMPL–NAME
 CUSTOMER
 SALES–DATE

 SALES–FILE.EMPL–NUM('EMPL|NUM')
 CITY
 STATE
 STATE–NAME

Produce this Report:
 LISTING OF RECENT SALES
 WITH EMPLOYEE ADDRESS INFORMATION

 EMPL SALES EMPL STATE
 NAME CUSTOMER DATE NUM CITY STATE NAME

JOHNSON ACE ELECTRICAL 03/12/92 037 SCOTTSDALE AZ ARIZONA
BAKER JACKS CAFE 03/26/92 044 WALNUT CREEK CA CALIFORNIA
MORRISON STAR MARKET 03/29/92 042 GLENDALE CA CALIFORNIA
MORRISON A1 PHOTOGRAPHY 03/30/92 042 GLENDALE CA CALIFORNIA
SIMPSON EUROPEAN DELI 04/01/92 041 ARCADIA CA CALIFORNIA
JOHNSON VILLA HOTEL 04/01/92 039 SANTA ROSA CA CALIFORNIA
JOHNSON MARYS ANTIQUES 04/05/92 039 SANTA ROSA CA CALIFORNIA
BAKER JACKS CAFE 04/12/92 044 WALNUT CREEK CA CALIFORNIA
THOMAS YOGURT CITY 04/14/92 045 CONCORD CA CALIFORNIA
JONES EZ GROCERY 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JONES TOY TOWN 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JONES TOY TOWN 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JOHNSON ACME BUILDING 04/16/92 037 SCOTTSDALE AZ ARIZONA
SIMPSON J & S LUMBER 04/30/92 041 ARCADIA CA CALIFORNIA

*** GRAND TOTAL (14 ITEMS)
Chapter 4. Beyond the Basics 227

How to Chain READ Statements
page 648). By reading the STATE–FILE record we can obtain the full state name for use in
our report. Figure 74 shows a report that does this.

When chaining files, the order of the READ statements is important. Be sure to follow the
rule that the READKEY field specified in each READ statement must already be available to
Spectrum Writer in an existing input file record. For that reason, the READ statement to the
EMPL–FILE must come before the READ statement to the STATE–FILE. The field used as the
READKEY to the STATE–FILE isn't available until after the read to the EMPL–FILE.

How to Chain READ StatementsHow to Name the Input File Records

This section explains:

! what record names are

! the default record name assigned to each input file

! how to assign your own record name to an input file

Spectrum Writer assigns a name to the records that it reads from each input file. These are
called record names. By default, records from a file are given the same name as the file
itself. For example:

INPUT: SALES–FILE

Since no record name was explicitly stated in the above statement, the record name for
records from the SALES–FILE file will also be "SALES–FILE."

Record names are necessary to distinguish between fields that have the same name but are
in different input files (or, perhaps, different records from the same input file). For
example, a field named EMPL–NUM exists in both the EMPL–FILE and in the SALES–FILE. If a
particular report uses both of these files as inputs, simply specifying EMPL–NUM as a field
name would be ambiguous. You would need to prefix EMPL–NUM with a record name to
indicate which record's EMPL–NUM field you are referring to. (Prefixing a field name with
a record name and a period is called qualifying a field name.) Consider the following
statements:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
COLUMNS: EMPL–NUM
 SALES–FILE.EMPL–NUM
 EMPL–FILE.EMPL–NUM

The above COLUMNS statement would have the following result. The first column
(EMPL–NUM by itself) would result in an error message –– the name is ambiguous since such
a field exists in more than one of the input files. The first column in the report would
contain only the "ambiguous reference" error indicator (that is, ***A***). The second column
would contain the EMPL–NUM field from the SALES–FILE file, since the field name was
qualified with that record name. The third column, similarly, would contain the EMPL–NUM
field from the EMPL–FILE file.

Note: you may be wondering why we did not need to use a record name in the
READKEY parm of the above READ statement. The answer is that at that point in the
control statements, only one EMPL-NUM field was known to Spectrum Writer (the one
228 Spectrum Writer User’s Guide

How to Name the Input File Records
in the SALES-FILE). It is only after the READ statement that more than one EMPL-NUM
field are present in the input files.

If you want to specify a record name other than the file name, use the RECNAME parm of
the INPUT or READ statement. For example:

INPUT: SALES–FILE RECNAME(SALESMAN)

The above statement would make SALESMAN the record name for the SALES–FILE file. To
specify the EMPL–NUM from the SALES–FILE in this case, you would use:

COLUMNS: SALESMAN.EMPL–NUM

If you do specify a RECNAME parm (in an INPUT or READ statement), it is not required that
you always use it when referring to fields from that file. Just use it whenever necessary to
avoid ambiguity.

The ability to specify your own record names is especially important in reports where the
same file is used in both the INPUT and a READ statement, or in multiple READ statements.
In that case, since the same file is serving as multiple inputs to the report, just using the file
name to qualify a field would still result in an ambiguous name.

You can qualify fields with record names in any control statement–– not just the COLUMNS
statement. Here are examples of qualifying field names in other control statements:

TITLE: 'EMPLOYEE DIRECTORY –– ' SALES–FILE.EMPL–NUM
COMPUTE: MAILING–CODE = EMPL–FILE.EMPL–NUM + LAST–NAME
INCLUDEIF: EMPL–FILE.EMPL–NUM > '040'

The report in Figure 73 (page 225) illustrates the use of record names.

How to Name the Input File RecordsHow Missing Records Are Handled

Sometimes the auxiliary input file will not contain a record with a key equal to the read
key's value. When this happens, Spectrum Writer assigns a default value to each of the
fields in the "missing record." The default value depends on the data type of the field, as
shown in the following table:

DEFAULT VALUES ASSIGNED TO FIELDS IN MISSING RECORDS

FIELD TYPE DEFAULT VALUE

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)

Time Zeros (00:00:00)

Bit OFF
Chapter 4. Beyond the Basics 229

Testing for Missing Records

How can you tell when no record is found for a given read key? One easy way is to compare
the contents of the key field (in the auxiliary input record) with the contents of the read key
field (specified in the READKEY parm). If the values are not the same, it means that the
record was missing (and thus its key field was assigned a default value of blanks).

Here is an example of testing for a successful read:
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(SALES-FILE.EMPL-NUM)
COMPUTE: EMPL-REC-FOUND = WHEN(EMPL-FILE.EMPL-NUM = SALES-FILE.EMPL-NUM) ASSIGN(#ON)
COMPUTE: START-DATE = WHEN(EMPL-REC-FOUND) ASSIGN(EMPL-FILE.HIRE-DATE)
 ELSE ASSIGN(1/1/1990)

In the above statements, we set a bit field named EMPL-REC-FOUND to "on" (true) when the
record from the EMPL-FILE is successfully read. (That is, when its key field equals the read
key value.) This bit field is then used to help assign a value to a field called START-DATE.
When the EMPL-FILE record is found, we assign its HIRE-DATE field to START-DATE. When
the EMPL-FILE record is missing, we assign a default date of 1/1/1990 to START-DATE.

How I/O Errors Are Handled

By default, when an I/O error occurs on an auxiliary input file, Spectrum Writer prints a
warning message in the control listing and then continues the run without reading from that
file again. (All records from that file are treated as "missing".)

Sometimes, however, the data from the file in error may be so important to the report that
it is pointless (or worse, misleading) to continue the run without it. Or, you may want to
continue the run, but raise the job completion code to indicate that a problem exists. Use
the READ statement’s ONIOERROR parm for such situations.

Specify ONIOERROR(ERROR) to change the control listing message from a warning to an
error (which also sets the job completion code to 8).

Or, specify ONIOERROR(STOP) to have Spectrum Writer halt the run immediately when an
I/O error occurs on the file. Spectrum Writer will print a message and then issue a "user
ABEND" to terminate the run immediately.

Note: "Missing" records are not considered I/O errors.

Note: You can also specify a ONIOERROR parm in an OPTIONS statement, if you
want it to apply to all of the input files used in the run.

Testing for Missing RecordsUsing Generic and KGE Keys

This section explains:

! how to use generic READKEYs

! how to read records whose keys are greater than or equal to the READKEY
230 Spectrum Writer User’s Guide

Using Generic and KGE Keys
By default, Spectrum Writer assumes that the value in the READKEY parm specifies a
complete, exact key. When performing the READ, Spectrum Writer looks for a record on
the file that has that exact value as its full key. If no key in the file contains the exact value
of the READKEY parm, the record is considered to be "missing."

Sometime you may know a portion, but not all, of the key in the record that you want to
read. The READ statement has two parms that can be useful in such cases.

The GENERIC parm means that your READKEY value may be shorter than the key length
defined for the VSAM file. Thus, it may not contain the complete key of the record you want
to read, but only a leading portion of the desired key. When GENERIC is specified, Spectrum
Writer reads the first record from the file which has an exact match on that portion of the
key specified in the READKEY parm.

For example, assume a VSAM file contains records with the following 3–byte keys:
A01
A02
A16
A17
C01
C12

Given a file with the above keys, the READ statements below would give the result indicated
in the following table.

A related parm is the KGE ("key greater or equal") parm. This parm can be used with
either a complete key or a generic key. It tells Spectrum Writer that, if no record on the file
has a key (or partial key) that is exactly equal to the READKEY value, to use the first record
whose key (or partial key) is greater than the READKEY value.Given a file with the same
keys shown above, the READ statements below would give the indicated result:

RESULTS OF USING THE GENERIC PARM

STATEMENT
KEY OF

RECORD READ

READ: FILE–X READKEY('A') GENERIC A01

READ: FILE–X READKEY('A1') GENERIC A16

READ: FILE–X READKEY('A13') GENERIC "missing"

READ: FILE–X READKEY('B') GENERIC "missing"

RESULTS OF USING THE GENERIC AND KGE PARMS

STATEMENT
KEY OF

RECORD READ

READ: FILE–X READKEY('A') GENERIC KGE A01

READ: FILE–X READKEY('A1') GENERIC KGE A16

READ: FILE–X READKEY('A13') GENERIC KGE A16

READ: FILE–X READKEY('A13') KGE A16

READ: FILE–X READKEY('B') GENERIC KGE C01
Chapter 4. Beyond the Basics 231

Using Generic and KGE Keys
Note: The GENERIC and KGE parms may only be used in READ statements that have
a READKEY parm. Thus, they may not be used in READ statements for DB2 tables.

Using Generic and KGE KeysHow to Perform "One–to–Many" Reads

This section explains:

! how to perform "one–to–many" reads by reading multiple records for a single
READKEY value (or WHERE parm condition)

By default, each time Spectrum Writer reads a new record from the primary input file, it
also attempts to read a single record from each file named in a READ statement.

However, there are times when there may be more than one record in an auxiliary input file
for a given READKEY value. For example, this is often the case when reading from an
alternate index path (where duplicate alternate key values can occur). Also, when using
a generic READKEY there may be more than one record in a file that matches that generic
key. And, when reading from a DB2 table, there may be more than one row that satisfies
the conditions in your WHERE parm.

Use the MULTI parm in your READ statement if you want Spectrum Writer to read all of the
records that match your READKEY value (or WHERE parm conditions). For example:

INPUT: EMPL–FILE
READ: SALES–AIX READKEY(EMPL–NUM) MULTI

The INPUT statement above makes EMPL–FILE the primary input to our report. That file
contains one record per employee. We then use a READ statement to read a record from the
SALES–AIX file. The SALES–AIX file is actually a path to the SALES–FILE through an alternate
index. The key for this alternate index is the EMPL–NUM field in the SALES–FILE. But we
know that some employees have more than one record in the SALES–FILE. Without the
MULTI parm, Spectrum Writer would simply read the first record for a given EMPL–NUM
from the SALES–AIX file and use that record in the report. It would then proceed to read the
next primary input file record and continue in the normal way.

By specifying the MULTI parm in the READ statement above, Spectrum Writer will now read
all of the SALES–AIX records that match the EMPL–NUM from the EMPL–FILE record. The
report in Figure 75 uses the above statements.

Here's how Spectrum Writer processed the input files in Figure 75. It reads the first record
from the primary input file, EMPL–FILE. That record had an EMPL–NUM of 036.

Spectrum Writer then read the first record from the SALES–AIX file that had a key of 036.
Using these two records as one "logical input record," Spectrum Writer then produced one
line of the report.

Then, before reading the next record from the EMPL–FILE, Spectrum Writer read an
additional record from the SALES–AIX file. It then used this "logical input record"
(consisting of the original EMPL–FILE record and the second matching SALES–AIX record) in
the report. This process continued until there were no more records in the SALES–AIX file
with a key of 036. At that point, Spectrum Writer proceeded to read the next record from
the primary input file. Using the EMPL–NUM from this new record (037), it then read each
SALES–AIX file record with a key of 037, and so on.
232 Spectrum Writer User’s Guide

How to Perform "One–to–Many" Reads
Figure 75. A "one-to-many" report using the MULTI parm in a READ statement

Remarks:
• the MULTI parm in the READ statement causes Spectrum Writer to read multiple records from the

SALES–AIX file for each record read from the EMPL–FILE

These Control Statements:

INPUT: EMPL-FILE
READ: SALES-AIX READKEY(EMPL-NUM) MULTI
TITLE: 'EMPLOYEE LISTING, WITH RECENT SALES'
COLUMNS: LAST-NAME FIRST-NAME HIRE-DATE
 EMPL-FILE.EMPL-NUM
 SALES-AIX.EMPL-NUM
 SALES-DATE AMOUNT

Produce this Report:

 EMPLOYEE LISTING, WITH RECENT SALES

 EMPL SALES
 FILE AIX
 LAST FIRST HIRE EMPL EMPL SALES
 NAME NAME DATE NUM NUM DATE AMOUNT

JONES JERRY 01/31/80 036 036 04/15/95 10.25
JONES JERRY 01/31/80 036 036 04/15/95 121.76
JONES JERRY 01/31/80 036 036 04/15/95 10.25
JOHNSON THOMAS 06/21/75 037 037 03/12/95 101.38
JOHNSON THOMAS 06/21/75 037 037 04/16/95 500.00
JOHNSON LINDA 11/25/79 039 039 04/01/95 234.45
JOHNSON LINDA 11/25/79 039 039 04/05/95 9.98
MACDONALD RICHARD 07/04/82 040 00/00/00 0.00
SIMPSON TIMOTHY 12/01/82 041 041 04/01/95 14.99
SIMPSON TIMOTHY 12/01/82 041 041 04/30/95 23.87
MORRISON MICHAEL 11/30/79 042 042 03/29/95 44.35
MORRISON MICHAEL 11/30/79 042 042 03/30/95 29.65
CHRISTOPHERSON MELISSA 08/15/81 043 00/00/00 0.00
BAKER VIVIAN 06/04/82 044 044 03/26/95 137.00
BAKER VIVIAN 06/04/82 044 044 04/12/95 135.75
THOMAS MARTIN 06/04/82 045 045 04/14/95 9.98

*** GRAND TOTAL (16 ITEMS) 1,383.66
Chapter 4. Beyond the Basics 233

How to Perform "One–to–Many" Reads
For a more complete description of how Spectrum Writer processes MULTI–type READ
statements, see the Notes section of the READ statement in Chapter 10, "Control Statement
Syntax" (page 591).

Speed-up Tip: READ statements with the MULTI parm are less efficient than regular
READ statements. To reduce CPU and I/O usage, do not specify MULTI if you know
that a file contains unique keys. (In other words, do not specify MULTI if you know
the READKEY will only find one matching record in the file.)

Speed-up Tip: If you have some READ statements that use the MULTI parm and
some that do not, put the READ statement(s) without the MULTI parm ahead of the
other READ statements (when possible). In some cases this will reduce the amount
of I/O that is performed.

How to Perform "One–to–Many" ReadsWorking with "Batched" Input Files

Some input files are organized as "batches" of data. Each batch begins with a header record
and is followed by a number of detail records. A trailer record may also appear at the end
each batch. The COMPUTE statement's RETAIN feature is useful when working with
"batches" of records.

The RETAIN parm lets you save information from the header record in such files. You can
then use this saved information along with the information in the detail records to produce
your Spectrum Writer report or PC file.

Here is an example of using the RETAIN parm in a COMPUTE statements:
COMPUTE: SAVE–NAME = WHEN(REC–TYPE = 'A') ASSIGN(EMP–NAME)
 ELSE RETAIN

The above statement creates a new field called SAVE–NAME. As with all computed fields,
Spectrum Writer assigns a value to SAVE–NAME each time it reads a new record from the
input file. Assume that our input file has two types of records. The header records begin
with an "A" in column 1. These header records contain the name of the employee whose
data follows. The second type of record contains a "B" in column 1. These are the detail
records. Each detail record contains the date and the amount of a sale made by the
employee. When Spectrum Writer processes a header record, the WHEN condition in the
above statement will be true (REC–TYPE will equal "A") and SAVE–NAME will be assigned
the value of the EMP–NAME field. Otherwise (when the input record is a detail record),
Spectrum Writer does not change the contents of the SAVE–NAME field. It just "retains"
whatever value it already has. (Note that if ELSE RETAIN had not been specified, Spectrum
Writer would set the SAVE–NAME field to blanks whenever the REC–TYPE field was not
equal to "A".)

Figure 76 shows a sample "batch" type file with header and detail records. The lower box
on that page shows the Spectrum Writer definition statements for the file. Figure 77
(page 236) shows a PC file produced from this sample batch file.
234 Spectrum Writer User’s Guide

Working with "Batched" Input Files
Figure 76. An "batched" input file (with header and detail records) and its definition statements

Remarks:
• The input file (shown in the top box) has two types of records
• Header records begin with the letter "A" and contain only an employee name
• Detail records begin with the letter "B" and contain the date and the amount of a sale
• Any number of detail records may follow a header record
• The Spectrum Writer definition statements (lower box) define the fields in both types of records
• Comment lines indicate which fields can be found in which records

Raw Input File:

AJOHNSON
B010492 1008.98
B033092 987.00
B050192 698.50
AMORRISON
B020892 345.99
B020992 900.17
ACLARK
B010192 1209.87
B022992 872.77
B060292 100.00

File Definition Statements for the Above File:

FILE: SALES–LOG DDNAME(SALELOG)

**** NOTE: THE FOLLOWING FIELD EXISTS IN ALL RECORD TYPES
FLD: REC–TYPE COL(1) LEN(1)

**** NOTE: THE FOLLOWING FIELD EXISTS ONLY IN "A" RECORDS
FLD: EMP–NAME COL(2) LEN(10)

**** NOTE: THE FOLLOWING FIELDS EXIST ONLY IN "B" RECORDS
FLD: SALE–DATE COL(2) TYPE(MMDDYY)
FLD: SALE–AMT TYPE(NUM) LEN(8) DEC(2)
Chapter 4. Beyond the Basics 235

Working with "Batched" Input Files
Figure 77. A PC file produced from a batched input file (with header and details records)

Remarks:
• The PC file above contains one line for each detail record in the input file
• Each line includes "retained" data from the previous header record
• The COMPUTE statement saves the EMP–NAME field from the header records in a new field called

SAVE–NAME
• The INCLUDEIF statement selects just the detail records to appear in the PC file
• The COLUMNS statement creates a column in the PC file for the SAVE–NAME field taken from the

header record, as well as for the two fields from the detail records

These Control Statements:

OPTION: PC
INPUT: SALES–LOG
COMPUTE: SAVE–NAME = WHEN(REC–TYPE = 'A') ASSIGN(EMP–NAME)
 ELSE RETAIN
INCLUDEIF: REC–TYPE = 'B'
COLUMNS: SAVE–NAME SALE–DATE SALE–AMT

Produce this PC File:

 "JOHNSON ","01/04/92", 1008.98
 "JOHNSON ","03/30/92", 987.00
 "JOHNSON ","05/01/92", 698.50
 "MORRISON ","02/08/92", 345.99
 "MORRISON ","02/09/92", 900.17
 "CLARK ","01/01/92", 1209.87
 "CLARK ","02/29/92", 872.77
 "CLARK ","06/02/92", 100.00
236 Spectrum Writer User’s Guide

Working with "Batched" Input Files
Here are some general points to follow whenever using a header/detail type of input file:

! use FIELD statements to define all the fields in both the header records and the
detail records. (Spectrum Writer allows you to define more than one field with
the same starting column.)

! use one COMPUTE statement for each field that you want to retain from the header
records.
• use the WHEN parm to identify the header records in the input file

• use the ASSIGN parm to name the header record field whose data you want to
save

• use ELSE RETAIN so that the field's value is not changed when the subsequent
detail records are processed

! use an INCLUDEIF statement to select only the detail records for your Spectrum
Writer report (or PC file). This is because you don't want to write out a report
line containing only data from the header record. You just want to save data from
the header records as they go by, and only write out report lines for each of the
detail records in the input file. (Of course you can add further conditions to your
INCLUDEIF statement if you want to include only certain detail records from the
input file.)

! in your COLUMNS statement, you can refer to the retained data from the header
records (that is, the COMPUTE fields) as well as all of the fields from the detail
records

! note that information from any "trailer" record cannot be used with this
technique. As the detail records are being processed, Spectrum Writer has not yet
seen the trailer record. Therefore no data from that record is available. The
conditions in the INCLUDEIF statement should ensure that the trailer records are
not included in the report.

Working with "Batched" Input FilesWorking With Arrays

When working in a low level language, programmers often process arrays by using index
variables, program loops, etc. As a non-procedural, 4GL report writer, Spectrum Writer
does not have "procedural" elements such as "go to" or looping instructions. Instead, non-
procedural methods are used to process arrays with Spectrum Writer.

Two methods for working with arrays are discussed:

! file "normalization" (below)

! other strategies that do not use normalization (page 249)

Using Normalization to Process Arrays

Often, the best way to process an array with Spectrum Writer is to "normalize" the array-
containing records. During normalization, Spectrum Writer turns each physical input
Chapter 4. Beyond the Basics 237

Using Normalization to Process Arrays
record into one or more logical records. Each logical record corresponds to one
"occurrence" of the array in the physical record. These logical records are all identical to
the physical record, except for the part of the record that contains the first occurrence of the
array. That part of the record is overlaid, successively, by the second, third, fourth, etc.
occurrence of the array.

In effect, Spectrum Writer loops through the array for you, building logical records by
moving, one at a time, each occurrence of the array into the first position. The result is that
instead of a single record containing multiple occurrences of an array, you end up with
multiple records that each contain a single occurrence of the array in a fixed location.

Figure 78 shows an example of a file that contains an array. As you can see in the Cobol
record layout, the SALES-HISTORY record contains an array named SALE-ARRAY. The array
holds information for up to six sales. The NUM-SLOTS field tells how many occurrences of
the array are actually used in any particular record.

Figure 79 shows the same file after it has been normalized. As you can see, the normalized
file has more records than the physical file. The normalized file contains from 1 to 6 logical
records for each physical record in the original file.

The normalized file in Figure 79 contains exactly the same sales information as the
physical file in Figure 78. The difference is this: in the normalized file, the information for
all sales appears in one location — the first occurrence of the array (where the SALE-DATE
and SALE-AMT fields are defined). Also, the unused occurrences of the array are eliminated
from the normalized file (that is, no logical records are created for those occurrences).

Figure 78. SALES-HISTORY file containing an array

Cobol Definition of SALES-HISTORY File

 01 SALES-HISTORY-REC
 05 NAME PIC X(10).
 05 CITY PIC X(10).
 05 NUM-SLOTS PIC 9.
 05 SALE-ARRAY OCCURS 6 TIMES.
 10 SALE-DATE PIC 9(6).
 10 SALE-AMT PIC 9(5)V9(2).
 05 RECORD-STATUS PIC X(1).

Physical SALES-HISTORY File (Sales Data is in 6 Locations)

(sale info) (sale info) (sale info) (sale info) (sale info) (sale info)
BAKER BOSTON 2 9212010042398 9301040091225 0000000000000 0000000000000 0000000000000 0000000000000 A
CHAVEZ MIAMI 1 9301250188901 0000000000000 0000000000000 0000000000000 0000000000000 0000000000000 B
JEFFERSON CHICAGO 2 9301200066755 9301230044234 0000000000000 0000000000000 0000000000000 0000000000000 B
JOHNSON DALLAS 5 9212300100810 9301020055475 9301100075065 9301110029980 9301190030162 0000000000000 A
JONES ATLANTA 6 9212290071105 9212300019256 9301080109023 9301100052475 9301130078912 9301160120030 A
MORRISON NEW YORK 3 9301020052200 9301040091944 9301060140246 0000000000000 0000000000000 0000000000000 B
SHARP PORTLAND 1 9301310060019 0000000000000 0000000000000 0000000000000 0000000000000 0000000000000 A
SMITH ST LOUIS 4 9301190033423 9301210070810 9301240100056 9301280020072 9301310094199 0000000000000 B
238 Spectrum Writer User’s Guide

Using Normalization to Process Arrays
Figure 79. Normalizing the SALES-HISTORY file

File Definition and INPUT Statements to Normalize the SALES-HISTORY File

FILE: SALES-HISTORY DDNAME(SALEHIST) LRECL(100)
FIELD: NAME LENGTH(10)
FIELD: CITY LENGTH(10)
FIELD: NUM-SLOTS LENGTH(1) TYPE(NUM)
FIELD: SALE-ARRAY LENGTH(13)
FIELD: SALE-DATE COLUMN(*-13) TYPE(YYMMDD)
FIELD: SALE-AMT LENGTH(7) TYPE(NUM) DEC(2)
FIELD: RECORD-STATUS COLUMN(SALE-ARRAY + 78) LENGTH(1)
INPUT: SALES-HISTORY
 NORMALIZE(SALE-ARRAY, NUM-SLOTS)

Normalized (Logical) SALES-HISTORY File (Sales Data is in 1 Location)

BAKER BOSTON
BAKER BOSTON
CHAVEZ MIAMI
JEFFERSON CHICAGO
JEFFERSON CHICAGO
JOHNSON DALLAS
JOHNSON DALLAS
JOHNSON DALLAS
JOHNSON DALLAS
JOHNSON DALLAS
JONES ATLANTA
JONES ATLANTA
JONES ATLANTA
JONES ATLANTA
JONES ATLANTA
JONES ATLANTA
MORRISON NEW YORK
MORRISON NEW YORK
MORRISON NEW YORK
SHARP PORTLAND
SMITH ST LOUIS
SMITH ST LOUIS
SMITH ST LOUIS
SMITH ST LOUIS

2
2
1
2
2
5
5
5
5
5
6
6
6
6
6
6
3
3
3
1
4
4
4
4

 sale info
9212010042398
9301040091225
9301250188901
9301200066755
9301230044234
9212300100810
9301020055475
9301100075065
9301110029980
9301190030162
9212290071105
9212300019256
9301080109023
9301100052475
9301130078912
9301160120030
9301020052200
9301040091944
9301060140246
9301310060019
9301190033423
9301210070810
9301240100056
9301310094199

 unused fields
930104009122500
930104009122500
000
930123004423400
930123004423400
93010200554759301100075065930111002998093011900301620000000000000
93010200554759301100075065930111002998093011900301620000000000000
93010200554759301100075065930111002998093011900301620000000000000
93010200554759301100075065930111002998093011900301620000000000000
93010200554759301100075065930111002998093011900301620000000000000
92123000192569301080109023930110005247593011300789129301160120030
92123000192569301080109023930110005247593011300789129301160120030
92123000192569301080109023930110005247593011300789129301160120030
92123000192569301080109023930110005247593011300789129301160120030
92123000192569301080109023930110005247593011300789129301160120030
92123000192569301080109023930110005247593011300789129301160120030
93010400919449301060140246000000000000000000000000000000000000000
93010400919449301060140246000000000000000000000000000000000000000
93010400919449301060140246000000000000000000000000000000000000000
000
93012100708109301240100056930128002007200000000000000000000000000
93012100708109301240100056930128002007200000000000000000000000000
93012100708109301240100056930128002007200000000000000000000000000
93012100708109301240100056930128002007200000000000000000000000000

A
A
B
B
B
A
A
A
A
A
A
A
A
A
A
A
B
B
B
A
B
B
B
B

Chapter 4. Beyond the Basics 239

Using Normalization to Process Arrays
Once you have normalized a file, it is quite easy to process it with Spectrum Writer. You
simply ignore the array (beyond the first occurrence). In the normalized file, there is only
one occurrence of relevant data in each record, always in the same location.

For example, assume that we want a report that simply lists all of the sales over $100 in the
SALES-HISTORY file. If we used the physical file, we would have to examine up to six
different amount fields in each record. We might also need to check the NUM-SLOTS field
to see which amount fields were actually used in a given record (unless we knew that all
unused fields contained zeros). That would require six COMPUTE statements. Then, we
would need six COLUMNS statements to potentially print each of the six amount fields, plus
an option to suppress any zero lines, and so on. (The details of this approach can be found
in "How to Print a Variable Number of Lines Per Input Record" on page 249.)

On the other hand, if we let Spectrum Writer normalize the file, we can easily produce the
report using just the single SALE-DATE and SALE-AMT fields, like this:

INCLUDEIF: SALE-AMT > 100
COLUMNS: NAME SALE-DATE SALE-AMT

Remember that every sale amount in the array of the original file now exists in the SALE-
AMT field of some logical record. We simply include those records where that amount is
over $100.

Figure 80 shows a report that uses the above statements.

Note: A normalized file exists only as a temporary, logical file. During the run, the
records are built, processed by Spectrum Writer, and then discarded. They are not
actually written to a physical file.

The next section explains exactly how to use the NORMALIZE parm.

Using Normalization to Process ArraysThe NORMALIZE Parm

To normalize an array in an input file, Spectrum Writer must know three things about that
array:

! the starting column of the array

! the total size of each occurrence of the array

! how many occurrences there are

You supply this information by adding a NORMALIZE parm to the INPUT statement. The
syntax of the NORMALIZE parm is:

NORMALIZE(normalize-field, occurs-expression [, ...])

The normalize-field tells Spectrum Writer both the starting column of the array and the
length of the array occurrences. Therefore, the normalize field must be a field that defines
the entire first occurrence of the array that you want to normalize. In Figure 79, the
normalize field is SALE-ARRAY. SALE-ARRAY is a 13-byte character field that includes both
the SALE-DATE and SALE-AMT fields. Thus, it defines the entire first occurrence of the array.
240 Spectrum Writer User’s Guide

The NORMALIZE Parm
Figure 80. A report that uses normalization to process an array

These Control Statements:

INPUT: SALES–HISTORY
 NORMALIZE(SALE-ARRAY, NUM-SLOTS)
TITLE: "SALES OVER $100"
INCLUDEIF: SALE-AMT > 100
COLUMNS: NAME SALE-DATE SALE-AMT

Produce this Report:
 SALES OVER $100

 SALE SALE
 NAME DATE AMT
 BAKER 12/01/92 423.98
 BAKER 01/04/93 912.25
 CHAVEZ 01/25/93 1,889.01
 JEFFERSON 01/20/93 667.55
 JEFFERSON 01/23/93 442.34
 JOHNSON 12/30/92 1,008.10
 JOHNSON 01/02/93 554.75
 JOHNSON 01/10/93 750.65
 JOHNSON 01/11/93 299.80
 JOHNSON 01/19/93 301.62
 JONES 12/29/92 711.05
 JONES 12/30/92 192.56
 JONES 01/08/93 1,090.23
 JONES 01/10/93 524.75
 JONES 01/13/93 789.12
 JONES 01/16/93 1,200.30
 MORRISON 01/02/93 522.00
 MORRISON 01/04/93 919.44
 MORRISON 01/06/93 1,402.46
 SHARP 01/31/93 600.19
 SMITH 01/19/93 334.23
 SMITH 01/21/93 708.10
 SMITH 01/24/93 1,000.56
 SMITH 01/28/93 200.72

 *** GRAND TOTAL (24 ITEMS)
 17,445.76
Chapter 4. Beyond the Basics 241

The NORMALIZE Parm
Note that in that example we could not use SALE-DATE as the normalize field. Doing so
would yield incorrect results because it does not define the entire first occurrence of the
array. It only defines the first six bytes of the first occurrence.

Why is the normalize field’s length important? Because it tells Spectrum Writer how many
bytes to move each time it builds a new logical record. It also tells Spectrum Writer where
to start taking the new bytes from (namely, from the first byte following the normalize
field).

The occurs-expression in the NORMALIZE parm tells Spectrum Writer how many
occurrences of the array to process. It can be a constant numeric literal, the name of a
numeric field, a numeric COMPUTE field, or any valid numerical expression.

Let’s look at an example of the NORMALIZE parm in an INPUT statement:
INPUT: SALES-HISTORY
 NORMALIZE(SALE-ARRAY, NUM-SLOTS)

The above statement tells Spectrum Writer to normalize the input records from the SALES-
HISTORY file. The first occurrence of the array being normalized is defined by SALE-ARRAY.
The number of occurrences to be used from the array is contained in the NUM-SLOTS field.

Figure 80 shows a report that uses this statement.

As records are read from the SALES-HISTORY file, here is what happens.

First, the unchanged physical record is processed by Spectrum Writer as usual. (That is, the
INCLUDEIF tests are performed on it, and, if included, its contents are formatted into a line
of the report.) This physical record is considered the first logical record.

Next, a second logical record is created by moving the 13 bytes immediately following the
SALE-ARRAY field into the SALE-ARRAY area of the record. Now, SALE-DATE contains the
date from the second occurrence of the array, and SALE-AMT contains the amount from the
second occurrence of the array. This logical record is then processed just as if it had been
read directly from the input file. (The INCLUDEIF tests are performed on it, and, if included,
its contents are formatted into a line of the report.)

Then, a third logical record is created by moving the next 13 bytes into the SALE-ARRAY
area. Now, SALE-DATE and SALE-AMT contain the date and the amount from the third
occurrence of the array. This third logical record is then processed just as if it had been read
directly from the input file, and so on

The number of logical records produced for each physical record is determined by the
value of the NUM-SLOTS field (in this example). If NUM-SLOTS is 1 (or less), only the
original, physical record is processed. If NUM-SLOTS contains 2, then two logical records
are processed (the original physical record, plus one additional record). If NUM-SLOTS
contains 3, then three logical records are processed, and so on.

Note: You can also put the NORMALIZE parm directly in the FILE statement that
defines a file. This is convenient when you know that you will always want to
normalize a certain file. That way, you don’t need to include the NORMALIZE parm
in the INPUT statement every time you produce a report from that file. (In that case,
you can still prevent normalization for individual runs by adding the NONORMALIZE
parm to the INPUT statement.)
242 Spectrum Writer User’s Guide

File Definition Tips for Records with Arrays

The FIELD statements that define an array will be different, depending on whether or not
you will normalize that array. This section explains the differences.

Consider the SALES-HISTORY file, which contains an array with information for up to six
sales. For runs where we normalize that file, we would use the file definition statements
shown in Figure 79 (page 239). But for runs where we do not normalize the file, we might
prefer to use the file definition statements shown in Figure 35 (page 250).

If you are not normalizing a record, and you want to access data from an array, you must
define each occurrence of the array as a separate field. That is because the only way to
access each occurrence of the array is to refer to it specifically by its unique field name.
Thus, in Figure 35 (page 250) each occurrence of the array in the SALES-HISTORY file is
defined individually (SALE-DATE-1, SALE-AMT-1, SALE-DATE-2, SALE-AMT-2, etc.) This file
definition is for use in reports where the SALES-HISTORY file is not normalized.

However, if you are using normalization to process an array, it is not necessary to define
all of the occurrences of the array. It is sufficient to define just the fields in the first
occurrence of the array. (Plus, you may need to define one additional field that includes the
entire first occurrence of the array, for use in the NORMALIZATION parm itself.) You do not
need to define the other occurrences of the array. This is because, after normalization, all
array data will be located in the first occurrence of the array (of some logical record). Thus,
if we know that the SALES-HISTORY file will always be normalized, we can define it as we
did in Figure 79 (page 239). It would not be necessary to define SALE-DATE-2, SALE-AMT-2,
SALE-DATE-3 and so on.

Remember that if the array contains more than one field in each occurrence, you must also
define a "high-level" field that defines the entire first occurrence of the array. This field
will be needed in the NORMALIZATION parm. In the SALES-HISTORY file, we defined SALE-
ARRAY as a high level field which includes both SALE-DATE and SALE-AMT. You should
generally define the high-level field as a character field whose length is the length of the
entire first occurrence of the array. That is, its length will be the sum of the lengths of each
individual field. (Of course, if the array only consists of a single field, then no additional
high-level field is needed. You can use the single field itself in the NORMALIZE parm.)

Caution: Cobol sometimes adds what are called "slack bytes" at the end of each
array occurrence. This is done in order to align the next occurrence on a halfword or
fullword boundary. This may happen if a field in your Cobol record layout uses the
SYNCHRONIZED parm. Any such slack bytes must be included in the length of the
high-level field you define.

After defining the high-level field, you can use a COLUMN(* – nnn) parm on the next FIELD
statement to "back up" again to the beginning of the array. You can then start "redefining"
the lower level fields in that same portion of the record.

Of course, you may want to define your array so that it can be used either with or without
normalization. In that case, define all of the occurrences of the array, as well as one high-
level field for the entire first occurrence.
Chapter 4. Beyond the Basics 243

Normalizing Nested Arrays

Some records contain "arrays within arrays." Such arrays are also called "nested arrays."
Spectrum Writer is able to normalize records containing any degree of nested arrays.

Specify one NORMALIZE parm for each array level. The first NORMALIZE parm defines the
outermost array. The next NORMALIZE parm defines the next deeper array, and so on.

For example, consider this Cobol record layout:
01 RECORD.
 05 EMPL-NAME PIC X(20).
 05 SALE-ARRAY OCCURS 10 TIMES.
 10 SALE-DATE PIC 9(6).
 10 SALE-CUSTOMER PIC X(10).
 10 SALE-PRODUCT-CODE OCCURS 5 TIMES PIC X(3).
 05 RECORD-STATUS PIC X(1).

The above record contains a nested array. The outer array (SALE-ARRAY) contains an inner
array (SALE-PRODUCT-CODE). We could define this record to Spectrum Writer in the
following way:

FIELD: EMPL-NAME LENGTH(20)
FIELD: SALE-ARRAY LENGTH(31)

FIELD: SALE-DATE COLUMN(* – 31) TYPE(YYMMDD)
FIELD: SALE-CUSTOMER LENGTH(10)
FIELD: SALE-PRODUCT-CODE LENGTH(3)
*
FIELD: RECORD-STATUS COLUMN(SALE-ARRAY + 310) LENGTH(1)

Since we will be normalizing this file, it is sufficient to define only the first occurrence of
each array. (This is because, once normalized, the relevant data in each logical record will
be in that first occurrence location.)

As you can see, we first defined a field that includes the whole, first 31-byte occurrence of
the outer array (SALE-ARRAY). We then backed up 31 bytes in order to define the individual
fields within that occurrence. First we defined the 6-byte SALE-DATE field, then the 10-byte
SALE-CUSTOMER field. The last field within the 31-byte SALE-ARRAY field is the SALE-
PRODUCT-CODE array (a total of 15 bytes). Again, it was only necessary to define the first
occurrence of that array. And, since the SALE-PRODUCT-CODE array does not have multiple
fields per occurrence, it was not necessary to define a higher-level field to define its entire
first occurrence. The 3-byte SALE-PRODUCT-CODE field itself defines the entire first
occurrence of that inner array.

After defining the first occurrence of each array, we defined the RECORD-STATUS field. We
use the COLUMN(SALE-ARRAY + 310) parm to locate this field in the correct column. This
COLUMN parm tells Spectrum Writer to locate the RECORD-STATUS field 310 bytes after the
start of the SALE-ARRAY field. (Ten occurrences of the 31-byte SALE-ARRAY field is a total
of 310 bytes.)

After defining our file as above, we can normalize it like this:
INPUT: OUR-FILE
 NORMALIZE(SALE-ARRAY, 10)
 NORMALIZE(SALE-PRODUCT-CODE, 5)

As Spectrum Writer normalizes the input records, it first "loops through" the most deeply
nested array (the one specified in the last NORMALIZE parm). That is the SALE-PRODUCT-
244 Spectrum Writer User’s Guide

Normalizing Nested Arrays
CODE array in this example. Thus, the first logical record, as always, is the unchanged
physical record. The second logical record will have the second product code in SALE-
PRODUCT-CODE. The third logical record will have the third product code in SALE-
PRODUCT-CODE, and so on for the fourth and fifth logical records.

Then, having fully normalized the inner array for the first occurrence of the outer array,
Spectrum Writer begins normalizing the outer array (SALE-ARRAY). Thus, for the sixth
logical record, Spectrum Writer moves the 31 bytes following the SALE-ARRAY field into
the SALE-ARRAY location. That is, it moves the second occurrence of the outer array into the
first occurrence’s location. This 31-bytes includes the second occurrence of the SALE-DATE
and SALE-CUSTOMER fields. It also includes the entire 15-byte SALE-PRODUCT-CODE array
from the second occurrence of SALE-ARRAY. At this point, the SALE-PRODUCT-CODE field
contains the first occurrence of that array (within the second occurrence of the outer array).
Using Cobol notation, we could say it contains SALE-PRODUCT-CODE (2, 1). After processing
this logical record, Spectrum Writer continues to fully normalize the inner array. Thus, for
the next logical records, Spectrum Writer moves the 2nd, 3rd, 4th and 5th occurrences of
the inner array to SALE-PRODUCT-CODE.

After that, Spectrum Writer moves the third occurrence of the outer array (SALE-ARRAY)
into the SALE-ARRAY field, and so on.

Each time one inner level array has been fully normalized, the next higher array level is
adjusted and all lower levels are normalized all over again.

Spectrum Writer continues normalization in this manner until the last occurrence of the
inner array has been normalized for the last occurrence of the outer array. Thus, each
physical record in this example results in 50 logical input records (the 5 occurrences of the
inner array times the 10 occurrences of the outer array).

Normalizing Nested ArraysNormalizing Multiple, Non-Nested Arrays

Some records contain multiple arrays that are not nested. That is, there may be two or more
independent arrays in a record. For example, consider this Cobol record layout:

01 RECORD.
 05 EMPL-NAME PIC X(20).
 05 SALE-DATE OCCURS 10 TIMES PIC 9(6).
 05 HIRE-DATE PIC 9(6).
 05 SALE-CUSTOMER OCCURS 10 TIMES PIC X(10).
 05 RECORD-STATUS PIC X(1).

In this record layout, both SALE-DATE and SALE-CUSTOMER are arrays. But they are not
nested. We could define this record to Spectrum Writer in the following way:

FIELD: EMPL-NAME LENGTH(20)
FIELD: SALE-DATE TYPE(YYMMDD)
FIELD: HIRE-DATE COLUMN(*+54) TYPE(YYMMDD)
FIELD: SALE-CUSTOMER LENGTH(10)
FIELD: RECORD-STATUS COLUMN(*+90) LENGTH(1)

Note again that when normalizing a file, we only need to define the first occurrence of each
array. Thus we defined just the first SALE-DATE field at the beginning of that array. Since
this is an array of just a single field, we did not need to define a separate "high level" field.
The SALE-DATE field itself defines the entire first occurrence of the array.
Chapter 4. Beyond the Basics 245

Normalizing Multiple, Non-Nested Arrays
We used the COLUMN(*+54) parm on the HIRE-DATE field to skip over the other 9 undefined
occurrences of the 6-byte sales date field. (We could also have specified COLUMN(SALE-
DATE + 60). Either method will properly locate the HIRE-DATE field.)

Similarly, we defined only the first occurrence of the SALE-CUSTOMER array.

We used the COLUMN(*+90) parm on the RECORD-STATUS field to skip over the other nine
undefined occurrences of the 10-byte customer field.

Now that we have defined the file, how do we normalize it? There are two different ways
to normalize records that contain non-nested arrays. The method you choose will depend
on the logical relationship between the data in the two arrays.

Often, the data in the two arrays will have a one-to-one relationship. That is, the first date
in the SALE-DATE array will correspond to the first customer in the SALE-CUSTOMER array.
The second date in the SALE-DATE array will correspond to the second customer in the SALE-
CUSTOMER array, and so on.

If this is the case, you want to normalize the two arrays in parallel. You can think of it as
"stepping through" both arrays in sync. To normalize two or more arrays in parallel,
specify all of the arrays in a single NORMALIZE parm:

INPUT: OUR-FILE
 NORMALIZE(SALE-DATE, 10, SALE-CUSTOMER, 10)

When performing this normalization, the first logical record, as always, will be the
unchanged physical record. (The first date is in SALE-DATE and the first customer is in SALE-
CUSTOMER.) The second logical record will have the second date in SALE-DATE and the
second customer in SALE-CUSTOMER. The third logical record will have the third date in
SALE-DATE and the third customer in SALE-CUSTOMER, and so on. If you normalize the
above file in this manner, each physical record will result in 10 logical records.

On the other hand, you may have two separate arrays in a record whose data is not related
in the manner described above. In other words, all occurrences of the first array may apply
to all occurrences of the second array. In that case, you would normalize them as if they
were nested (even though they are not physically nested). That will cause one logical
record to be created for every possible combination of items from the two arrays. To
normalize in this manner, use two separate NORMALIZE parms (just as for true nested
arrays):

INPUT: OUR-FILE
 NORMALIZE(SALE-DATE, 10)
 NORMALIZE(SALE-CUSTOMER, 10)

When performing this normalization, the first logical record is, as always, the unchanged
physical record. (The first date is in SALE-DATE and the first customer is in SALE-
CUSTOMER.) The second logical record will retain the first date in SALE-DATE, but move the
second customer to SALE-CUSTOMER. The third logical record again retains the first date in
SALE-DATE and now has the third customer in SALE-CUSTOMER. Thus, the first ten logical
records all have the first date in SALE-DATE, while the SALE-CUSTOMER array is normalized.

Next (for the eleventh logical record), the second date is moved to SALE-DATE and SALE-
CUSTOMER is re-initialized to contain the first customer. The next logical record has the
second date and the second customer. The next one has the second date and the third
customer, and so on.
246 Spectrum Writer User’s Guide

Normalizing Multiple, Non-Nested Arrays
When normalized in this way, each physical record results in 100 logical records. (Ten
occurrences of the first array times the ten occurrences of the second array.)

You can specify the two NORMALIZE parms in either order (since the arrays are not
physically nested). The only difference will be the order in which the logical records are
built. Spectrum Writer always normalizes the last NORMALIZE parm first.

Normalizing Multiple, Non-Nested ArraysNormalizing only Certain Records

Some files contain more than one type of record. For example, a file may contain a
combination of header records and detail records. Perhaps the detail records contain an
array that must be normalized, while the header records do not contain that array. Or, the
header records might contain an entirely different array in a different location.

For such files, you need conditional normalization. Spectrum Writer provides the
NORMWHEN parm to perform conditional normalization.

When a NORMALIZE parm is present in an INPUT or READ statement, the default is for
Spectrum Writer to normalize all of the records from that file. You can, however, put a
NORMWHEN parm ahead of the NORMALIZE parm(s). In that case, the normalization is done
only on records where the condition specified in the NORMWHEN parm is true. For example:

INPUT: BATCH-FILE
 NORMWHEN(RECORD-TYPE = ’HDR’)
 NORMALIZE(STATUS-ARRAY, 5)
 NORMWHEN(RECORD-TYPE = ’DET’)
 NORMALIZE(CUSTOMER-ARRAY, 8)

The above statements tell Spectrum Writer to normalize the STATUS-ARRAY only for those
physical records where the RECORD-TYPE field contains "HDR". And the CUSTOMER-ARRAY
will be normalized only for those physical records where the RECORD-TYPE field contains
"DET". Records with any other value in the RECORD-TYPE field will not be normalized at all.
(That is, only the physical records themselves will be processed.)

Each NORMWHEN parm governs the NORMALIZE parm(s) that follow it (until the next
NORMWHEN parm, if any). Spectrum Writer first tests the condition in the first NORMWHEN
parm. If true, it performs the complete normalization specified in the following NORMALIZE
parm(s). After that normalization, Spectrum Writer then tests the condition in the next
NORMWHEN parm. If true, Spectrum Writer then performs the normalization specified by
the following NORMALIZE parm(s), and so on.

If the conditions in multiple NORMWHEN parms are true, each of the corresponding normal-
izations will be performed on that record. When a record is normalized multiple times, the
unchanged physical record is processed only one time (not one time per normalization).

Any valid conditional expression is allowed within the NORMWHEN parm.

If any NORMALIZE parms precede the first NORMWHEN parm, their normalization will be
performed on every record.
Chapter 4. Beyond the Basics 247

Normalizing an Auxiliary Input File

If the records read from an auxiliary input file contain an array, you may want to normalize
those records as well. Do that by adding the necessary NORMWHEN and/or NORMALIZE
parms to your READ statement.

Remember that, by default, a READ statement only returns a single record (the first record
whose key matches the READKEY value). Therefore to successfully normalize an auxiliary
input file, you must also specify the MULTI parm in the READ statement. The MULTI parm
tells Spectrum Writer to use all of the records from the file whose key matches the
READKEY value. The MULTI parm allows all of the logical records created during the
normalization process to be used in the report.

Normalization Errors

If Spectrum Writer detects erroneous normalization information in a record, it does not
normalize the field in question for that record. (If normalization was requested for more
than one field, Spectrum Writer will still attempt to perform the other normalization(s).)
Examples of normalization errors are:

! an error occurs while trying to compute the "occurs" value. For example, a
numeric field involved in the computation might contain a non-numeric value.

! the occurs expression results in a value that is negative or zero.

! the occurs expression results in a value that is too big. That is, the last occurrence
of the array would be beyond the end of the record area.

When Spectrum Writer encounters any of these normalization errors, it prints a message in
the control listing, along with a "dump" (hex listing) of the record in question. By default,
only the first ten such normalization errors are printed. You can use the MAXNORMDUMP
option (in an OPTIONS statement) to print more (or fewer) such messages. The syntax of the
MAXNORMDUMP option is:

OPTIONS: MAXNORMDUMP(nnnnn/10)

By default, normalization error messages are treated as informational messages only.
When a normalization error occurs, Spectrum Writer processes the physical record, and
then skips the normalization in question for that record. If you want normalization errors
to be treated as more serious errors, use the ONNORMERROR option (in an INPUT, READ or
OPTIONS statement). The syntax of the ONNORMERROR option is:

ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)

For example, to stop the entire run (with a "user ABEND") if a normalization error occurs,
specify:

OPTION: ONNORMERROR(STOP)
248 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideHow to Print a Variable Number of Lines Per Input Record

If you choose not to use normalization to process an array, there is another approach that
you may find useful. It involves the SKIPZERODET option. The SKIPZERODET option tells
Spectrum Writer to skip (that is, to not write out) any detail lines that contain only zero
values. Let's look at how this option can be used.

Consider the sample SALES–HISTORY file shown in Figure 35. This file contains 3 fields in
fixed positions (the name, the city, and a numeric field that tells how many sales "slots" are
used in the following array). After these three fields there is an array containing sales
information for up to six sales. Each of these occurrences of the array (or "slots") contains
the date and the amount of one sale. But not all six slots are actually filled in for each
record. As you can see, some records have only 1 slot filled in. Others have two or three.
One record has all six filled in. The unused slots within a record contain zeros.

Our goal is to produce a report that shows all the sales made by each employee. But we do
not want to see all the unused (or "zero") sales. We'll consider two different strategies to
accomplish this objective.

Note: An entirely different approach to this task was discussed in "Using
Normalization to Process Arrays" (page 237).

How to Print a Variable Number of Lines Per Input RecordVariable Number of Lines — Strategy 1

 Let's start by seeing what our report would look like if we did nothing to remove the "zero"
sales fields. We'll use one COLUMNS statement for the constant information in each record
(the name and city). Then we will use one additional COLUMNS statement for each of the 6
sales slots, showing the date and amount of a sale. If we do nothing else, Spectrum Writer
will always print 7 lines for each input record (one line per COLUMNS statement). The
resulting report is shown in Figure 36 (page 251). It isn't very attractive. It also wastes a
lot of paper showing sales data for non–existent sales.

The first strategy to remove the "zero" sales data from the report is this: simply specify the
SKIPZERODET option. This causes Spectrum Writer to skip (suppress) all detail report lines
(or PC file records) that contains only zeros. In our sample report, this means that the lines
for unused sales slots (lines with only a zero date and a zero amount) will be suppressed.
The report now contains only the lines that actually have real sales data in them. The report
in Figure 37 (page 252) illustrates this strategy. (Note that we also specified the DOUBLE
option to double–space the report, making it easier to read.)

Once again, the SKIPZERODET option simply means that a detail line will not be output if it
contains only "zero" items. The following are considered "zero" items for this purpose:

! blanks (for character fields)
! zero numeric values (0, 0.00, etc.)
! 00/00/00 (zero dates)
! 00:00:00 (zero times)
Chapter 4. Beyond the Basics 249

Variable Number of Lines — Strategy 1
Figure 35. A sample file containing sales data for up to 6 sales per record

Remarks:
• this "Sales History" file contains 100–byte records
• each record contains: the salesperson's name, city, and information about up to 6 sales
• each "sales slot" in the record consists of a sales date and a sales amount
• a one–byte field after the city tells how many slots are in use
• unused slots contain all zeros

File Definition Statements for SALES-HISTORY File:

FILE: SALES-HISTORY DDNAME(SALEHIST) LRECL(100)
FIELD: NAME LEN(10)
FIELD: CITY LEN(10)
FIELD: NUM-SLOTS LEN(1) TYPE(NUM)
FIELD: SALE-DATE-1 TYPE(YYMMDD)
FIELD: SALE-AMT-1 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-2 TYPE(YYMMDD)
FIELD: SALE-AMT-2 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-3 TYPE(YYMMDD)
FIELD: SALE-AMT-3 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-4 TYPE(YYMMDD)
FIELD: SALE-AMT-4 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-5 TYPE(YYMMDD)
FIELD: SALE-AMT-5 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-6 TYPE(YYMMDD)
FIELD: SALE-AMT-6 LEN(7) TYPE(NUM) DEC(2)
FIELD: RECORD-STATUS LEN(1)

Contents of SALES-HISTORY File:
BAKER BOSTON 29212010042398930104009122500A
CHAVEZ MIAMI 19301250188901000B
JEFFERSON CHICAGO 29301200066755930123004423400B
JOHNSON DALLAS 5921230010081093010200554759301100075065930111002998093011900301620000000000000A
JONES ATLANTA 6921229007110592123000192569301080109023930110005247593011300789129301160120030A
MORRISON NEW YORK 3930102005220093010400919449301060140246000000000000000000000000000000000000000B
SHARP PORTLAND 19301310060019000A
SMITH ST LOUIS 4930119003342393012100708109301240100056930128002007200000000000000000000000000B
250 Spectrum Writer User’s Guide

Variable Number of Lines — Strategy 1
Figure 36. A report with “no strategy” to deal with unused array items

These Control Statements:

INPUT: SALES–HISTORY
COLUMNS: NAME CITY
COLUMNS: SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–DATE6 SALE–AMT–6

Produce this Report:
MON 01/23/95 1:53 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 12/01/92 423.98
 01/04/93 912.25
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 CHAVEZ MIAMI
 01/25/93 1,889.01
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 JEFFERSON CHICAGO
 01/20/93 667.55
 01/23/93 442.34
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 JOHNSON DALLAS
 12/30/92 1,008.10
 01/02/93 554.75
 01/10/93 750.65
 01/11/93 299.80
 01/19/93 301.62
 00/00/00 0.00

 (other report lines not shown)
Chapter 4. Beyond the Basics 251

Variable Number of Lines — Strategy 1
Figure 37. Strategy 1 — just add the SKIPZERODET option

These Control Statements:

OPTIONS: SKIPZERODET DOUBLE
INPUT: SALES–HISTORY
COLUMNS: NAME CITY
COLUMNS: SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–DATE6 SALE–AMT–6

Produce this Report:

MON 01/23/95 2:31 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 12/01/92 423.98
 01/04/93 912.25

 CHAVEZ MIAMI
 01/25/93 1,889.01

 JEFFERSON CHICAGO
 01/20/93 667.55
 01/23/93 442.34

 JOHNSON DALLAS
 12/30/92 1,008.10
 01/02/93 554.75
 01/10/93 750.65
 01/11/93 299.80
 01/19/93 301.62

 JONES ATLANTA
 12/29/92 711.05
 12/30/92 192.56
 01/08/93 1,090.23
 01/10/93 524.75
 01/13/93 789.12
 01/16/93 1,200.30

 MORRISON NEW YORK
 01/02/93 522.00
 01/04/93 919.44
 01/06/93 1,402.46

 (other report lines not shown)
252 Spectrum Writer User’s Guide

Variable Number of Lines — Strategy 1
Note: For the purposes of this option, "detail lines" means: the lines printed for
each individual input record (COLUMNS statement lines); the total lines printed at
control breaks (if any); and the Grand Totals lines (if any). Title lines, column
heading lines and break heading lines are not affected by this option.

Note: Only the first 256 bytes of each line are examined when checking for zero
detail lines. This is generally not a problem, since detail lines are usually not this
long.

Note: A related option named SKIPBLANKDET is also available. It suppresses lines
only when they are completely blank. It is for occasions when you want to suppress
blank detail lines, but still print lines that have zeros in them.

Of course, there are many variations that you can use with this technique. For example, you
might want to include the data from the first sale in the first COLUMNS statement (along with
the constant information). Then you would just have 5 additional COLUMNS statements for
the remaining 5 sales slots.

COLUMNS: NAME CITY SALE–DATE–1 SALE–AMT–1
COLUMNS: 22 SALE–DATE–2 SAME–AMT–2
COLUMNS: 22 SALE–DATE–3 SAME–AMT–3
COLUMNS: 22 SALE–DATE–4 SAME–AMT–4
COLUMNS: 22 SALE–DATE–5 SAME–AMT–5
COLUMNS: 22 SALE–DATE–6 SAME–AMT–6

Or, you might want to combine two or more sales on each COLUMNS statement. For
example:

COLUMNS: NAME CITY
COLUMNS: SALE–DATE–1 SAME–AMT–1 SALE–DATE–2 SAME–AMT–2
COLUMNS: SALE–DATE–3 SAME–AMT–3 SALE–DATE–4 SAME–AMT–4
COLUMNS: SALE–DATE–5 SAME–AMT–5 SALE–DATE–6 SAME–AMT–6

This will take up less space in your report. And again, any line with only "zero" information
in it will be suppressed. Of course, you could still end up with a line that has good sales
information for one sale, and zero data for the other sale on that line. See "Putting a
Variable Number of Items on a Single Line" on page 257 for a solution to that problem.

There is another option that may also be useful in reports such as these. It is the SPLITDETAIL
option. It allows Spectrum Writer to split the detail lines for a single input record across
pages in the report. If you do not specify this option, Spectrum Writer will skip to a new
page if the current page does not have enough room to show all of the detail lines for an
input record. For example, if a record from the SALES–HISTORY file had all six sales filled
in, it would require seven report lines in the example on page 252. When printing that
record’s data, Spectrum Writer would skip to the next page if there were not seven lines
left in the current page.

Normally you will probably not use SPLITDETAIL, since it is easier to view related data when
it is all on a single page. But that does use extra paper. And, it may be impractical if you
are listing 30 or 40 items from each input record, since virtually every record would end
up requiring a new page. In these cases, you may specify SPLITDETAIL to allow Spectrum
Writer to fill up each page before going on to the next page of the report.

Note: Remember that any time multiple COLUMNS statements are specified,
Spectrum Writer does not produce column headings (by default). Use the
Chapter 4. Beyond the Basics 253

Variable Number of Lines — Strategy 1
MULTICOLHDG option if you want the column headings for the first COLUMNS
statement to appear in the report.

Note: This technique (unlike the next one discussed) did not require use of the
NUM–SLOTS field at all. As long as your unused data contains only zeros or blanks,
you can use Strategy 1 even when there is no field that explicitly tells you how many
occurrences in an array are being used.

Variable Number of Lines — Strategy 1Variable Number of Lines — Strategy 2

The technique discussed above (Strategy 1) is the easiest way to suppress unwanted lines
from your report or PC file. But it only works as long as your unused "slots" always contain
valid zero values (for numeric, date and time fields) and blanks (for character fields). In
some cases, your unused slots may contain "low–values" or some other kind of invalid
data.

Note: If you know that the unused fields in your input record will contain invalid
data, you can just use the ZEROINVDATA option. That option causes fields with
invalid data to be treated as if they contained zeros. That will enable the
SKIPZERODET option to work for you as described under Strategy 1 above.

There may be cases when it is not safe to treat all invalid values as zeros. Or, the unused
fields in your record may contain something other than invalid values (such as all 9's). In
such cases, you can use Strategy 2.

Strategy 2 also uses the SKIPZERODET option. But in this case, we don't use the fields from
the actual input record in the COLUMNS statements (since those fields might contain invalid
data). Instead, we create a set of corresponding COMPUTE fields, which we use in the
COLUMNS statements. Each COMPUTE field will be assigned one of two values:

1. The value from its corresponding record field (when that field contains "good
data"), or

2. A zero value (if the corresponding record field does not contain "good data").

We use conditional COMPUTE statements to selectively move data from just the filled–in
sales "slots" to this set of corresponding COMPUTE fields. The COMPUTE statement will
contain a WHEN condition so that the record value is only assigned to the compute field
when the record value contains good data. Otherwise, no WHEN condition will be true and
the COMPUTE field will be assigned a default value of zeros.

We create one COMPUTE statement for each field which might potentially not be used. In
our present example, we create a COMPUTE field for each of the six date and amount fields:

COMPUTE: S–DATE–1 = WHEN(NUM–SLOTS >= 1) ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(NUM–SLOTS >= 1) ASSIGN(SALE–AMT–1)

COMPUTE: S–DATE–2 = WHEN(NUM–SLOTS >= 2) ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(NUM–SLOTS >= 2) ASSIGN(SALE–AMT–2)

...

COMPUTE: S–DATE–6 = WHEN(NUM–SLOTS >= 6) ASSIGN(SALE–DATE–6)
COMPUTE: S–AMT–6 = WHEN(NUM–SLOTS >= 6) ASSIGN(SALE–AMT–6)
254 Spectrum Writer User’s Guide

Variable Number of Lines — Strategy 2
In the above statements, we used the NUM–SLOTS field to determine whether a particular
sales slot has good data or not. (In the SALES–HISTORY file, NUM–SLOTS is used like an
OCCURS DEPENDING ON variable in Cobol that tells how many slots in the sales array are in
use.)

The first COMPUTE statement above will assign the SALE–DATE–1 value to the COMPUTE
field named S–DATE–1 only if the first slot is actually used. (That is, only if NUM–SLOTS is
at least 1.) If NUM–SLOTS is zero, then S–DATE–1 will be assigned a zero date value. (That
is the default value assigned when no WHEN conditions are met.) The next statement does
the same thing for the amount value in the first slot. It assigns the record's value to S–AMT–1
only if the first slot was actually used. Otherwise, S–AMT–1 will be assigned a value of zero.

We do the same thing for the second sales slot. If NUM–SLOTS is at least 2, we assign the
sales date and amount from the second slot to S–DATE–2 and S–AMT–2. Otherwise, S-DATE–2
and S–AMT–2 remain zero. And so on with slots 3 through 6.

In our COLUMNS statement, we now use these COMPUTE fields rather than the actual fields
from the input record. That is because we know for sure that our COMPUTE fields contain
either valid sales information or zeros. Thus, the SKIPZERODET option will work just fine.

COLUMNS: NAME CITY
COLUMNS: S–DATE–1 S–AMT–1
COLUMNS: S–DATE–2 S–AMT–2
COLUMNS: S–DATE–3 S–AMT–3
COLUMNS: S–DATE–4 S–AMT–4
COLUMNS: S–DATE–5 S–AMT–5
COLUMNS: S–DATE–6 S–AMT–6

You can also use a similar technique to assign constant "line identifier" values to each line
of your report or PC file. For example, let's assume that you want the words "SALE 1:" to
appear beside the values for the first sale. You can't just put that literal on the COLUMNS
statement, because then that report line would never be all blanks and zeros, and therefore
would never be suppressed. (It would always say "SALE 1:", which is not blanks or zeros.)
Instead, conditionally assign your literal text to a COMPUTE field the same way you do the
other data. Assign the literal value to the compute field only when the related sales data is
present:

COMPUTE: SALES–ID–1 = WHEN(NUM–SLOTS >= 1) ASSIGN('SALE 1:')
COMPUTE: SALES–ID–2 = WHEN(NUM–SLOTS >= 2) ASSIGN('SALE 2:')
COMPUTE: SALES–ID–3 = WHEN(NUM–SLOTS >= 3) ASSIGN('SALE 3:')
COMPUTE: SALES–ID–4 = WHEN(NUM–SLOTS >= 4) ASSIGN('SALE 4:')
COMPUTE: SALES–ID–5 = WHEN(NUM–SLOTS >= 5) ASSIGN('SALE 5:')
COMPUTE: SALES–ID–6 = WHEN(NUM–SLOTS >= 6) ASSIGN('SALE 6:')

The "SALE–ID" fields computed above will be blank when the associated sales fields are not
used. Use these COMPUTE fields in your COLUMNS statement.

COLUMNS: SALE–ID–1 SALE–DATE–1 SALE–AMT–1
COLUMNS: SALE–ID–2 SALE–DATE–2 SALE–AMT–2
...

Your report line will still result in only blanks and zeros for sales slots that are not used.
Such lines will not print in the report. But for slots containing a sales value, the SALE–ID
field will contain the desired literal value and will appear before the sales amount in the
report. The report in Figure 38 illustrates this.

What if your record does not contain a numeric field that tells you how many slots are
used? More than likely you can still use this technique. You will just need to find another
Chapter 4. Beyond the Basics 255

Variable Number of Lines — Strategy 2
Figure 38. Adding literal identifiers to variable lines

These Control Statements:

OPTIONS: SKIPZERODET DOUBLE
INPUT: SALES–HISTORY

COMPUTE: SALES–ID–1 = WHEN(NUM–SLOTS >= 1) ASSIGN('SALE 1:')
COMPUTE: SALES–ID–2 = WHEN(NUM–SLOTS >= 2) ASSIGN('SALE 2:')
COMPUTE: SALES–ID–3 = WHEN(NUM–SLOTS >= 3) ASSIGN('SALE 3:')
COMPUTE: SALES–ID–4 = WHEN(NUM–SLOTS >= 4) ASSIGN('SALE 4:')
COMPUTE: SALES–ID–5 = WHEN(NUM–SLOTS >= 5) ASSIGN('SALE 5:')
COMPUTE: SALES–ID–6 = WHEN(NUM–SLOTS >= 6) ASSIGN('SALE 6:')

COLUMNS: NAME CITY
COLUMNS: SALE–ID–1 SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–ID–2 SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–ID–3 SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–ID–4 SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–ID–5 SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–ID–6 SALE–DATE6 SALE–AMT–6

Produce this Report:
 MON 01/23/95 2:01 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 SALE 1: 12/01/92 423.98
 SALE 2: 01/04/93 912.25

 CHAVEZ MIAMI
 SALE 1: 01/25/93 1,889.01

 JEFFERSON CHICAGO
 SALE 1: 01/20/93 667.55
 SALE 2: 01/23/93 442.34

 JOHNSON DALLAS
 SALE 1: 12/30/92 1,008.10
 SALE 2: 01/02/93 554.75
 SALE 3: 01/10/93 750.65
 SALE 4: 01/11/93 299.80
 SALE 5: 01/19/93 301.62

 JONES ATLANTA
 SALE 1: 12/29/92 711.05
 SALE 2: 12/30/92 192.56
 SALE 3: 01/08/93 1,090.23
 SALE 4: 01/10/93 524.75
 SALE 5: 01/13/93 789.12
 SALE 6: 01/16/93 1,200.30

 (other report lines not shown)
256 Spectrum Writer User’s Guide

Variable Number of Lines — Strategy 2
way of determining whether a slot is filled in or not. For example, if there is a character
field within each slot, you might be able to compare it to blanks to see if the whole slot is
in use or not. If our file had a Customer Name field within each sales slot, we could test
that field like this:

COMPUTE: S–DATE–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–AMT–1)
COMPUTE: S–DATE–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–AMT–2)
...
COLUMNS: SALE–CUSTOMER–NAME–1 S–DATE–1 S–AMT–1
COLUMNS: SALE–CUSTOMER–NAME–2 S–DATE–2 S–AMT–2
...

If there is no character field for you to test, you may be able to test the date or amount field.
For example, if your unused slots are filled with hex zeros (which is "invalid data" for the
numeric amount fields), you could use these COMPUTE statements:

COMPUTE: SLOT-1-USED = #ISNUM(SALE-AMT-1)
COMPUTE: S–DATE–1 = WHEN(SLOT-1-USED) ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SLOT-1-USED) ASSIGN(SALE–AMT–1)

The first COMPUTE statement above sets SLOT-1-USED to "true" only when there is a valid
numeric value in SALE-AMT-1. The WHEN parms in the next two statements then test this
boolean result to know whether to copy the SALE-DATE-1 and SALE-AMT-1 data to the S-DATE-
1 and S-AMT-1 fields.

Variable Number of Lines — Strategy 2Putting a Variable Number of Items on a Single Line

The methods just discussed work by suppressing output lines that contain only zero or
blank data. To use these methods, you generally must put each element of your array on a
separate line. But what if you want to put multiple array elements on a single report line
(or PC file record) and not see a lot of zeros for the unused slots? Here is a technique for
doing that.

This technique is similar to strategy 2 above in that we use a COMPUTE statement for each
record field which may or may not be filled in.

COMPUTE: S–DATE–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–AMT–1)
COMPUTE: S–DATE–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–AMT–2)
...

You can then list as many of these COMPUTE fields as you want in a single COLUMNS
statement. By using the BIZ ("blank if zero") parm, we ensure that all unused fields appear
as blanks in the output line:

COLUMNS: NAME CITY S–DATE–1(BIZ) S–AMT–1(BIZ) S–DATE–2(BIZ) S–AMT–2(BIZ)
COLUMNS: 22 S–DATE–3(BIZ) S–AMT–3(BIZ) S–DATE–4(BIZ) S–AMT–4(BIZ)
COLUMNS: 22 S–DATE–5(BIZ) S–AMT–5(BIZ) S–DATE–6(BIZ) S–AMT–6(BIZ)

Now your report will show the date and amount of each sales slot that was filled in in the
input record. Blanks will appear for unused slots. And, as long as you use the SKIPZERODET
(or SKIPBLANKDET) option, any line that contains only blanks will still be suppressed
altogether.
Chapter 4. Beyond the Basics 257

Creating PC Files from Non-Spectrum Writer Reports

This section shows how to:

! turn existing mainframe reports (not created by Spectrum Writer) into PC files
for your favorite PC program

! how to use the RETAIN parm in the COMPUTE statement

Normally Spectrum Writer creates PC files from the data in mainframe files. Sometimes,
however, the data you want to download may not be in a file, but in a report already
produced on your mainframe. Perhaps someone in your shop must manually key data from
such a report into a PC spreadsheet. Spectrum Writer can let you automate that process,
increasing accuracy and saving hours of manual work.

The first step is to write your existing report to a file (rather than to a printer). Then simply
define this "report file" to Spectrum Writer as if it were any other input file. Consider the
sample mainframe report in Figure 39. This is an accounts payable report. It lists each cost
center's outstanding invoices, including such information as the invoice number, the
customer number, the date the invoice is due and the amount due. When defining this report
as a file to Spectrum Writer we can say that an INVOICE–NUM field begins in column 2 and
is 6 bytes long. Then, the CUST–NUM field starts in column 11 and is 4 bytes long. And we
can define the CUSTOMER, DUE–DATE, and AMOUNT fields similarly. Figure 40 shows
Spectrum Writer definition statements for this sample report. (We'll explain shortly the
other fields defined in that Figure.)

Now let's consider some unique situations that arise when we use reports as input files:

! The first column in each report line usually contains a "carriage control"
character. This character is normally hidden from you when you view reports
online or have them printed on paper. However, this character must be taken into
account when specifying a field's beginning column. So when defining a report's
fields, remember that what you normally think of as the first column in a report
is actually column 2. In the report in Figure 39 we have shown the carriage
control characters. They are the characters "1", "0" and " " that you see in the first
column of each report line.

! Report files usually contain some lines which you'll want to completely ignore.
These lines do not contain any data that you want to download to the PC. For
example, in the report in Figure 39 we would want to completely ignore:

• the first title line on each page ("ABC COMPANY...")

• the column heading lines

• the cost center total lines (we can always use Spectrum Writer to compute the
totals if we want them in our PC file)

• and all blank lines (such as those between the title line and the column
headings)

We'll see shortly how to use the INCLUDEIF statement to have Spectrum Writer
ignore certain lines in your report.
258 Spectrum Writer User’s Guide

Creating PC Files from Non-Spectrum Writer Reports
1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 501 - ACCOUNTING PAGE: 1

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 18003A 2987 PIP PRINTING 02/15/95 $245.78
 209812 1098 FEDEX 02/08/95 90.12
 N/A 1167 A1 ACCOUNTING 02/28/95 1,030.75
 COST CENTER TOTAL $1,366.65

1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 502 - OPERATIONS PAGE: 2

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 66761 2013 ACME CATERER 03/05/95 $200.00
 AB0291 0889 AT&T 02/01/95 676.99
 COST CENTER TOTAL $876.99

1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 504 - PERSONNEL PAGE: 3

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 787611 1292 GAS COMPANY 02/20/95 $192.10
 898-1 0987 FAST TRAVEL 02/03/95 972.00
 K00921 1200 CITIBANK 02/27/95 2987.11
 18021A 2987 PIP PRINTING 02/19/95 21.78
 COST CENTER TOTAL $4,172.99

Figure 39. A typical mainframe report that has been written to a disk file

FILE: AP-REPORT DDNAME(REPORTIN)
*
*** FOLLOWING TEST FIELDS ARE USED TO DETERMINE TYPE OF RECORD
FLD: COL40 COL(40) LEN(1)
FLD: COLS2-THRU-6 COL(2) LEN(5)
*
*** FOLLOWING FIELDS ARE ONLY IN THE 2ND TITLE LINE OF REPORT
FLD: TITLE-COST-CENTER COL(25) LEN(3)
FLD: TITLE-CC-NAME COL(31) LEN(10)
*
*** FOLLOWING FIELDS ARE ONLY IN THE DETAIL LINES OF REPORT
FLD: INVOICE-NUM COL(2) LEN(6)
FLD: CUST-NUM COL(11) LEN(4)
FLD: CUSTOMER COL(21) LEN(13)
FLD: DUE-DATE COL(38) TYPE(MM-DD-YY)
FLD: AMOUNT COL(48) LEN(10) TYPE(NUM) DEC(2)

Figure 40. Spectrum Writer statements to define the “report file” shown above
Chapter 4. Beyond the Basics 259

Creating PC Files from Non-Spectrum Writer Reports
! Other report lines may contain data which applies to all of the other report lines
on the same page. An example of such data in our sample report in Figure 39 is
the cost center number and the cost center name which appear in the second title
line of each page. (For example, "ITEMS FOR COST CENTER: 501 – ACCOUNTING".)
This cost center information is printed only once per page. It does not appear in
each detail report line. This kind of data from title lines must be "retained" so that
it is available along with the detail line's data when Spectrum Writer writes each
record to the PC file. We'll see how to use COMPUTE statements to retain data
from title lines.

Now let's look at how to handle each of these special situations when creating PC files from
reports.

How to Ignore Certain Report Lines
The INCLUDEIF statement tells Spectrum Writer which records from the input file to include
in the PC file. When using report files for input, we use the INCLUDEIF statement to identify
just those report lines that actually contain the data we need in our PC file–– that is, the
detail report lines. By examining the different lines in your report (the title lines, the
column heading lines, blank lines, total lines and detail lines) you should be able to come
up with a conditional expression that selects only the detail lines. For the sample report in
Figure 39, an easy way to do that is with the following statement:

INCLUDEIF: COL40 = '/'

The above statement tells Spectrum Writer to include report records in the PC file only if
the field named COL40 contains a slash. (Note in the file definition statements in Figure 40
that we defined COL40 as a 1–byte field at column 40.) In looking at the report, you'll notice
that only the detail lines contain a slash in column 40 (as part of the Date Due value). The
titles, column headings, blank lines, etc. will all be excluded from the PC file since none
of those lines contains a slash in column 40.

Your report may not have such a unique identifying character in its detail lines. In that case
you will need to use more than one test in your INCLUDEIF statement. For example, if the
report in Figure 39 had not had a date field with a slash in it, we might have used the
following statement instead:

INCLUDEIF: COL55 = '.' AND COL–2–THRU–6 ¬= ' '

The above statement selects the detail records by examining what they have in 2 places.
Report lines must have a decimal point in column 55 (where the Amount field appears).
That test alone, however, would also include the total lines since they have a decimal point
in column 55 too. We do not want to include total lines in our PC file because they do not
contain the other fields we need (such as invoice number, customer number, etc.) The
second test requires that columns 2 through 6 not contain blanks. The detail lines will pass
this test (since they have Invoice Numbers in those columns), while the total lines (which
have blanks in those columns) will not pass the test. So, the only records which do contain
a decimal point in column 55 and do not contain blanks in columns 2 through 6 are our
report detail records.

How to Retain Data from Report Titles
We saw in the preceding section how to eliminate the title and other unwanted lines from
our PC file and include only the detail lines. But what if the report titles contain some data
that we want to download to the PC along with the data in the detail lines? To do this we
need for Spectrum Writer to capture data from the title lines as they are processed and
260 Spectrum Writer User’s Guide

Creating PC Files from Non-Spectrum Writer Reports
Figure 41. Creating a Lotus 1-2-3 spreadsheet from a mainframe report

These Control Statements:
OPTION: LOTUS
INPUT: AP-REPORT
COMPUTE: COST-CNTR = WHEN(COLS2-THRU-6 = 'ITEMS') ASSIGN(TITLE-COST-CENTER)
 ELSE RETAIN
COMPUTE: COST-CNTR-NAME = WHEN(COLS2-THRU-6 = 'ITEMS') ASSIGN(TITLE-CC-NAME)
 ELSE RETAIN
INCLUDEIF: COL40 = '/'
COLUMNS: COST-CNTR COST-CNTR-NAME INVOICE-NUM CUST-NUM
 CUSTOMER DUE-DATE AMOUNT
SORT: COST-CNTR DUE-DATE

Result in this Lotus 1-2-3 Spreadsheet
Chapter 4. Beyond the Basics 261

Creating PC Files from Non-Spectrum Writer Reports
"retain" that data until it comes to the detail lines. We use a COMPUTE statement with the
RETAIN option to accomplish this. For example, to retain the cost center from the second
title line in our report we could use this statement:

COMPUTE: COST–CNTR = WHEN(COL–2–THRU–6 = 'ITEMS') ASSIGN(TITLE–COST–CENTER)
 ELSE RETAIN

The statement above is a "conditional" COMPUTE statement. That is, the value assigned to
COST–CNTR depends on a logical condition. In this case, when columns 2 through 6 of the
report line contain "ITEMS" (that is, when the input record being processed is the second
title line of a page), we assign the value of TITLE–COST–CENTER (in columns 25 though 27
of the report) to our new field. When processing any input record other than the second title
line, this new field will simply retain its current value. That is, it will retain the value of the
Cost Center from the most recent title line processed. We also use a similar COMPUTE
statement to retain the cost center name from the same title line:

COMPUTE: COST–CNTR–NAME = WHEN(COL–2–THRU–6 = 'ITEMS') ASSIGN(TITLE–CC–NAME)
 ELSE RETAIN

Now we can use these two retained fields in our COLUMNS statement to create columns in
our PC file containing the cost center and the cost center name. For example:

COLUMNS: COST–CNTR COST–CNTR–NAME INVOICE–NUM CUST–NUM CUSTOMER ...

Why couldn't we simply put TITLE–COST–CNTR and TITLE–CC–NAME directly in our
COLUMNS statement? Remember that our INCLUDEIF statement is written to include only the
detail report records in our PC file. And the cost center is not present in the detail records.
The columns where the cost center appears in the title lines contain other data in the detail
lines. If we specified TITLE–COST–CNTR in our COLUMNS statement, we would just get
"garbage" in our PC file.

You may wonder why we couldn't "include" both title lines and detail lines in the PC file
to solve this problem. The answer is that the title lines don't contain the other information
needed in the PC file (such as invoice number, customer number, etc.) If we included title
records, the TITLE–COST–CNTR data would look just fine in our PC file, but the
INVOICE–NUM and other fields would then contain "garbage."

The correct way to use data from both titles and detail lines is to "include" only the detail
records, and use COMPUTE statements to save data from the title lines as they are read.
Then we use that saved title data along with the data in the detail lines to write our PC file
records. By using the techniques discussed in this section, you can apply all of Spectrum
Writer's extracting and PC–formatting power to the existing reports in your shop.

Figure 41 shows an actual example of creating a Lotus 1–2–3 spreadsheet from the report
shown in Figure 39 (page 259). Notice that we had Spectrum Writer re-sort the PC file into
cost center and due date order.
262 Spectrum Writer User’s Guide

Working with SMF Records

You can use Spectrum Writer to produce many useful reports from your shop's SMF files.
In addition, Spectrum Writer can also turn your SMF data into PC files, letting you work
with extracted SMF data in your favorite PC spreadsheet program. This section provides
some tips on using Spectrum Writer with SMF files.

The SMF files are among the most complicated files in any shop. But Spectrum Writer
makes it easy to produce reports from them. Here are some specific points to keep in mind
when dealing with SMF files. Some of these points are illustrated in the SMF file definition
statements shown in Figure 42.

! SMF records can be big. So to be safe, specify Spectrum Writer's largest LRECL
value (32,767) when defining the file. Do this in either the FILE statement or the
INPUT statement. For example:

FILE: SMF DDNAME(SMF) LRECL(32767)

This will ensure that Spectrum Writer allocates an I/O area big enough to handle the
largest SMF records.

! You should not need to specify DCB information in your DD statement. Spectrum
Writer gets this information from the file's label. If you do give explicit DCB
information, be sure your LRECL and BLKSIZE values are correct for the input file.

! Spectrum Writer normally ignores the 4–byte RDW (record descriptor word) at
the beginning of variable–length records (such as SMF records). That is,
Spectrum Writer considers "column 1" of the SMF record to be the first byte
after the RDW. If you prefer to include the RDW as part of the input record, specify
the KEEPRDW option. Do this in either the FILE statement, the INPUT statement, or
an OPTIONS statement. For example:

FILE: SMF DDNAME(SMF) LRECL(32767) KEEPRDW

Note: When KEEPRDW is specified, "column 1" of the SMF record becomes the
first byte of the RDW. One reason you may want to specify KEEPRDW is to use the
field offsets listed in the SMF manual as a guide when writing your FIELD
statements. The SMF manual gives field offsets relative to the beginning of the
RDW.

! When defining fields to Spectrum Writer, you can use either the COLUMN parm
or the DISP (DISPLACEMENT) parm to specify where a field begins in a record.
Since the SMF manual indicates field locations as offsets (displacements), it's
generally more convenient to use the DISP parm in your FIELD statements.

FIELD: REC–TYPE DISP(5) LENGTH(1) TYPE(BIN) NOACC

! Spectrum Writer has a number of date and time "data types" that are especially
intended for use with SMF data. Use these in the TYPE parm of your FIELD
statements to define SMF dates and times. Some common data types for SMF
records are:

P–CYYDDD This is a packed Julian date which includes a single–digit century
indicator. Most SMF dates are stored in this format (written
Chapter 4. Beyond the Basics 263

Working with SMF Records
FILE: SMF DDNAME(SMF) LRECL(32767) KEEPRDW
**
** SMF HEADER FIELDS FOLLOW
FLD: REC-LEN TYPE(HALFWORD)
FLD: REC-TYPE DISP(5) TYPE(BIN) LEN(1) NOACC
FLD: SMF-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: SMF-DATE TYPE(P-CYYDDD)
FLD: SUB-TYPE DISP(22) TYPE(HALFWORD)
**
** OFFSET AND LENGTH INFO FOR SELECTED SECTIONS IN TYPE 30 REC
FLD: ID–OFFSET DISP(32) TYPE(FULLWORD)
FLD: ID–LEN TYPE(HALFWORD)
FLD: ID–NUM TYPE(HALFWORD)
FLD: IO–OFFSET TYPE(FULLWORD)
FLD: IO–LEN TYPE(HALFWORD)
FLD: IO–NUM TYPE(HALFWORD)
FLD: COMP–OFFSET TYPE(FULLWORD)
FLD: COMP–LEN TYPE(HALFWORD)
FLD: COMP–NUM TYPE(HALFWORD)
FLD: PROC–OFFSET TYPE(FULLWORD)
FLD: PROC–LEN TYPE(HALFWORD)
FLD: PROC–NUM TYPE(HALFWORD)
**
** SELECTED FIELDS FROM THE ID SECTION
FLD: JOBNAME LEN(8) OFFSET(ID–OFFSET)
FLD: PGMNAME LEN(8)
FLD: STEPNAME LEN(8)
FLD: USERID LEN(8)
FLD: JES-JOBID LEN(8)
FLD: STEP-NUM TYPE(HALFWORD) NOACC
FLD: JOB-CLASS LEN(1)
FLD: DEV-ALLOC-TIME TYPE(B-SECS) DEC(2) LEN(4) DISP(*+5)
FLD: PGM-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: STEP-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: STEP-START-DATE TYPE(P-CYYDDD)
FLD: RDR-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: JOB-START-DATE TYPE(P-CYYDDD)
FLD: RDR-END-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: RDR-END-DATE TYPE(P-CYYDDD)
FLD: PGMR-NAME LEN(20)
**
** SELECTED FIELDS FROM THE I/O ACTIVITY SECTION
FLD: NUM-CARDS TYPE(FULLWORD) OFFSET(IO–OFFSET)
FLD: NUM-TPUTS TYPE(FULLWORD) DISP(*+4)
FLD: NUM-TGETS TYPE(FULLWORD)
**
** SELECTED FIELDS FROM THE COMPLETION SECTION
FLD: COMP-CODE LEN(2) FORMAT(HEX) OFFSET(COMP–OFFSET)
FLD: ABEND BIT(7) ONTEXT('ABEND') OFFTEXT(' ')
FLD: FLUSH BIT(8)
**
** SELECTED FIELDS FROM THE PROCESSOR ACCOUNTING SECTION
FLD: DPRTY TYPE(HALFWORD) NOACC OFFSET(PROC–OFFSET)
FLD: STEP-TCB-SECS TYPE(FULLWORD) DEC(2) DISP(*+2)
FLD: STEP-SRB-SECS TYPE(FULLWORD) DEC(2)
FLD: INIT-TCB-SECS TYPE(FULLWORD) DEC(2)
FLD: INIT-SRB-SECS TYPE(FULLWORD) DEC(2)

Figure 42. File definition of selected fields in SMF type 30 records
264 Spectrum Writer User’s Guide

Working with SMF Records
0cyydddF in the SMF manual). Here is an example of defining a
date field and then using it to select the SMF records to include in
a report:

FIELD: SMF–DATE DISP(10) TYPE(P–CYYDDD)
INCLUDEIF: REC–TYPE = 5 AND SMF–DATE = 6/15/1994

B–SECS This is a "binary seconds" time field. Most time–of–day and
elapsed time fields in SMF records are of this type. You should
specify LENGTH(4) for most SMF time fields. Also use the DEC(2)
parm to indicate that the binary seconds value contains hundredths
of seconds. Here is an example of defining a time field and using
it to select SMF records for a report:

FIELD: SMF–TIME DISP(6) TYPE(B–SECS) LENGTH(4) DEC(2)
INCLUDEIF : REC–TYPE = 5 AND
 (SMF–TIME > 12:59:00 AND < 13:02:30)

BIT Some SMF data is contained in bits. For example, there is a bit in
type 5 records that indicates whether a job has ABENDed or not.
This bit is in the byte at offset 66, and is bit number 6 under IBM's
bit numbering convention. Remember that Spectrum Writer
numbers bits from 1 to 8 (rather than 0 to 7) from left to right. Thus
the ABEND field in the type 5 record can be defined like this:

FIELD: ABEND DISP(66) BIT(7)

To test a bit field, just name the field in your conditional
expression. For example, to include all type 5 records which
completed with an ABEND, use this statement:

INCLUDEIF: REC–TYPE = 5 AND ABEND

You can list bit fields in your COLUMNS statement as well.

COLUMNS: SMF–DATE SMF–TIME JOBNAME ABEND

By default the word "ABEND" will print in the report if the bit is on,
and the words "NOT ABEND" will print if the bit is off. Use the
ONTEXT and OFFTEXT parms in the FIELD statement if you want to
print different texts. (See an example of this on page 264.)

When defining bit fields, keep one other thing in mind. You
should explicitly specify a DISP or COLUMN parm for the first field
following the bit fields. Spectrum Writer does not automatically
increment the current location counter after FIELD statements for
bit fields. (This is to allow you to define additional bits within the
same byte.) An easy way to specify the DISP of the field following
a bit field is to use DISP(*+1):

FIELD: BIT–FIELD–A BIT(3)
FIELD: BIT–FIELD–B BIT(7)
FIELD: NEXT–FIELD DISP(*+1) LENGTH(5) ...

! In general you should work with only one type of SMF record at a time. Use the
INCLUDEIF statement to include only the appropriate type of records in your
Chapter 4. Beyond the Basics 265

Working with SMF Records
report. You can use additional tests to further narrow down which records are
included.

INCLUDEIF: REC–TYPE = 30 AND SMF–DATE >= 6/1/1994

! Production SMF reports often report on "yesterday's" data. Rather than having to
change the date literal in your INCLUDEIF statement for each run, you can
COMPUTE yesterday's date, like this:

COMPUTE: YESTERDAY = #INCDATE(–1, DAY)
INCLUDEIF: REC–TYPE = 30 AND SMF–DATE = YESTERDAY

See "Computing Dates Like "Yesterday," "Last Week", etc." on page 272 for
more examples of automatically selecting date ranges bases on the system date.

! Some SMF records are variably formatted. That is, a field may be located at one
offset in one record, and at a different offset in another record of the same type.
This usually occurs when the record contains segments that are repeated a
variable number of times (such as one segment per DD statement in a step). Use
Spectrum Writer's OFFSET parm to define variably located fields. This parm is
used in the FIELD statement to specify an additional offset value to use when
determining where a field is located within a record. (This value is added to the
COLUMN or DISP parm value.) The advantage of the OFFSET parm is that, unlike
the COLUMN and DISP parms, it need not contain a constant numeric value. The
OFFSET parm can be any type of numeric expression. For example, it might be
something as simple as the name of a previously defined numeric field:

FIELD: IO–OFFSET DISP(32) TYPE(FULLWORD) /* OFFSET TO ID SECTION */
...
FIELD: JOBNAME DISP(0) OFFSET(IO–OFFSET) LEN(8) /*1ST ITEM IN ID SECTION*/

Or, the OFFSET value might be a complex calculation, such as would be needed to
compute the location of a field that follows a variable–length array (such as an
OCCURS DEPENDING ON array) in a record. For example:

FIELD: LAST–FIELD
 OFFSET(100 + (NUM–ITEMS–IN–ARRAY * ITEM–SIZE)) DISP(0) LENGTH(10)

When using the OFFSET parm, remember that the OFFSET parm remains in effect for
all subsequent FIELD statements (until a new OFFSET parm is encountered). Thus,
you only need to specify the OFFSET parm for the first field in any variably–located
segment. Specify OFFSET(0) if you wish to resume defining FIELDs that do not require
any OFFSET value.

The following pages show some sample SMF reports produced with Spectrum Writer.
266 Spectrum Writer User’s Guide

Working with SMF Records
Figure 43. SMF “Daily ABEND” report

These Control Statements:

INPUT: SMF
TITLE: 'BATCH JOB STEPS THAT ABENDED ON' STEP-START-DATE
TITLE: '(522 AND 622 ABENDS NOT INCLUDED)'
INCLUDEIF: REC-TYPE = 30 & SUB-TYPE = 3 & ABEND & NUM-TGETS = 0
 & COMP-CODE ¬= X'0522' & ¬= X'0622'
COLUMNS: JES-JOBID STEP-NUM(4) JOBNAME STEPNAME PGMNAME
 COMP-CODE JOB-CLASS DPRTY(5) PGMR-NAME
 STEP-START-DATE STEP-START-TIME SMF-TIME('STEP|END|TIME')
SORT: STEP-START-DATE STEP-START-TIME

Produce this Report:
 BATCH JOB STEPS THAT ABENDED ON 04/15/94
 (522 AND 622 ABENDS NOT INCLUDED)
 STEP STEP STEP
 JES STEP COMP JOB PGMR START START END
 JOBID NUM JOBNAME STEPNAME PGMNAME CODE CLASS DPRTY NAME DATE TIME TIME

STC01453 1 CICS01X JILLHRS DFHSIP 0A03 245 04/15/94 06:45:03.39 19:00:36.80
STC01460 1 CICS02 CICS02 DFHSIP 0A03 255 04/15/94 06:45:14.74 19:02:01.47
JOB01596 6 US1PCTN1 UMUD50 XAMUD01 00C7 1 105 PROD.CONTROL 04/15/94 07:10:16.42 07:10:51.27
JOB01609 2 US1PCTDT USLW47 IDCAMS 0913 T 105 *O"HARRIS 04/15/94 07:18:33.11 07:18:33.76
JOB01609 10 US1PCTDT UDPX80 XADPX80L 87CF T 105 *O"HARRIS 04/15/94 07:18:34.44 07:18:57.16
JOB01611 9 US1PCTDT USLW70 XASLW70 0222 T 105 *O"HARRIS 04/15/94 07:26:57.78 07:50:06.04
JOB01703 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 07:39:10.53 07:39:31.10
JOB01937 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 08:24:59.96 08:25:22.89
JOB02028 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 08:41:21.68 08:41:44.29
STC02055 1 SUBJOB S1 ACFPRODS 0013 105 04/15/94 08:49:18.15 08:49:18.84
JOB02123 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:00:39.33 09:01:08.57
STC02196 1 CICS01 CICS DFHSIP 0222 245 04/15/94 09:13:39.20 10:20:56.80
JOB02214 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:17:19.92 09:17:48.64
JOB02312 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:37:36.47 09:38:05.41
JOB02366 1 US1EWT7L UWCX10 X09CX10 840B T 105 IMS OPER 281 283 04/15/94 09:48:14.54 09:48:31.08
JOB02385 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:52:50.16 09:53:21.03
JOB02388 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 09:53:22.38 09:53:50.41
STC02473 1 IMSMRGN1 MINIRGN1 DFSRRC00 82B0 202 04/15/94 10:07:39.69 10:07:49.04
JOB02500 1 X99M01AC UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:11:52.68 10:12:09.66
STC02556 1 CICS01 CICS DFHSIP 0222 245 04/15/94 10:21:24.92 10:58:19.00
JOB02583 1 X09V01AP STEP1 IEBGENER 8063 1 105 AP JONES 04/15/94 10:26:03.95 10:26:04.92
JOB02700 2 US1FMTGZ NPAW012 PNPAW01C 00C7 U 105 WASHINGTON.T 04/15/94 10:49:07.14 10:49:27.19
JOB02741 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:56:57.11 10:57:20.74
JOB02747 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:58:03.86 10:58:24.58
JOB02748 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:58:54.76 10:59:09.61
JOB02752 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:00:02.82 11:00:19.91
JOB02768 3 X07W01AX LKED IEWL 0D37 T 105 COBOL2 04/15/94 11:03:26.05 11:03:32.71
JOB02773 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:04:55.49 11:05:10.95
JOB02774 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:05:34.16 11:05:52.24
JOB02815 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:12:24.80 11:12:39.00
STC03407 1 CICS01 CICS DFHSIP 0A03 245 04/15/94 13:24:09.32 20:02:03.76
JOB03453 1 DPTSSTCS XASSR59 0222 M 105 THOMAS 04/15/94 13:30:22.83 13:30:38.52
JOB03466 6 US1PCTN1 UMUD50 XAMUD01 83EA 1 105 SOUTH PROD -MUD50 04/15/94 13:33:09.68 13:33:44.80
JOB03554 3 X06C01A0 AMILL M2XDNR 00C7 T 105 JONES.LARRY 04/15/94 13:51:48.91 13:53:06.19
JOB03629 1 DPTSSTCP S1 IEBGENER 0913 M 105 PRINT-OUTPUT 04/15/94 14:02:20.06 14:02:21.44
JOB03715 1 X99M01AT UPDX86 PRDAX86B 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 14:24:28.94 14:24:41.74
JOB03778 1 US1PCTN8 SRCIN IEBGENER 8063 T 105 SMITH 04/15/94 14:37:55.27 14:37:56.88
JOB03789 1 US1PCTN8 SRCIN IEBGENER 8063 T 105 SMITH 04/15/94 14:39:11.97 14:39:13.34
JOB03808 1 US1PCTN2 STEP1 TSMUD02K 0806 1 105 KAREN SMITH 04/15/94 14:42:03.00 14:42:03.91

*** GRAND TOTAL (39 ITEMS)
Chapter 4. Beyond the Basics 267

Working with SMF Records
Figure 44. SMF “TSO Sessions” report

These Control Statements:

INPUT: SMF
TITLE: 'TSO SESSIONS ON' STEP-START-DATE
INCLUDEIF: REC-TYPE = 30 & SUB-TYPE = 3 & NUM-TGETS > 0 &
 COMP-CODE ¬= X'0522' & ¬= X'0622'
COMPUTE: SESSION-MINUTES =
 (#MAKENUM(SMF-TIME) - #MAKENUM(STEP-START-TIME)) / 60
COMPUTE: SESSION-COST = SESSION-MINUTES * .0625
COLUMNS: JOBNAME PGMR-NAME STEP-START-DATE('START|DATE')
 STEP-START-TIME('START|TIME') SMF-TIME('END|TIME')
 SESSION-MINUTES(PIC'ZZZ,ZZ9.9') SESSION-COST(PIC'$$$$9.99')
 NUM-TPUTS(7) NUM-TGETS(7)
 STEP-TCB-SECS(8) STEP-SRB-SECS(8)
SORT: PGMR-NAME(2) STEP-START-DATE STEP-START-TIME

Produce this Report:
 TSO SESSIONS ON 05/04/94

 STEP STEP
 PGMR START START END SESSION SESSION NUM NUM TCB SRB
JOBNAME NAME DATE TIME TIME MINUTES COST TPUTS TGETS SECS SECS

D01CDT3 JOE CATRINA 05/04/94 07:47:09.20 11:41:05.33 233.9 $14.62 98 76 10.42 0.45
D01CDTC JOE CATRINA 05/04/94 11:38:49.99 11:55:37.85 16.8 $1.05 2 3 0.16 0.01
D01CDT3 JOE CATRINA 05/04/94 11:42:04.81 11:55:30.98 13.4 $0.84 75 67 5.71 0.44
D01CDT3 JOE CATRINA 05/04/94 14:07:52.49 16:23:51.19 136.0 $8.50 6 7 0.32 0.03
D01CDTC JOE CATRINA 05/04/94 14:07:56.93 16:23:41.04 135.7 $8.48 2 3 0.17 0.01
D01CDT3 JOE CATRINA 05/04/94 16:25:07.56 16:37:25.29 12.3 $0.77 22 14 2.62 0.14
*** TOTAL FOR JOE CATRINA (6 ITEMS) 548.2 $34.26 205 170 19.40 1.08

A20D01A JOHN A DENNEY 05/04/94 15:58:44.89 16:47:08.89 48.4 $3.03 4 4 0.44 0.02
*** TOTAL FOR JOHN A DENNEY (1 ITEM) 48.4 $3.03 4 4 0.44 0.02

B55DZT3 JOHN ALWORTH 05/04/94 07:33:55.23 09:04:23.78 90.5 $5.65 4 5 0.17 0.02
B55DZT3 JOHN ALWORTH 05/04/94 10:01:35.15 11:30:33.96 89.0 $5.56 3 4 0.21 0.02
B55DZT3 JOHN ALWORTH 05/04/94 14:07:10.55 16:00:01.04 112.8 $7.05 6 7 0.25 0.04
*** TOTAL FOR JOHN ALWORTH (3 ITEMS) 292.3 $18.27 13 16 0.63 0.08

Z99TPT6 JOHN TEMPLE 05/04/94 15:11:29.05 16:56:14.00 104.7 $6.55 1 2 0.18 0.01
*** TOTAL FOR JOHN TEMPLE (1 ITEM) 104.7 $6.55 1 2 0.18 0.01

B02C00A JOHN X CARLISLE 05/04/94 09:53:24.86 10:07:48.95 14.4 $0.90 27 6 0.50 0.03
B02C00A JOHN X CARLISLE 05/04/94 11:19:39.67 11:19:58.16 0.3 $0.02 14 1 0.31 0.01
B02C00A JOHN X CARLISLE 05/04/94 11:24:16.85 11:25:37.29 1.3 $0.08 14 1 0.31 0.01
B02C00A JOHN X CARLISLE 05/04/94 11:26:04.50 11:27:10.40 1.1 $0.07 11 4 1.23 0.05
B02C00A JOHN X CARLISLE 05/04/94 11:31:29.49 11:32:41.34 1.2 $0.07 10 7 1.11 0.04
B02C00A JOHN X CARLISLE 05/04/94 14:23:09.11 14:56:54.33 33.8 $2.11 12 11 0.31 0.02
B02C00A JOHN X CARLISLE 05/04/94 16:07:53.30 16:15:33.37 7.7 $0.48 54 50 3.02 0.25
B02C00A JOHN X CARLISLE 05/04/94 16:16:15.29 20:21:33.41 245.3 $15.33 84 84 0.87 0.17
*** TOTAL FOR JOHN X CARLISLE (8 ITEMS) 305.1 $19.07 226 164 7.66 0.58

F22PDTJ JOSEPH BROWN 05/04/94 12:11:57.53 12:23:39.63 11.7 $0.73 15 3 1.94 0.09
F22PDTJ JOSEPH BROWN 05/04/94 15:19:28.85 15:26:54.94 7.4 $0.46 29 16 2.10 0.11
F22PDTJ JOSEPH BROWN 05/04/94 16:14:43.19 16:57:04.29 42.4 $2.65 0 1 0.16 0.00
*** TOTAL FOR JOSEPH BROWN (3 ITEMS) 61.5 $3.84 44 20 4.20 0.20

A90CR09 JOY KRAMES 05/04/94 08:08:20.39 08:49:11.43 40.9 $2.55 33 18 0.76 0.07
A90CR09 JOY KRAMES 05/04/94 08:50:34.08 10:26:24.16 95.8 $5.99 15 15 1.96 0.22
A90CR09 JOY KRAMES 05/04/94 10:29:00.02 10:56:38.77 27.6 $1.73 16 17 1.51 0.12
A90CR09 JOY KRAMES 05/04/94 10:58:08.00 11:05:34.36 7.4 $0.46 40 22 2.99 0.18
A90CR09 JOY KRAMES 05/04/94 13:42:25.60 16:35:40.64 173.3 $10.83 39 26 5.42 0.19
*** TOTAL FOR JOY KRAMES (5 ITEMS) 345.0 $21.56 143 98 12.64 0.78

(other report lines not shown)
268 Spectrum Writer User’s Guide

Working with Date Fields

This section contains tips for working with date fields. In addition to this section,
information about dates is found in the following parts of this manual:

! "How to Define a Date Field" (page 340) explains how to define the date fields
in your input files.

! "Handling Date and Time Fields in Record Layouts" (page 375) has some tips
for working with date fields in Cobol record layouts.

Spectrum Writer supports over 30 different types of date fields commonly found in main-
frame files. (For a list of these "date data types," see Appendix A, "Data Types" on
page 609.) However, once a date field has been properly defined with the correct data type
(in a FIELD statement), you no longer need to be concerned with how it was stored in the
input file.

Internally, Spectrum Writer converts all date fields from their input file format into its own
standard format. Thus, the conversion required to make various kinds of date fields and
date literals compatible is done for you automatically.

This means that, regardless of whether a date was stored as a Gregorian date, a Julian date
or something else, you will always use date literals in the standard MM/DD/YYYY (or
MM/DD/YY) format when testing their values. For example:

INCLUDEIF: JULIAN-START-DATE > 1/1/2001 AND GREGORIAN-END-DATE < 12/31/2001

Note: you can also write your date literals in DD/MM/YYYY and DD/MM/YY format,
if you prefer. Just use the DDMMYYLIT option (in an OPTIONS statement).

Any date field can be compared with any other date field, regardless of how the two dates
were stored in the input file. Spectrum Writer handles all necessary conversions:

INCLUDEIF: MY-JULIAN-DATE = MY-GREGORIAN-DATE

Century Windowing
Spectrum Writer stores all date fields internally with 4-digit years. If your input file
contains date fields that do not have an explicit century (for example, YYMMDD or YYDDD
dates), Spectrum Writer must decide what century to assign the date to. That is, it must
decide whether YY means 19YY or 20YY.

The CENTURY option (in an OPTIONS statement) is used to tell Spectrum Writer how to
make this decision. Use it to specify a century cutoff year (from 0 to 99). For example:

OPTION: CENTURY(80)

The above statement tells Spectrum Writer that YY dates less than 80 are 20YY and all other
dates are 19YY. Note that the CENTURY Option applies to all YY dates from all input files
used in a run.

The CENTURY option also applies to the date literals in your Spectrum Writer control
statements. Date literals may be written in either MM/DD/YYYY or MM/DD/YY format.
However, all date literals are stored internally with 4-digit years. When you write a date
Chapter 4. Beyond the Basics 269

Working with Date Fields
literal in the MM/DD/YY format, Spectrum Writer assigns a century for you in the manner just
described — based on the century cutoff year from the CENTURY option.

If you do not specify a CENTURY option, Spectrum Writer uses a default century cutoff year
of 50. That means that, by default, all YY dates in a run fall in the range from 1950 to 2049.

Of course, the century windowing logic applies only to YY date fields and literals. Date
fields and literals that have a 4-digit year (YYYY) are not affected. Spectrum Writer uses the
century contained in the YYYY value.

It is possible that different files in your shop will use different cutoff years. Since the
CENTURY option applies to all YY dates in a run, it alone could not handle that situation. In
such a case, use the CENTURY option for the most common cutoff year. Then use COMPUTE
statements to perform custom century windowing logic on the non-standard cases. For
example, assume that one file in your shop uses a cutoff year of 40, while the other files
have cutoff years of 60. Specify 60 in your CENTURY parm to handle the most common
cases. Then handle the exceptional case this way:

FIELD: YYMMDD-DATE COLUMN(1) LEN(6) TYPE(CHAR)
FIELD: YY-PART COLUMN(1) LEN(2) TYPE(CHAR)

COMPUTE: MY-DATE = WHEN(YY-PART < '40') ASSIGN(#MAKEDATE('20' + YYMMDD-DATE))
 ELSE ASSIGN(#MAKEDATE('19' + YYMMDD-DATE))

You can store the COMPUTE statement right along with the FIELD statements in your file
definition library.

How Dates Are Formatted in Your Reports
By default, all date fields, regardless of their century and regardless of how they are stored
in the input file, are formatted in your reports like this:

MM/DD/YY

Over 40 different date display formats are available if you want to format some or all of
your date fields differently. The date display formats are listed in Appendix B, "Display
Formats" (page 617). For example, you can specify the MM-DD-YYYY display format if you
want a to display a date with a four-digit year.

COLUMNS: SALES-DATE(MM-DD-YYYY)

You can also change the default date display format for all dates in a report by using the
FORMAT option (in an OPTIONS statement.)

OPTIONS: FORMAT(YYYY-MM-DD)

Date Delimiters
Date display formats that contain a "dash" (–) result in dates formatted with a delimiter.
(The delimiter appears where the dashes appear in the display format name.) By default,
this delimiter is a "slash" (/). Thus, the MM-DD-YYYY display format results in dates like this:

12/31/2004
270 Spectrum Writer User’s Guide

Working with Date Fields
If you want a different delimiter for your displayed dates, use the DATEDELIM option (in an
OPTIONS statement). For example:

OPTIONS: DATEDELIM(’.’)

The above statement would result in dates being formatted in your report like this
(depending on the display format you choose):

12.31.04
31.12.04
04.12.31

12.31.2004, etc.

How Dates Are Formatted in Your PC Files
By default, dates in most PC files created by Spectrum Writer are in MM/DD/YY format. If
you want MM/DD/YYYY dates in a PC File, use the FORMAT option (after the PC option) to
specify a different default display format. For example:

OPTIONS: PC FORMAT(MM-DD-YYYY)

The FORMAT option changes the default display format for date fields. In the above
example, dates will now be formatted as MM/DD/YYYY. This unquoted format works in most
recent versions of the popular spreadsheet programs. If your PC program still requires
quotation marks around dates, use this statement instead:

OPTIONS: PC FORMAT(Q-MM-DD-YYYY)

Note: Be sure that the FORMAT option follows the PC option. Otherwise, the PC
option will reset the default date display format.

Working with Julian Dates
You may wonder if Julian date fields require different handling from other kinds of date
fields. The answer is no. Once you have used the appropriate Julian DATATYPE in its FIELD
statement, you (and other users of the file) can simply forget that the date was originally
stored in Julian format. You will work with that date field in exactly the same way as you
work with any other date field.

That means that even for fields stored in Julian format, you will still use date literals in the
standard MM/DD/YYYY (or MM/DD/YY) format when making comparisons to them. (Spectrum
Writer does not have a "YYDDD" format date literal, so do not try to use such a format.) Here
is an example of comparing a Julian date with two date literals:

INCLUDEIF: MY-JULIAN-DATE > 1/1/2001 AND < 12/31/2001

You can also compare a Julian date field with another date field stored in a different
format without any special effort on your part:

INCLUDEIF: MY-JULIAN-DATE = MY-GREGORIAN-DATE OR MY-SMF-DATE OR MY-STCK-DATE

The only exception to this is if your Julian date fields contain non-date values with special
significance (perhaps all zeros, all nines, high-values, etc.) Since such values are not valid
Julian dates, Spectrum Writer simply considers these values to be "invalid" data. (You
would see ***I*** in your report for such cases.) It is possible to test for these special cases.
But to do so, you will need to be aware of how the field is stored in the input record. You
Chapter 4. Beyond the Basics 271

Working with Date Fields
should compare the field to an explicit hexadecimal literal of the correct length. For
example:

INCLUDEIF: MY-JULIAN-DATE <> X’F9F9F9F9F9’ /*COMPARE CHAR JULIAN DATE TO NINES */
INCLUDEIF: MY-JULIAN-PACKED-DATE <> X’000000’ /*COMPARE PACKED DATE TO LOW-VALUES */

As far as report output goes, by default Spectrum Writer formats Julian date field like all
other date fields — in the standard MM/DD/YY format. So again, you don’t need to do
anything special to have a Julian date field re-formatted into Gregorian in your report. Of
course, you can also use an override display format to format a Julian date in any of the
over 40 date formats available. (For a list, see "Date Display Formats" on page 620.)

Computing Dates Like "Yesterday," "Last Week", etc.
You can use Spectrum Writer’s powerful date-manipulation functions to compute dates or
date ranges based on the system date. For example, to select all of the sales for
"yesterday" from the SALES-FILE, we could use these statements:

COMPUTE: YESTERDAY = #INCDATE(–1, DAY)
INCLUDEIF: SALES-DATE = YESTERDAY

Similarly, to report on all sales made "last week," you could use these statements:

COMPUTE: START-DATE = #BEGWEEK(#INCDATE(–1, WEEK))
COMPUTE: END-DATE = #ENDWEEK(#INCDATE(–1, WEEK))
INCLUDEIF: SALES–DATE >= START-DATE AND <= END-DATE

You can also increment/decrement date and time pairs by units of time. For example, you
could compute an "expiration date and time" that is 36 hours after the date and time of
a sale this way:

COMPUTE: EXPIRE-DATE = #INCDATETIME(SALES-DATE, SALES-TIME, 36, HOURS)
COMPUTE: EXPIRE-TIME = #INCTIME(SALES-TIME, 36, HOURS)

You can find the complete syntax for all of these built-in functions, along with other date
manipulation functions, in Appendix D, "Built-In Functions" on page 628.

Working with Date FieldsWorking with Time Fields

This section offers some tips that you may find helpful when working with time fields.

Spectrum Writer supports two dozen different types of time fields commonly found in
mainframe files. These are listed in "Time Data Types" on page 613. For information on
defining the time fields in your input files, see "How to Define a Time Field" on page 344.

Time fields, regardless of how they are stored in the input file, are normally formatted in
your reports like this:

HH:MM:SS
272 Spectrum Writer User’s Guide

Working with Time Fields
However, time fields defined as containing only hours and minutes (the HHMM data type,
for example) will be formatted without seconds, like this:

HH:MM

A number of other time display formats are available if you want to format your time fields
differently. These are listed in "Time Display Formats" on page 622. For example, you can
specify the HH–MM display format if you want a time field (that has seconds) to be displayed
without showing the seconds. Spectrum Writer will round the time to the nearest minute.

You may also specify a "time picture" to change the formatting of time fields in your
report. A time picture is similar to a regular numeric picture, except that it begins with TPIC
or TP (rather than PIC or P). For example, to format a time field so that leading zeros in the
hours are suppressed, you could use a time picture like this:

COLUMNS: START–TIME(TPIC'Z9:99:99')

Time pictures can also specify decimal digits if needed for the time field:
COLUMNS: JOB–END(TP'ZZ:ZZ:Z9.99999')

By default, time fields are not totalled in reports. If you want to total a time field, you may
specify the ACCUM parm in either the FIELD, COMPUTE or COLUMNS statement (just as with
numeric fields). If you do print totals for a time field, you may also need to specify
additional display digits for the hour portion of the total (in case the total is more than 99
hours):

COLUMNS: DURATION(ACCUM,TP'ZZZ9:99:99')

You may also choose to format time fields in your report as hours and decimal portions of
an hour. That is, the time 04:15:00 would be displayed as 4.25 (4 and one–fourth hours).
The HOURS display format does this. There are also MINS and SECS formats to display time
fields as a number of minutes or a number of seconds. The number of decimal digits printed
with such display formats is the number of decimal digits specified in the FIELD or
COMPUTE statement used to define the field (usually zero). To force a certain number of
decimal digits to print with these display formats, use a COMPUTE statement to change a
field's decimal precision. For example, to print START–TIME in hours, with three decimal
digits, do this:

FIELD: START–TIME COL(10) TYPE(HHMMSS)
COMPUTE: X–START–TIME(3) = START–TIME
COLUMNS: X–START–TIME(HOURS)

You may use time fields in conditional expressions. They can be compared with other time
fields or with time literals. Time literals must be expressed either as HH:MM or HH:MM:SS
(with optional decimal parts of seconds also allowed: HH:MM:SS.NNN). Here are some
examples of using time fields and time literals in INCLUDEIF statements:

INCLUDEIF: START–TIME > END–TIME
INCLUDEIF: START–TIME > 12:00
INCLUDEIF: LOG–TIME > 13:01:00.0 AND < 13:01:00.5

You may also use time fields in computational expressions. For example:
COMPUTE: DURATION = END–TIME – START–TIME

The above statement computes a time field called DURATION, whose value is the difference
between END–TIME and START–TIME. For example, if END–TIME had a value of 17:30:45 and
START–TIME was 17:25:35, then DURATION would have a value of 00:05:10.
Chapter 4. Beyond the Basics 273

Working with Time Fields
If the start and end times might occur on different days, you should also convert the start
and end dates into seconds and use those in the computation as well:

COMPUTE: DURATION = ((#MAKENUM(END–DATE) * 86400) + END–TIME)
 – ((#MAKENUM(START–DATE) * 86400) + START–TIME)

Note: There are 86,400 seconds in one day.

When computing time fields, you are allowed to mix time fields and numeric fields in the
computational expression. Any numeric fields (or numeric literals) in the expression are
considered to represent a number of seconds. For example:

COMPUTE: NEXT–MINUTE = START–TIME + 60

The above statement creates a new time field call NEXT–MINUTE whose value is equal to
START–TIME plus 60 seconds.

Two built–in functions are provided to allow you to convert time fields to numeric fields
and vice verse. Use the #MAKENUM function to convert a time field into a numeric field. For
example:

COMPUTE: START–SECONDS = #MAKENUM(START–TIME)

The above statement creates a new numeric field named START–SECONDS. If START–TIME
contained 02:30:05, START–SECONDS' value would be 9005. (Two hours is 7200 seconds, 30
minutes is another 1800 seconds, plus the 5 seconds.)

To convert numeric fields (which are considered a number of seconds) into a time field,
use the #MAKETIME function:

COMPUTE: END–TIME = #MAKETIME(END–SECONDS)

If END–SECONDS contained 3600, then END–TIME would be 01:00:00 (since 3600 seconds is
one hour).

You can also use the #MAKETIME function to convert a character value (in HHMMSS format)
into a time field. For example:

COMPUTE: END–TIME = #MAKETIME(CHAR–TOD)

If CHAR–TOD was a 6–byte character field containing 191059, then END–TIME would be a
time field with a value of 19:10:59.

Spectrum Writer has a built–in field named #HHMMSS which contains the system time that
Spectrum Writer began running. You can use this field like any other time field in creating
reports or PC files.

Spectrum Writer supports time fields based on the "Store Clock" (STCK) machine
instruction. (Use the STCKTIME data type — in the FIELD statement — to define such a field.)
STCK values contain the date and time in GMT. Spectrum Writer automatically converts
STCKTIME times from GMT to local time. The hours added or subtracted to the GMT time are
determined by your installation's system parm. To change this default, use the STCKADJ
option to specify the number of hours that should be added to the STCKTIME time. For
example, to suppress conversion and leave STCKTIME times in GMT, you could specify the
following:

OPTIONS: STCKADJ(0)
274 Spectrum Writer User’s Guide

Working with Time Fields
Computing Times Like "30 Minutes Ago," "Last Hour", etc.
You can use Spectrum Writer’s powerful time-manipulation functions to compute times or
time ranges based on the system time. For example, to select all of the sales made "today,
in the last 30 minutes" we could use these statements:

COMPUTE: THIRTY-MINUTES-AGO = #INCTIME(–30, MINUTES)
INCLUDEIF: SALES-DATE = #TODAY AND SALES-TIME >= THIRTY-MINUTES-AGO

Similarly, to report on all sales made "last hour," you could use these statements:

COMPUTE: START-TIME = #BEGHOUR(#INCTIME(–1, HOUR))
COMPUTE: END-TIME = #ENDHOUR(#INCTIME(–1, HOUR))
INCLUDEIF: SALES–DATE = #TODAY AND SALES-TIME >= START-TIME AND <= END-TIME

However, if the "last hour" could have occured in a different day (as would be the case if
you ran the job shortly after midnight), then you need an additional COMPUTE statement. It
determines what the date was 30 minutes ago:

COMPUTE: START-TIME = #BEGHOUR(#INCTIME(–1, HOUR))
COMPUTE: END-TIME = #ENDHOUR(#INCTIME(–1, HOUR))
COMPUTE: START-DATE = #INCDATETIME(–1, HOUR)
INCLUDEIF: SALES–DATE = START-DATE AND SALES-TIME >= START-TIME AND <= END-TIME

You can find the complete syntax for all of these built-in functions, along with other time
manipulation functions, in Appendix D, "Built-In Functions" on page 628.

Working with Time FieldsProducing Files for Non-Standard PC Programs

Chapter 3, "How to Request a PC File" explained how to produce PC files that work in
virtually all PC spreadsheet, database and similar programs. This section describes several
methods you can use to get mainframe data into a PC program that does not accept
Spectrum Writer’s standard comma-delimited files. These methods are:

! specify your own combination of formatting options to create a PC file that the
program will accept

! create a "fixed format ASCII" file (rather than a "delimited ASCII" file), if your PC
program will import such files. Fixed format ASCII files generally are not as easy
to import, since you must describe the file's exact record layout to your PC
program.

! use a two–step process. For example, if your PC program can import Excel
spreadsheets, do the following. First, use Spectrum Writer to create a PC file and
import that into Excel. Then, have Excel save it as a spreadsheet file, which your
other PC program can now open.

Terminology: In this section, we talk about creating "delimited ASCII" and "fixed
format ASCII" files. These are the terms you are likely to see in your PC program’s
menus and help screens. To be precise, the files Spectrum Writer creates on your
mainframe are not yet "ASCII." They are EBCDIC (which allows you to browse them
conveniently while they are still on your mainframe). The files will be translated
Chapter 4. Beyond the Basics 275

Producing Files for Non-Standard PC Programs
from EBCDIC to ASCII during the download process to your PC. Once on your PC,
you will truly have a delimited or fixed format ASCII file.

For information on creating true ASCII files directly on the mainframe, read "How to Format
Data as ASCII" on page 143.

Standard Delimited PC File
Most popular PC programs will import data that is formatted as a delimited ASCII file. The
first method, then, is to create an output file in this standard format and try to import it into
your PC program. Use the following statement to create a standard delimited ASCII file:

OPTIONS: PC

For instructions on importing delimited ASCII files into your PC program, check the
program's online help (or printed manual) under "importing" or "ASCII". You might also
check under various other names that are commonly used for this kind of file, such as:
"delimited files," "comma separated values," "CSV," "DOS files," "ASCII files," or "text
files".

Custom PC File
First, let’s look in detail at the standard PC file that Spectrum Writer creates when you
specify the PC option. Figure 45 shows such a file. The PC file has the following features:

! fields are separated from each other with commas
! character data is enclosed within quotation marks
! numbers are formatted without imbedded commas
! dates are formatted in MM/DD/YY format and are enclosed in quotation marks
! times are formatted in HH:MM:SS format and are enclosed in quotation marks
! no titles or Grand total lines are included
! a "carriage control" character is not inserted in the first byte of each output record

Each of these characteristics of the PC file can be specified separately, in any combintation.
Many of them can also be customized. This is done by speciying individual formatting
options in the OPTIONS statement, instead of the PC option.

If your PC program does not import the comma-delimited files properly, it may have its
own special requirements for import files. Study the special OPTIONS statement parms
below to find the ones that will enable you to format your output file according to the PC
program’s requirements. By specifying these options in various combinations you can
276 Spectrum Writer User’s Guide

Producing Files for Non-Standard PC Programs
Figure 45. A standard comma-delimited PC File

Remarks:
• specifying PC causes the "report" to be formatted as a "delimited ASCII" file
• all character data is enclosed in quotation marks
• all numbers are formatted without commas
• all dates are formatted as MM/DD/YY, and enclosed in quotation marks
• each column is separated from the next column with a comma
• all titles and column headings are suppressed
• the Grand Total line is suppressed
• this file can be downloaded to a PC and imported directly into many PC programs

These Control Statements:

OPTIONS: PC
INPUT: EMPL–FILE
COLUMNS: LAST–NAME HIRE–DATE SALES–QTR1 SALES–QTR2
 SALES–QTR3 SALES–QTR4

Produce this Report:

"LAST","HIRE","SALES","SALES","SALES","SALES"
"NAME","DATE","QTR1","QTR2","QTR3","QTR4"
" "," "," "," "," "," "
"JONES ","01/31/80", 9956.01, 10511.56, 8698.07, 13334.25
"JOHNSON ","06/21/75", 21560.15, 21350.21, 19970.10, 24118.78
"JOHNSON ","11/25/79", 14590.34, 17220.10, 20100.08, 23113.12
"MACDONALD ","07/04/82", 548.50, 687.13, 599.25, 726.10
"SIMPSON ","12/01/82", 1287.58, 5109.03, 998.12, 1329.15
"MORRISON ","11/30/79"' 25014.19, 26112.21, 28010.09, 18918.50
"CHRISTOPHERSON ","08/15/81", 13807.22, 16549.01, 8050.07, 9259.01
"BAKER ","06/04/82", 21336.10, 24999.02, 24001.33, 21789.44
"THOMAS ","06/04/82", 14889.07, 18045.05, 14250.12, 13009.25
Chapter 4. Beyond the Basics 277

Producing Files for Non-Standard PC Programs
create an output file in just about any format. (Each of these options is discussed in more
detail in Chapter 10, "Control Statement Syntax.")

USEFUL OPTIONS FOR CREATING CUSTOM PC FILES

OPTION DESCRIPTION

COLHDGONCE
This option suppresses all title lines and causes the column
headings to print just once (at the very beginning of the PC
file).

COLSEP

This option lets you specify a "column separator" character.
When producing PC files, you usually want to separate
("delimit") the data columns with commas. The following
statement does that:

OPTIONS: COLSEP(',')

If your PC program requires that fields be separated with a tab
character (as older versions of Excel did), use this statement:

OPTIONS: COLSEP(X'05')

FORMAT

This option allows you to specify any display format you want
as the default display format for a run. This is useful when you
want to change the way all fields in your output are formatted.
For example, when creating PC files you might specify:

OPTIONS: FORMAT(QCHAR, NOCOMMA, Q–MM–DD–YYYY, Q–HH–MM–SS)

The above statement makes QCHAR, NOCOMMA,
Q–MM–DD–YYYY and Q–HH–MM–SS the default display formats
for character, numeric, date and time fields, respectively.
Therefore, by default: all character fields will be enclosed
within quotation marks; all numeric fields will be formatted
without imbedded commas; all dates will be formatted in
MM/DD/YYYY format and be enclosed within quotation marks;
and all times will be formatted in HH:MM:SS format and be
enclosed within quotation marks.

Let’s say that your PC program requires dates to be imported
in YYYYMMDD format, within quotation marks. You could use
this option:

OPTIONS: FORMAT(QCHAR, NOCOMMA, Q–YYYYMMDD, Q–HH–MM–SS)

A list of all available display formats can be found in
Appendix B, "Display Formats," on page 617.

FORMAT

(continued)

Use this option to specify the display formats that are
appropriate for your PC program. (A complete list of display
formats is found in Appendix B, "Display Formats" on
page 617).
278 Spectrum Writer User’s Guide

Producing Files for Non-Standard PC Programs
Fixed Format ASCII Files
Some PC programs import fixed format (or "fixed width") ASCII files. To create a fixed
format ASCII file, use the following combination of options:

OPTIONS: OUTPUT FORMAT(CHAR, NOCOMMA, MM–DD–YY, HH–MM–SS)

HGCOLHDG

This option specifies that "Harvard Graphics" style column
headings are wanted. This option causes the column headings
to appear in a single line in the output file (rather than being
split onto multiple lines). The "blank" line that normally
separates the column headings from the actual data is also
suppressed. This option is useful when the PC program which
will be importing your output file expects the first line of input
to contain a legend for the data in the subsequent lines.

NOCC

This option suppresses the "carriage control" character in the
report records. The carriage control character is needed when
sending a report to a printer, but is not normally desired when
writing output records to a PC file.

NOCOLHDGS
This option suppresses all column headings (but not report
titles) from the output.

NOGRANDSPACES

This option suppresses the blank spacing lines before the
Grand Total record. It is useful in those cases where you do
want a Grand Total record, but don't want extra blank records
in your output file.

NOGRANDTOTAL
This option suppresses the Grand Totals (including spacing
lines) from the output.

NOTITLES
This option suppresses all titles, column headings, footnotes
and page breaks from the report.

OUTPUT

You may specify the OUTPUT option parm, like this:
OPTIONS: OUTPUT

The OUTPUT option tells Spectrum Writer that you are creating
some form of output file rather than a report. It produces the
following results, which are normally desired for output files:

! it suppresses all titles and column headings
! it suppresses the Grand Totals line
! it suppresses the "carriage control" character
! it suppresses the maximum pages/lines message

(which is normally printed when the MAXPAGE or
MAXPRINT option is used).

USEFUL OPTIONS FOR CREATING CUSTOM PC FILES (CONTINUED)

OPTION DESCRIPTION
Chapter 4. Beyond the Basics 279

Producing Files for Non-Standard PC Programs
The above statement results in an output file with the following features:

! there is one blank space between each field in the output record
! quotation marks are not put around any of the data
! character data is written "as is"
! numbers are formatted without imbedded commas
! dates are formatted in MM/DD/YY format
! times are formatted in HH:MM:SS format
! no titles, column headings, or Grand Total lines are included
! a "carriage control" character is not inserted in the first byte of each output record

As mentioned earlier, when importing a fixed format ASCII file into a PC program, you must
define the PC file records to that PC program. Check your PC program's "Help" for
instructions on how to import fixed format files.

Producing Files for Non-Standard PC ProgramsProducing Files for Mainframe Programs

Output files that will be used in mainframe programs will be considerably different from
output files intended for PC programs. The exact requirements for a mainframe output file
will depend, of course, on the particular program that will process the file. This section
discusses various options that you'll find helpful when creating mainframe output files.

Simply specifying MAINFRAME is one way to produce a "generic" mainframe output file:
OPTIONS: MAINFRAME

Figure 46 shows a sample output file created using the above statement. Files in this
format are compatible with COBOL, PL/1 and Assembler language programs. The output file
has the following features:

! there are no blank spaces (nor commas) between the fields in the output record
! character data is written "as is"
! numbers are formatted in the DISPLAY format (no imbedded commas, no leading

zero suppression, the last digit includes the sign)
! dates are formatted in YYMMDD format
! times are formatted in HHMMSS format
! no titles, column headings, or Grand Total lines are included
! a "carriage control" character is not inserted in the first byte of each output record

If the standard "mainframe" formatted output file described above is not what you need,
you can specify various other individual options to customize your output file. The
following paragraphs discuss some of these options.
280 Spectrum Writer User’s Guide

Producing Files for Mainframe Programs
Figure 46. An output file created with the MAINFRAME option

Remarks:
• specifying MAINFRAME causes the "report" to be formatted as a mainframe file
• all character data is written "as is"
• all numbers are formatted in the DISPLAY display–format
• all dates are formatted as YYMMDD
• there are no blank spaces or delimiters between fields
• all titles and column headings are suppressed
• the Grand Total line is suppressed

These Control Statements:

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
COLUMNS: LAST–NAME HIRE–DATE SALES–QTR1 SALES–QTR2
 SALES–QTR3 SALES–QTR4

Produce this Output File

JONES 800131000009956.01000010511.56000008698.07000013334.25
JOHNSON 791125000014590.34000017220.10000020100.08000023113.12
JOHNSON 750621000021560.15000021350.21000019970.10000024118.78
MACDONALD 820704000000548.50000000687.13000000599.25000000726.10
SIMPSON 821201000001287.58000005109.03000000998.12000001329.15
MORRISON 791130000025014.19000026112.21000028010.09000018918.50
CHRISTOPHERSON 810815000013807.22000016549.01000008050.07000009259.01
BAKER 820604000021336.10000024999.02000024001.33000021789.44
THOMAS 820604000014889.07000018045.05000014250.12000013009.25
Chapter 4. Beyond the Basics 281

Producing Files for Mainframe Programs
When creating mainframe output files, you probably will not want blank spaces between
fields in the output records. This will save disk space in the output file. You can accomplish
this by specifying zero in the "column spacing" option:

OPTIONS: COLSPACE(0)

In mainframe files, you may want some numeric fields to be "packed" in order to take up
less room in the file. ("Packed" is the same as COMP–3 in COBOL, and FIXED DECIMAL in
PL/1.) To do this, just use the PACKED display format for those numeric fields. You can
specify PACKED directly in the COLUMNS statement for individual fields, like this:

COLUMNS: EMPL–NAME SALES–QTR1(PACKED,6) SALES–QTR2(PACKED,6)

The above statement causes SALES–QTR1 and SALES–QTR2 to be formatted as 6–byte
packed fields in the output file. You can also make PACKED the default numeric display
format by using the FORMAT option, like this:

OPTIONS: MAINFRAME FORMAT(PACKED)
COLUMNS: EMPL–NAME SALES–QTR1(6) SALES–QTR2(6)

The above statements also cause the two sales fields to be output as 6–byte packed fields.
Be sure to put the FORMAT option after the MAINFRAME option. Otherwise, the MAINFRAME
option will override the FORMAT option.

If you want your output file to contain binary data (COMP in COBOL, FIXED BINARY in
PL/1), use the BINARY display format in a similar way:

COLUMNS: EMPL–NAME DEPT–NUM(BINARY,1) TOTAL–SALES(PACKED,8)

The above statement formats DEPT–NUM as a 1–byte binary field, and TOTAL–SALES as an
8–byte packed field. Note that the output format you specify for a field can be different than
the way the field is formatted in the input file. For example, TOTAL–SALES is defined as a
7–byte "display" numeric field in our sample EMPL–FILE. Yet we chose to output it as an
8–byte packed number in the example above.

You can also use the HALFWORD and FULLWORD display formats as a shorthand way to
output 2–byte and 4–byte binary fields, respectively:

COLUMNS: EMPL–NAME DEPT–NUM(HALFWORD) TOTAL–SALES(FULLWORD)

Also use display formats to specify how you want date fields to be output. For example:
COLUMNS: EMPL–NAME HIRE–DATE(P–YYDDD)

The above statement formats HIRE–DATE as a 3-byte packed, Julian date. (This is equivalent
to PICTURE S9(5) COMP–3 in COBOL.)

Again, you can use the FORMAT option to change the default way that date fields are
formatted in your mainframe file:

OPTIONS: MAINFRAME FORMAT(YYYYMMDD)
COLUMNS: HIRE-DATE

The above statements cause the HIRE-DATE field (and all other date fields) to be formatted
in YYYYMMDD format.

A complete list of display formats available for formatting numeric, date and time fields in
your output records is found in Appendix B, "Display Formats" (page 617).
282 Spectrum Writer User’s Guide

Producing Files for Mainframe Programs
When creating files for use on ASCII-based machines, you may want to format some fields
in ASCII (rather than in EBCDIC). To do this, specify the ASCII parm after the field name in
your COLUMNS statement:

COLUMNS: EMPL–NAME(ASCII) HIRE-DATE(ASCII) DEPT–NUM(BINARY,1) TOTAL–SALES(PACKED,8)

For more information on creating ASCII output files, see page 143.

When creating mainframe files you probably will not want titles, columns headings or
Grand Total lines. You will also not want a carriage control character in the first byte of
the output records. The MAINFRAME option automatically suppresses all of these for you.
Or, you can use the following options to selectively suppress one or more of those items:

OPTIONS: NOTITLES NOCOLHDGS NOGRANDTOTAL NOCC

In some cases you may want to include a Grand Total record in your output file. In such
cases, you may want to specify the NOGRANDSPACES option to suppress the blank lines
normally written just before the Grand Total line.

OPTIONS: NOGRANDSPACES

When creating mainframe output files, you may want your records to be larger (or smaller)
than the standard 133–byte output record. Chapter 8, "Operating System Considerations"
explains how to specify any record length you want for your output file. See page 417
(OS/390) or page 431 (VSE).

Producing Files for Mainframe ProgramsHow to "Subset" Mainframe Files

One common reason for creating mainframe files is to select certain whole records from
the input file and write them to a "subset" file. For example, we might want to create an
output file consisting of complete EMPL–FILE records, but only for those employees in
department 2. It would take a lot of effort to write a COLUMNS statement containing each
individual field name from the EMPL–FILE along with its desired output format. A much
simpler way is to define a single character field which corresponds to the entire input
record, and just write that one field to your output file:

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
INCLUDEIF: DEPT–NUM = 2
COLUMNS: RECORD

The above statements create an output file which contains the EMPL–FILE records for
employees in department 2.

How to Sort Mainframe Files

Similarly, you can use Spectrum Writer to sort mainframe files. One advantage of using
Spectrum Writer is that you can simply name the fields that you want to sort on (rather than
having to specify the exact columns, lengths and data types of the sort fields). Here is an
example of sorting a mainframe file.

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
Chapter 4. Beyond the Basics 283

Producing Files for Mainframe Programs
SORT: DEPT–NUM LAST–NAME FIRST–NAME
COLUMNS: RECORD

The above statements create an output file which contains all of the EMPL–FILE records,
sorted into DEPT–NUM, LAST–NAME and FIRST–NAME order.

Producing Files for Mainframe ProgramsComputing Percent of Totals

While Spectrum Writer does not have an automatic "percent of total" function, it is possible
to create reports with such data. The trick is to use multiple Spectrum Writer steps.

The problem with performing such calculations in a single step is this: Spectrum Writer
adds up totals as a report is being printed. Therefore it doesn’t know what the total value
will be (for a region, for example) until all of the records in that region have printed. Thus
the total value (which is required to calculate percent of total) is not available when the
detail report lines are being printed. However, using multiple steps lets you get around this
problem.

The report in Figure 49 (page 288) shows a report with two "percent of total" columns.
Those columns show the percent of the regional total represented by the AMOUNT and TAX
fields in each sales record.

We used three short Spectrum Writer steps to produce this report. Here’s an overview of
those steps:

Step 1 computed the regional totals and wrote those totals out to a file, along
with all of the regular records from the SALES-FILE.

Step 2 sorted this file so that the regional totals were now located before each
region’s sales records.

Step 3 used this sorted file to print a report with percent of totals. The
necessary regional totals were now available while the detail records were
being processed.

Now let’s look at each of these steps in more detail.

Step 1.
The first step writes out a temporary dataset that contains all of the input records, plus total
records (containing the regional totals). A special sort key is also added to each record in
this output file. (See Figure 47.)

This step uses the standard SALES-FILE as input. Since this step produces a mainframe
output file (instead of a report) we specified the MAINFRAME option. We want the output file
to contain the complete SALES-FILE records, plus one new "regional total" record for each
region. The new total record will contain the region’s total value for AMOUNT and TAX. We
defined a new field called RECORD. It is simply a character field that includes the whole
80-byte record from the SALES-FILE. The COLUMNS statement tells Spectrum Writer to write
out this unchanged 80-byte record. After the 80-byte record, we write the value of the
REGION field (again) and the letter "B". This forms a 6-byte sort key that we will use in the
next step.
284 Spectrum Writer User’s Guide

Computing Percent of Totals
Figure 47. This step adds "region total records" to the file, and also creates a special sort key

Remarks:
• the output file contains all of the SALES-FILE records, plus one regional total record for each region
• all records now contain a new 6-byte sort key, consisting of the region name followed by either "A" or

"B"
• the regional total records contain the total values for AMOUNT and TAX in new fields at the end of the

record

These Control Statements:

OPTIONS: MAINFRAME
INPUT: SALES-FILE
FIELD: RECORD COLUMN(1) LENGTH(80)
COLUMNS: RECORD REGION 'B'
SORT: REGION
BREAK: REGION NOTOTALS SPACE(0)
 FOOTING(80 REGION 0 'A' 0 AMOUNT(TOTAL DISPLAY 8)
 0 TAX(TOTAL DISPLAY 8))

Produce this Output File:
SIMPSON 041042EAST 00238701430360950430153021J & S LUMBER 40855523212451916 EAST B
SIMPSON 041039EAST 00149900900360950401081757EUROPEAN DELI 40855565430150916 EAST B
MORRISON 042045EAST 00296501780360950330190541A1 PHOTOGRAPHY 40855577860600919 EAST B
MORRISON 042036EAST 00443502660360950329153022STAR MARKET 40855576540599907 EAST B
 EAST A00112.8600006.77
JOHNSON 039044NORTH00099800600370950405143310MARYS ANTIQUES 41555512560000997 NORTHB
JOHNSON 039036NORTH02344514070370950401170247VILLA HOTEL 41555576300929926 NORTHB
JONES 036039NORTH00102500620370950415135241TOY TOWN 41555515000523977 NORTHB
JONES 036039NORTH01217607310370950415080159TOY TOWN 41555515001200907 NORTHB
JONES 036042NORTH00102500620370950415075832EZ GROCERY 41555548720810977 NORTHB
 NORTHA00386.6900023.22
JOHNSON 037041SOUTH01013806090350950312102500ACE ELECTRICAL 21355598710079952 SOUTHB
JOHNSON 037042SOUTH05000030000350950416114833ACME BUILDING 21355521211025976 SOUTHB
 SOUTHA00601.3800036.09
BAKER 044045WEST 01370008220360950326120909JACKS CAFE 21455511240102978 WEST B
THOMAS 045037WEST 00099800600360950414154138YOGURT CITY 21455517895421997 WEST B
BAKER 044037WEST 01357508150360950412143112JACKS CAFE 21455511240231916 WEST B
 WEST A00282.7300016.97
Chapter 4. Beyond the Basics 285

Computing Percent of Totals
In order to compute regional totals, we sort and break on the REGION field. At the control
break, we suppress the default totals line (with the NOTOTALS parm in the BREAK state-
ment). Instead, we specify our own custom output record using the FOOTING parm. This to-
tal record will consist of 80 bytes of blanks, followed again by a special sort key. The sort
key is the 5-byte region followed by the letter "A". (The letter "A" allows this total record
to sort ahead of the detail records in the next step.) Following this sort key, is the region’s
total value for AMOUNT and TAX. Each of these totals is written as an 8-byte "display nu-
meric" field.

We also specified SPACE(0) in the BREAK statement. That prevents two blank records (the
default break spacing) from being written at the control breaks.

Figure 47 (page 285) shows the output file created by this first step.

Note: In the execution JCL we directed SWOUTPUT’s output to a temporary dataset,
rather than to a printer. We specified an LRECL of 102 for this file (the length of the
80 byte sales record, plus a new 6-byte sort key, plus the two 8-byte regional totals).

Step 2.
This step simply sorts the file created in Step 1 on the new 6-byte sort key. (This key is the
region value plus either the letter "A" or "B".) After the sort, the record containing a
region’s totals will appear ahead of the detail sales records for that region. (See Figure 48.)

You can use a standard Sort step if you prefer. Or you can use a Spectrum Writer step to
perform the sort. Figure 48 shows the control statements used to sort a file with Spectrum
Writer. It also shows the resulting temporary dataset, now sorted and ready to use in the
final step.

In the JCL, we used the temporary dataset created in Step 1 as the input. And we wrote the
output to another 102-byte temporary dataset.

Step 3.
Now we’re ready to produce the final report. We read in the sorted temporary dataset. The
nice thing about this file is that it contains each region’s totals (for AMOUNT and TAX) before
the first detail record for that region. As we read this file, we can save these two regional
totals in special compute fields. Then, as we read the following detail sales records for that
region, we can perform the percent of region computation.

This step is shown in Figure 49 (page 288).

We named the SALES-FILE in the INPUT statement, even though the JCL actually points to
our temporary 102-byte dataset. That’s because the first 80 bytes of these records match
the SALE-FILE layout All of the FIELD statements for SALES-FILE will also work with this file
(for the detail records). We specified an override LRECL parm in the INPUT statement, since
our input file is larger than the standard SALES-FILE (102 bytes versus 80).

We then added three FIELD statements to define the new fields that aren’t a part of the
SALES-FILE.
286 Spectrum Writer User’s Guide

Computing Percent of Totals
Figure 48. Sorting the temporary dataset so that the regional totals come before the detail data

Remarks:
• the regional total records now appear ahead of the detail records for that region

These Control Statements:

OPTIONS: MAINFRAME
FILE: BIGSALE DDNAME(BIGSALE) LRECL(102)
FIELD: BIGREC COLUMN(1) LENGTH(102)
FIELD: SORTKEY COLUMN(81) LENGTH(6)
INPUT: BIGSALE
COLUMNS: BIGREC
SORT: SORTKEY

Produce this Output File:

 EAST A00112.8600006.77
MORRISON 042036EAST 00443502660360950329153022STAR MARKET 40855576540599907 EAST B
MORRISON 042045EAST 00296501780360950330190541A1 PHOTOGRAPHY 40855577860600919 EAST B
SIMPSON 041039EAST 00149900900360950401081757EUROPEAN DELI 40855565430150916 EAST B
SIMPSON 041042EAST 00238701430360950430153021J & S LUMBER 40855523212451916 EAST B
 NORTHA00386.6900023.22
JONES 036042NORTH00102500620370950415075832EZ GROCERY 41555548720810977 NORTHB
JONES 036039NORTH01217607310370950415080159TOY TOWN 41555515001200907 NORTHB
JONES 036039NORTH00102500620370950415135241TOY TOWN 41555515000523977 NORTHB
JOHNSON 039036NORTH02344514070370950401170247VILLA HOTEL 41555576300929926 NORTHB
JOHNSON 039044NORTH00099800600370950405143310MARYS ANTIQUES 41555512560000997 NORTHB
 SOUTHA00601.3800036.09
JOHNSON 037042SOUTH05000030000350950416114833ACME BUILDING 21355521211025976 SOUTHB
JOHNSON 037041SOUTH01013806090350950312102500ACE ELECTRICAL 21355598710079952 SOUTHB
 WEST A00282.7300016.97
BAKER 044037WEST 01357508150360950412143112JACKS CAFE 21455511240231916 WEST B
THOMAS 045037WEST 00099800600360950414154138YOGURT CITY 21455517895421997 WEST B
BAKER 044045WEST 01370008220360950326120909JACKS CAFE 21455511240102978 WEST B
Chapter 4. Beyond the Basics 287

Computing Percent of Totals
Figure 49. A report with "percent of total" columns

These Control Statements:

INPUT: SALES-FILE LRECL(102)
FIELD: RECTYPE LENGTH(1) COLUMN(86)
FIELD: REGION-AMT LENGTH(8) TYPE(NUM-SLD) DEC(2)
FIELD: REGION-TAX LENGTH(8) TYPE(NUM-SLD) DEC(2)
COMPUTE: SAVE-REGION-AMT = WHEN(RECTYPE='A') ASSIGN(REGION-AMT)
 ELSE RETAIN
COMPUTE: SAVE-REGION-TAX = WHEN(RECTYPE='A') ASSIGN(REGION-TAX)
 ELSE RETAIN
COMPUTE: PERCENT-REGION-AMOUNT = AMOUNT / SAVE-REGION-AMT * 100
COMPUTE: PERCENT-REGION-TAX = TAX / SAVE-REGION-TAX * 100
INCLUDEIF: RECTYPE='B'
COLUMNS: REGION EMPL-NAME SALES-DATE CUSTOMER
 AMOUNT PERCENT-REGION-AMOUNT(PIC'ZZ9.9%' NOACCUM)
 TAX PERCENT-REGION-TAX(PIC'ZZ9.9%' NOACCUM)
SORT: REGION SALES-DATE
BREAK: REGION

Produce this Report:

MON 07/19/04 2:51 PM DATA FROM SALES-FILE PAGE 1

 PERCENT PERCENT
 EMPL SALES REGION REGION
REGION NAME DATE CUSTOMER AMOUNT AMOUNT TAX TAX

EAST MORRISON 03/29/95 STAR MARKET 44.35 39.3% 2.66 39.3%
EAST MORRISON 03/30/95 A1 PHOTOGRAPHY 29.65 26.3% 1.78 26.3%
EAST SIMPSON 04/01/95 EUROPEAN DELI 14.99 13.3% 0.90 13.3%
EAST SIMPSON 04/30/95 J & S LUMBER 23.87 21.2% 1.43 21.1%
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/95 VILLA HOTEL 234.45 60.6% 14.07 60.6%
NORTH JOHNSON 04/05/95 MARYS ANTIQUES 9.98 2.6% 0.60 2.6%
NORTH JONES 04/15/95 TOY TOWN 10.25 2.7% 0.62 2.7%
NORTH JONES 04/15/95 TOY TOWN 121.76 31.5% 7.31 31.5%
NORTH JONES 04/15/95 EZ GROCERY 10.25 2.7% 0.62 2.7%
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/95 ACE ELECTRICAL 101.38 16.9% 6.09 16.9%
SOUTH JOHNSON 04/16/95 ACME BUILDING 500.00 83.1% 30.00 83.1%
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

WEST BAKER 03/26/95 JACKS CAFE 137.00 48.5% 8.22 48.4%
WEST BAKER 04/12/95 JACKS CAFE 135.75 48.0% 8.15 48.0%
WEST THOMAS 04/14/95 YOGURT CITY 9.98 3.5% 0.60 3.5%
*** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
288 Spectrum Writer User’s Guide

Computing Percent of Totals
We used a special kind of COMPUTE statement to "save" a region’s total AMOUNT and TAX
values for use with all of the detail records that follow. The COMPUTE statement makes use
of the RETAIN parm:

COMPUTE: SAVE-REGION-AMT = WHEN(RECTYPE='A') ASSIGN(REGION-AMT)
 ELSE RETAIN

When a type "A" record is read, the WHEN condition in this statement is true and the value
from the REGION-AMT field is assigned to SAVE-REGION-AMT.

Then, as the "B" records (containing the normal SALES-FILE details records) are read, the
WHEN parm is not true and no new value is assigned to SAVE-REGION-AMT. It simply retains
the value it already has. That means we can now compute the percent of total. We simply
divide the AMOUNT field from the detail record by the region total (which is retained in
SAVE-REGION-AMT):

COMPUTE: PERCENT-REGION-AMOUNT = AMOUNT / SAVE-REGION-AMT * 100

Notice that this step has an INCLUDEIF statement that selects only type "B" records. That is
because we did not want to print a line in the report for the type "A" header records. This
INCLUDEIF statement does not interfere with saving the regional total values from the type
"A" records. COMPUTE statements that use the RETAIN parm are always computed for each
record in the input file (not just for those records that are included in the report.)

The rest of this step just consists of the standard COLUMNS, SORT and BREAK statements.
Note in the COLUMNS statement that we used the NOACCUM parm for the percent of total
fields. That tells Spectrum Writer not to "accumulate" the value of this field for the totals
lines in the report.

Computing Percent of TotalsCreating Multiple Reports in a Single Run

This section explains:

! how to create more than one report (or output file) during a single run of
Spectrum Writer

! how to use the NEWOUT statement

One very powerful feature of Spectrum Writer is its ability to produce multiple reports
during a single pass of the input file. This can greatly reduce the total amount of I/O
processing, compared to producing the same reports in separate Spectrum Writer runs.

In multiple report runs, you have complete control over each individual report. For
example, each report can have its own:

! criteria for including records from the input file (INCLUDEIF statement)

! sort order (SORT statement)

! control breaks (BREAK statements)

! data columns, column headings, format, etc. (COLUMNS statements)

! titles and/or footnotes (TITLE/FOOTNOTE statements)
Chapter 4. Beyond the Basics 289

Creating Multiple Reports in a Single Run
! most OPTIONS statement options that affect a report’s appearance

The only things that all reports in a single run will always have in common are:

! the primary input file (INPUT statement)

! a few OPTIONS statement options that relate to the processing of the input file or
that apply to the run as a whole.

The NEWOUT Control Statement
The NEWOUT (or NEWOUTPUT) statement is used to request an additional report.

Put the NEWOUT statement after all of the control statements used to request the first report.
The NEWOUT statement tells Spectrum Writer that you have finished one report request and
are now starting to define a new output (that is, a new report or output file). The NEWOUT
statement has no parms:

NEWOUT:

After the NEWOUT statement, you are now working on a fresh report. Nothing that you
specified for any earlier report(s) is still in effect, except that:

! the primary input file and all of it's fields are available

! any auxiliary input files and all of their fields are available

! all computed fields are available

After the NEWOUT statement, just put the COLUMNS, SORT, TITLE, INCLUDEIF, etc. statements
that you want for the new report. The control statements following a NEWOUT statement
affect only the new report. They do not affect any earlier report(s).

If needed, you can also add any additional READ statements or COMPUTE statements
required for the new report. Or, if you prefer, you can place those READ and COMPUTE
statements back with the control statements for the first report. Their location will not
affect the results of the run.

Here is an example of producing three reports from a single pass of the SALES-FILE.
INPUT: SALES-FILE
TITLE: 'SALES BY REGION'
COLUMNS: REGION CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION

NEWOUT:
TITLE: 'SALES BY CUSTOMER'
COLUMNS: CUSTOMER REGION AMOUNT TAX EMPL-NAME
SORT: CUSTOMER
BREAK: CUSTOMER

NEWOUT:
TITLE: 'SALES OVER $100 SORTED BY DESCENDING AMOUNT'
 INCLUDEIF: AMOUNT > 100
COLUMNS: AMOUNT CUSTOMER
SORT: AMOUNT(DESC)

The above statements request three separate reports from the SALES-FILE. (The blank lines
before the NEWOUT statements are not required. We added them only to make the request
more readable.) As you can see, each report has it's own title, sort order and columns. The
290 Spectrum Writer User’s Guide

Creating Multiple Reports in a Single Run
first report is sorted on REGION, with REGION control totals. The second report is sorted by
CUSTOMER, with CUSTOMER control totals. The last report is sorted by descending AMOUNT,
and has no control breaks. This last report includes only those records whose AMOUNT field
contains a value greater than 100.

Note: When producing multiple outputs, you will need to make some changes to
your JCL. These changes are discussed in Chapter 8, "Operating System Consider-
ations". See page 419 (OS/390) or page 435 (VSE).

How Many Reports Can You Request?
Each NWOUT statement results in one additional report. Spectrum Writer does not impose
a limit on the number of NEWOUT statements that you can specify. You can produce as
many reports in a single run as your system resources will allow.

Keep in mind that each report in a run does require additional system resources (in
particular, storage). When a job needs more resources than are available, an ABEND can
occur. For suggestions on maximizing storage resources, see page 420 (OS/390) or
page 436 (VSE).

Creating Multiple Reports in a Single Run
Chapter 4. Beyond the Basics 291

292 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 5. How to Make a Web Report

Chapter Table of Contents

Chapter 5. How to Make a Web Report . 293

How to Create a Web Report . 294
Writing Your Own HTML Tags . 296
Experimenting with HTML Tags . 297
Customizing the Web Report's Titles . 298
Customizing the Web Report's Data Columns . 301
Customizing Control Breaks and Grand Totals . 303
Putting Graphics in Your Web Report . 305
Putting Graphics in Your Report Title . 305
Putting Graphics in the Body of Your Report . 306
Putting Graphics at Control Breaks . 308
Putting Hot Links in your Web Report . 308
Using HTML Tables in your Web Report . 312
Using Dynamic HTML Tags . 315
Using the PRESCRIPT and POSTSCRIPT Options . 318
Summary of Options for Web Reports . 320
Common HTML Tags . 321
Chapter 5. How to Make a Web Report 293

Chapter 5. How to Make a Web Report

In earlier chapters we've seen how to create custom reports with Spectrum Writer. In this
chapter you will learn how Spectrum Writer can format your reports especially for viewing
on Web browsers (such as Microsoft's Internet Explorer and Netscape's Navigator). You
can put such reports on your company's Intranet or Internet site for easy company-wide (or
public) viewing. Or, send the report to your colleagues as an e-mail attachment that they
can automatically view from their e-mail reader. Spectrum Writer is a powerful tool in the
move toward paperless "enterprise reporting."

As you will see, you can simply add one statement to any existing Spectrum Writer report
to create a Web-viewable version of that report. But that's just the starting point in making
attractive Web reports with Spectrum Writer. Advanced users — those familiar with the
HTML language — can insert their own HTML commands into a Spectrum Writer report.
These commands can take advantage of such Web features as:

! Custom fonts, font sizes, and colors, as well as bold, italic and underlined text.

! Special effects like animation, blinking text or text that scrolls marquee-like
across the screen.

! Logos, graphics, charts, and photographs. For example, you could include
employee photographs in a personnel directory. (See Figure 43 on page 312 for
an example of this.)

! "Hot links" that help viewers navigate within your report — or which let them
jump to external Web pages.

! Playing audio or video clips. For example, a viewer could click on a product
number in an inventory report and automatically see a video clip demonstrating
the product in use!

Note: Before reading the rest of this chapter, you should already be familiar with
creating regular Spectrum Writer reports. Chapter 2, "How to Request a Report"
explains this.

How to Create a Web Report

Web pages can be formatted using a language called HTML. In order to properly view your
Spectrum Writer report on the Web, certain HTML commands (also called "tags") must be
added to the report. Without these HTML tags, the Web browser would "wrap" all of your
report lines together into one big, jumbled "paragraph."

The HTML option tells Spectrum Writer to automatically add basic HTML information to
your report:

OPTION: HTML
294 Spectrum Writer User’s Guide

How to Create a Web Report
Figure 35. A basic Web report (viewed on Microsoft’s Internet Explorer)

These Control Statements:

OPTION: HTML('ABC COMPANY SALES REPORT')
TITLE: 'SALES REPORT'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Web Report:
Chapter 5. How to Make a Web Report 295

How to Create a Web Report
The above statement tells Spectrum Writer to add HTML tags to your report so that it will
display properly on a Web browser. After that, all you do is route Spectrum Writer's output
to a file which you can then upload to your Web site or other destination.

Tip: Name your uploaded file using an extension of ".htm" or ".html". That tells
Web browsers that your file is an HTML file.

The HTML option also lets you specify a title for your Web page, if you like:
OPTION: HTML('ABC COMPANY SALES REPORT')

The HTML title is different from the regular report titles. This special HTML title appears at
the top of the Web browser's window as the name of your Web page.

Figure 35 shows a Web page created using the above statement.

How to Create a Web ReportWriting Your Own HTML Tags

For users who know the HTML language, Spectrum Writer lets you specify your own HTML
tags directly within your Web report. By specifying your own HTML tags, you can create
very impressive Web reports like the examples shown in the remainder of this chapter.

Note: The rest of this chapter is intended for readers who are familiar with the HTML
language.

"HTML tags" are formatting instructions that tell Web browsers how to format a portion of
a Web page's text. HTML tags always begin with a "less than" sign and end with a "greater
than" sign, like this <...>.

Many HTML tags are used in pairs. Their formatting information applies to all of the text
between the opening HTML tag (for example,) and the closing HTML tag (for example,
). Closing HTML tags consist of a slash and the first word (or abbreviation) of the
opening tag. For example:

ABC COMPANY SALES REPORT

When the above text is displayed by a Web browser, it will look like this:
ABC COMPANY SALES REPORT

The words "SALES REPORT" are in bold letters. That is because those words are within the
HTML "bold" tags. Notice that the HTML tags themselves are not displayed by Web browsers.

Other HTML tags are used by themselves. For example,
 specifies that a line "break" is
wanted. It does not require a closing tag.

A list of common HTML tags that you might want to use begins on page 321.

Spectrum Writer's HTML option causes your report to be surrounded with just enough HTML
information to make it viewable on the Web. To further customize your report for the Web,
296 Spectrum Writer User’s Guide

Writing Your Own HTML Tags
Spectrum Writer lets you insert your own HTML tags (as character literals) directly within
your report. Here are some of the places you might want to put your own HTML tags:

! in TITLE statements, to customize the report titles. For example:
TITLE: 'ABC COMPANY SALES REPORT'

! in COLUMNS statements, to customize one or more columns of data. For example:
COLUMNS: REGION EMPL-NAME '' SALES-DATE '' SALES-TIME CUSTOMER AMOUNT TAX

! in BREAK statements, to customize the lines printed at control breaks (or the
Grand Total lines). For example:
BREAK: REGION NOTOTALS
 FOOTING('TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL) '')

! in COMPUTE statements, to create fields that contain dynamically built HTML tags.
These fields can then be used in other control statements. For example:
COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')

! in PRESCRIPT and POSTSCRIPT options, for formatting information that applies
to the entire report. For example:
OPTION: PRESCRIPT('')
OPTION: POSTSCRIPT('')

Writing Your Own HTML TagsExperimenting with HTML Tags

Before we continue, a word of caution is in order. Formatting reports with HTML tags is
more of an art than a science. For one thing, there are a number of different versions of
HTML and it is constantly evolving as new versions of Web browsers are released. In
addition, different browsers sometimes process the same HTML tag in slightly different
ways. Furthermore, different preference settings in viewers' browsers can cause the same
Web report to look different to different viewers. Finally, remember that the actual report
that you see on the Web is the result of a two-step process. First Spectrum Writer formats
a text-only report that contains your HTML tags mixed in with your report data. Then the
Web browser strips the HTML tags out of the formatted report (sometimes throwing off
Spectrum Writer's own carefully calculated alignment) and then reformats the report data
that remains. All of this is to say that sometimes you will get quite unexpected results the
first time you try out an HTML tag! But with enough experimentation, you can usually
achieve the desired result.

Tip: While refining a new Web report over and over again, it is easy for HTML
syntax errors to creep into the results. There are resources on the Web that perform
free syntax-checking of HTML files. This can be very helpful if you are not getting
the results you expect from your HTML file. At the time of this writing, one such
"HTML validator" service is available at www.w3.org.

The following sections show how to successfully use HTML tags in several specific areas of
your reports.
Chapter 5. How to Make a Web Report 297

Customizing the Web Report's Titles

You can customize a report title by including HTML tags within the title text in your TITLE
statement. For example:

TITLE: '<H1>ABC COMPANY</H1>'
TITLE: '<H2>RECENT SALES</H2>'

Spectrum Writer will simply write out your HTML tags along with the rest of your title text.
The Web browser will then recognize the HTML tags and format the text within the tags
accordingly.

The <H1> and </H1> HTML tags in the first TITLE statement above tell the Web browser to
format the title text within those tags as a "level 1 header." Thus, the person viewing your
report on the Web will see "ABC COMPANY" in big, bold text at the top of each report
page. They will not see the HTML tags themselves because the Web browser strips them
away. Similarly, the second title will be formatted as a "level 2 header" (somewhat smaller
than a level 1 header).

Here is another example. In this case, we make the first title red and the second title blue:
TITLE: '<H1>ABC COMPANY</H1>'
TITLE: '<H2>RECENT SALES</H2>'

The <Hn> tags cause the titles to be left-justified in some browsers. If you want the titles
centered, just enclose them in <CENTER> tags:

TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'

Figure 36 shows a report that uses the above TITLE statements.

Notice that the <CENTER> tags cause the titles to be centered within the Web browser
window (not necessarily centered just over the report columns). You can always force your
titles into any desired position by including padding blanks in the title text:

TITLE: '<H1> ABC COMPANY</H1>'
TITLE: '<H2> RECENT SALES BY REGION</H2>'

You can use HTML tags in the TITLE statement to change a title's font, size and color and to
specify bold, underlined and italicized text. There are also HTML tags to make titles blink
or scroll marquee-like. The appropriate HTML tags are listed in the table that begins on
page 321.

Following are some additional suggestions for certain situations that may come up when
customizing your Web report's titles.

To Avoid Report Titles in the Middle of Screens
Since a PC screen does not usually display as many report lines as a sheet of paper, it may
take several PC screens to show a single "page" of a Spectrum Writer report. This means
that the report titles and column headings may seem to appear randomly as viewers "page"
through the report online.
298 Spectrum Writer User’s Guide

Customizing the Web Report's Titles
Figure 36. A Web report with customized titles

These Control Statements:

OPTION: HTML('ABC COMPANY -- RECENT SALES')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Web Report:
Chapter 5. How to Make a Web Report 299

Customizing the Web Report's Titles
Use the TITLEONCE option to just print the report titles and column headings once at the
beginning of your report. This solves the problem of random titles and saves valuable
screen space for actual data. For example:

OPTION: TITLEONCE

Syncing Report Titles with the Web Browser Screen
You may also be able to sync the Web browser window with the report pages by specifying
"short" report pages. That would let viewers use their PC's Page Up and Page Down keys
to page through your report, one screen per report page. Use Spectrum Writer's PAGELEN
option to specify a page length of about 20 lines (experiment to get the exact number for
your PC). Also add a blank FOOTNOTE statement to your report. (That forces trailing blank
lines at the end of each page to ensure that all pages are exactly the same length.) For
example:

OPTION: PAGELEN(20)
FOOTNOTE:

Then adjust the size of your Web browser window as necessary to exactly match the length
of your report pages. You can also adjust the font size in your Browser's "preferences" to
fit more or fewer lines of the report on each screen.

Note: Be aware that even when this method puts the report pages in sync with your
PC's Web browser window, it may still scroll differently on other PCs.

To Remove the Underscore Line from the Column Headings
Specify the NOUNDERSCORES option to eliminate the underscore line that appears after the
column headings. This often looks better on PC screens and also saves valuable screen
space for actual data. For example:

OPTION: NOUNDERSCORES

To Solve Alignment Problems
Remember, you can always use explicit spacing factors to force items into the place you
desire. Also, specifying a single slash (/) at the end of the TITLE statement will prevent
Spectrum Writer from trying to center- or right-justify your title. For example:

TITLE: '<H2>' 0 #TODAY 5 'SALES REPORT' 4 'PAGE' #PAGENUM '</H2>' /

The numbers in the above statement are spacing factors that tell Spectrum Writer how
many spaces to put between each item in the title. The trailing slash (/) tells Spectrum
Writer to leave the title left-justified.
300 Spectrum Writer User’s Guide

Customizing the Web Report's Data Columns

You can put HTML tags (as literals) in the COLUMNS statement to customize individual
columns of the report. For example, to make the AMOUNT and TAX columns bold, we could
use this statement:

COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER '' AMOUNT TAX ''

The above statement causes the literal text "" to appear in each report line before the
AMOUNT column. And the literal text "" will appear as the last item on each line. Of
course the Web browser will recognize these special HTML tags and process them as
formatting instructions, rather than including them as part of the report shown to the
viewer. The viewer won't see these literal texts in the online report, but the AMOUNT and
TAX values will now appear in bold letters on the Web page.

The Web report produced by the above COLUMNS statement would have two blank spaces
(instead of just one) between the CUSTOMER column and the AMOUNT column. That is
because Spectrum Writer defaults to putting one blank space between all report columns.
Thus, there would be one blank space after the CUSTOMER column and one blank space
after the "" column. The Web browser removes that HTML literal, but not the blank space
after it. To solve this problem (which uses up valuable screen space), specify an override
spacing factor of 0 as needed in COLUMNS statements that contain HTML literals:

COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER '' 0 AMOUNT TAX 0 ''

Figure 37 uses the above statement to make the AMOUNT and TAX columns bold. Notice in
that report that the column headings and total values for the AMOUNT and TAX fields are also
bold. When the HTML (or HTMLAID) option is specified, Spectrum Writer automatically
copies your COLUMNS statement HTML tags into the column heading lines and into the total
lines for you. Thus, the formatting information that you specify for a data column is also
applied to the column headings and total value (if any) for that column.

You can use HTML tags in the COLUMNS statement to change a column's font, size and color
and to specify bold, underlined and italicized text. There are also HTML tags to make
columns blink or scroll. The appropriate HTML tags are shown in the table that begins on
page 321.

Using Other Fonts in Your Report
The HTML option causes Spectrum Writer to embed your entire report within <PRE>
("preformatted") tags. This tells the Web browser to preserve the report's line breaks and
alignment. To accomplish this, the Web browser chooses a non-proportional font for your
report. (A non-proportional font is one where all letters have exactly the same width.) If
you override this by specifying the name of a proportional font (in a tag in your
COLUMNS statement), your report columns will probably not line up correctly. Therefore,
it is usually best not to change the font of the body of the report. Or, if you do, be sure to
change it to another non-proportional font. (On the other hand, it is generally safe to specify
any kind of font for the report titles, since they are not in columnar format.)
Chapter 5. How to Make a Web Report 301

Customizing the Web Report's Data Columns
Figure 37. A Web report with two bold columns

These Control Statements:

OPTION: HTML('ABC COMPANY -- RECENT SALES')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' 0 AMOUNT TAX 0 ''

Result in this Web Report:
302 Spectrum Writer User’s Guide

Customizing Control Breaks and Grand Totals

You can also put your own HTML tags in the lines printed at control breaks (including the
Grand Total "control break"). For example, to make the whole total line at a control break
appear in bold, underlined, italicized text, you could specify:
BREAK: REGION NOTOTALS
 FOOTING('<U><I>TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL) '</I></U>')

The report in Figure 38 uses the above BREAK statement.

Notice that we did not use the TOTAL parm to customize the total line text (as you would
for a normal report). Instead, we specified NOTOTALS (to suppress the default total line) and
then added a FOOTING parm to create our own total line. There are two reasons for this.

First, while the TOTAL parm would allow us to specify our opening HTML tags, it offers no
way to specify the closing tags, since these must come after the totalled numeric columns.

Second, putting HTML tags in the TOTAL parm throws off the alignment of the totalled
columns. The Web browser strips the HTML tags from the first part of the total line, which
causes the totalled numeric columns to be shifted left.

By using a FOOTING parm (as in the statement above), you can specify both opening and
closing HTML tags. You can also use an explicit spacing factor (the "36") to force the
totalled columns into their proper location. Experimentation is the best way to determine
the correct spacing factor for a particular report.

Tip: When experimenting, use the MAXINCLUDE option to limit the number of
records included in your report. This can greatly speed up your trial runs, especially
if you're working with large input files.

HTML tags can also be used in the BREAK statement's HEADING parm. See Figure 40
(page 309) for an example of this.

You can use HTML tags in the BREAK statement to change a total line's font, size and color
and to specify bold, underlined and italicized text. There are also HTML tags to make text
blink or scroll. The appropriate HTML tags are shown in the table that begins on page 321.

Following are some additional suggestions for certain situations that may come up when
customizing your Web report's control breaks.

Putting a Divider Line at Control Breaks
You may want to use the <HR> tag to put a "horizontal rule" (line) in your report. For
example, to add lines to a report to separate the regions, you could specify:

BREAK: REGION FOOTING('<HR>')

The report in Figure 41 (page 310) has such a line at the control breaks.

Why is the Total Line Split into Two Lines?
Including HTML tags in the COLUMNS statement sometimes causes the default total line to
be split into two lines. This is because all HTML literals from the COLUMNS statement are
also copied into the total lines. (This insures that if a report column is bold, for example,
Chapter 5. How to Make a Web Report 303

Customizing Control Breaks and Grand Totals
Figure 38. A Web report with customized total lines

These Control Statements:

OPTION: HTML('ABC COMPANY -- RECENT SALES BY REGION')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES BY REGION' 0
 '</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' 0 AMOUNT TAX 0 ''
SORT: REGION
BREAK: REGION NOTOTALS
 FOOTING('<U><I>TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL)
 '</I></U>')

Result in this Web Report:
304 Spectrum Writer User’s Guide

Customizing Control Breaks and Grand Totals
the totals for that column will also be bold.) The problem occurs when there is not enough
room to put the entire total line text before the first HTML tag. Spectrum Writer then puts
the total line text on a separate line so that the HTML tags can appear in the correct location
on the total line. If you want to force the totals onto a single line, specify the NOTOTALS
option on your BREAK statement. Then use a FOOTING parm to specify exactly how your
total line should look. The report in Figure 38 demonstrates this.

Customizing Control Breaks and Grand TotalsPutting Graphics in Your Web Report

Use the ("image") tag to display a graphic image in your Web report. The graphic
might be a logo, a drawing, a photograph, a chart, a graph, etc. When you include an
tag in your report output, the Web browser will insert the image into the Web page right at
that point.

The format of the tag is:

The "url" identifies the source file that contains your graphic image. The graphic image file
will usually be in GIF or JPEG format and will be named with an extension of ".gif" or
".jpg". The optional WIDTH parm specifies how wide (in pixels) the image should be. The
optional ALIGN parm tells the Web browser how to vertically align any text that follows the
image. The tag also has other optional parms not shown above.

Putting Graphics in Your Report Title

Put an tag in your TITLE statement to include a graphic among your titles. For
example, to include a corporate logo along with a title at the top of each report page, we
could use these statements:

TITLE: '<CENTER></CENTER>'
TITLE: '<H2><CENTER>SALES REPORT</CENTER></H2>'

Of course, for this to work your Web site must have a file named LOGO.GIF that contains
your company's logo.

Figure 39 (page 307) uses TITLE statements similar to the ones shown above. (So do the
reports on page 312 and page 317.)

You can also put an tag in the same TITLE statement as your title text. For example:
TITLE: 'SALES REPORT'

Notice the ALIGN=MIDDLE parm in the above tag. It tells the Web browser to align the
subsequent text with the middle (height wise) of the graphic.

A more powerful (but more complicated) way of combining text and graphics in the title
is to use an HTML table. That technique is discussed under "Using HTML Tables in your
Web Report" (page 312).
Chapter 5. How to Make a Web Report 305

Putting Graphics in the Body of Your Report

You can also put tags in your COLUMNS statement to include a graphic in each detail
line of the report. In other words, your report can have one or more columns of graphics,
instead of text. In this case, of course, you do not want to show the same graphic in every
detail line. You want a graphic that is related to the data in the rest of that particular report
line. Use a COMPUTE statement to dynamically build an appropriate tag for each
report line.

For example, assume that we want to produce a personnel directory for the Web. We want
the directory to include each employee's photograph. Further assume that our Web site has
photographs of the employee's stored in JPG files. The photograph files are named
EMPnnn.JPG, where nnn is the employee's employee number. We would use the following
COMPUTE statement to build the correct tag for the report detail lines:

COMPUTE: PICTURE-TAG = ''

The COMPUTE statement above builds a unique tag for each employee, based on their
employee number. For example, the PICTURE-TAG field for employee number 044 will
contain this text: .

We can then use this PICTURE-TAG field in our COLUMNS statement:
COLUMNS: PICTURE-TAG LAST-NAME FIRST-NAME EMPL-NUM HIRE-DATE

The first column of the resulting Web report is a column of employee pictures. Figure 39
uses the above statements.

Notice how we handled the column headings in Figure 39. We specified NOCOLHDGS to
suppress the default column headings. Then we used extra TITLE statements to build our
own column headings. (We also used an empty TITLE statement to put a blank line between
the report titles and the column headings.)

Why didn't we just use Spectrum Writer's default column headings? Because adding a
"picture" column to a report tends to throw off the alignment of all of the following column
headings (and of the total values, as well). Remember that when Spectrum Writer formats
its report, the "picture" column just contains text (the tag) like any other column.
Later, the Web browser strips away these tags in the detail lines and replaces them
with actual images. Those images (photographs, in this example) take up a different
amount of space than the tag took up. Since no similar substitution takes place in the
column heading lines (or in the total lines) their spacing no longer matches the detail line
spacing.

When including graphics in the body of your report, you will probably want to use this
technique to control exactly how your column headings look. Similarly, use the BREAK
statement FOOTING parm to precisely control how your total lines look (as we also did in
Figure 38 on page 304).

Putting Graphics in the Body of Your Report
306 Spectrum Writer User’s Guide

Putting Graphics in the Body of Your Report
Figure 39. A Web report containing graphics in the title and body

These Control Statements:

OPTION: HTML('ABC COMPANY PERSONNEL DIRECTORY')
OPTION: NOCOLHDGS
INPUT: EMPL-FILE
TITLE: '<CENTER></CENTER>'
TITLE: '<CENTER>' 0
 'ONLINE PERSONNEL DIRECTORY</CENTER>'
TITLE:
TITLE: ' EMPL HIRE' /
TITLE: 'PHOTO LAST NAME FIRST NAME NUM. DATE'
 ' CITY ST ZIP' /
COMPUTE: PICTURE-TAG=''
COLUMNS: PICTURE-TAG LAST-NAME FIRST-NAME EMPL-NUM HIRE-DATE
 CITY STATE ZIP
SORT: LAST-NAME

Result in this Lotus 1-2-3 Spreadsheet:
Chapter 5. How to Make a Web Report 307

Putting Graphics at Control Breaks

You can also use tags in the BREAK statement, to place graphics at your report's
control breaks. The report in Figure 41 (page 310) shows an example of this.

Putting Hot Links in your Web Report

Hot links (or "hypertext links") are areas of your Web report that viewers can click on to
obtain some action. For example, clicking on a hot link might cause the browser to jump
to a different part of the report (the Grand Totals, for example). Or it might jump to a
different Web page altogether (for example, to a Web page describing a particular product
in a sales report).

Hot links can also invoke an audio player or even a video clip player. Viewers could click
on a product name in your report, for example, and automatically be shown a video
demonstrating that product in use.

To create a hot link in your report, surround your "hot text" (that is, the text that the viewer
should click on) with the and ("anchor") tags. The url in the tag will
determine what action is taken when the viewer clicks on the text.

If the url is the name of a Web page (for example, an HTML file), the browser will jump to
that Web page when the viewer clicks on the hot link:

TITLE: '' 0
 'CLICK HERE TO READ MORE ABOUT THE ABC COMPANY'

If the url is the name of a label within an HTML file (even within the Web report itself) the
browser will jump to that specific location within that Web page:

TITLE: 'CLICK HERE TO JUMP TO EAST REGION'

If the url is the name of an audio file (such as a .WAV, .AU or .MID file), the browser will play
that sound file when the viewer clicks the hot link:

TITLE: '' 0
 'CLICK HERE TO HEAR THE CHAIRMAN''S GREETING'

If the url is the name of a video clip (such as an .AVI file) the browser will play that video
clip when the viewer clicks the hot link.

TITLE: '' 0
 'CLICK HERE TO SEE A VIDEO ABOUT ABC COMPANY''S PRODUCTS'

As mentioned, hot links can be used to let viewers easily move around within the report
itself. The report in Figure 41 (page 310) shows an example of using hot links in this way.
Viewers can click on one of the hot texts at the beginning of the report to go directly to the
region they are interested in, or to the Grand Totals. And at the bottom of the report, there
is a another hot link to take them back to the top of the report.
308 Spectrum Writer User’s Guide

Putting Hot Links in your Web Report
Figure 40 shows the control statements used to create the report in Figure 41. As you can
see in Figure 40, we used PRESCRIPT options to put five hot link texts ahead of the report.
(The PRESCRIPT option puts lines of text before the beginning of the report itself.) The urls
in these links are HTML "labels" within our own report named EAST, NORTH, SOUTH, WEST
and GRAND. We used a POSTSCRIPT option to write one other hot link text at the end of the
report. It references a label called TOP.

To make these links work, the output must contain the six labels (TOP, EAST, NORTH, etc.)
at the appropriate place within the report. HTML labels are assigned with
tags. We used another PRESCRIPT option to put the TOP label at the top of the report. And
we used BREAK statement HEADING parms to put the four regional labels at the beginning
of their respective control groups. Finally we used the Grand Total control break FOOTING
parm to supply the GRAND label at the Grand Total lines.

Figure 42 (page 311) shows the actual HTML output file created by Spectrum Writer.

Note: We were able to provide hot links to each control group in this report because
we knew ahead of time all the values that the REGION variable would have. This
particular technique can only be used when you know the values of your control
break variable in advance.

OPTION: HTML('ABC COMPANY -- SALES BY REGION')
 NOUNDERSCORES
 PRESCRIPT('')
 PRESCRIPT('CLICK HERE TO JUMP TO EAST REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO NORTH REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO SOUTH REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO WEST REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO GRAND TOTALS')
 POSTSCRIPT('CLICK HERE TO RETURN TO TOP OF REPORT')
TITLE:'<H1><CENTER>ABC COMPANY SALES BY REGION</CENTER></H1>'
INPUT: SALES-FILE
COMPUTE: REGION-IMG = '<IMG SRC=REG' + #LEFT(REGION,1) +
 '.GIF ALIGN=MIDDLE>'
COLUMNS: REGION(NOREPEAT) EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION NOTOTALS
 HEADING('')
 HEADING(REGION-IMG)
 HEADING(' ')
 FOOTING(' ')
 FOOTING('<I>' 0
 'TOTALS FOR' REGION 'REGION' 7 AMOUNT(TOTAL) TAX(7,TOTAL)
 '</I>')
 FOOTING('<HR>')
BREAK: #GRAND
 FOOTING('')

Figure 40. Control statements used to create a Web report with “hot links”
Chapter 5. How to Make a Web Report 309

Putting Hot Links in your Web Report
Figure 41. Two screens from a Web report with “hot links”
310 Spectrum Writer User’s Guide

Putting Hot Links in your Web Report
<HTML>
<HEAD>
<TITLE>ABC COMPANY -- SALES BY REGION</TITLE>
</HEAD>
<BODY>
<PRE>

CLICK HERE TO JUMP TO EAST REGION
CLICK HERE TO JUMP TO NORTH REGION
CLICK HERE TO JUMP TO SOUTH REGION
CLICK HERE TO JUMP TO WEST REGION
CLICK HERE TO JUMP TO GRAND TOTALS
 <H1><CENTER>ABC COMPANY SALES BY REGION</CENTER></H1>

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
 SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
 MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
 MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66

<I>TOTALS FOR EAST REGION 112.86 6.77 </I>
<HR>

NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
 JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
 JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
 JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
 JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07

<I>TOTALS FOR NORTH REGION 386.69 23.22 </I>
<HR>

 (additional lines not shown)

WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
 BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
 BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22

<I>TOTALS FOR WEST REGION 282.73 16.97 </I>
<HR>

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CLICK HERE TO RETURN TO TOP OF REPORT
</PRE>
</BODY>
</HTML>

Figure 42. the HTML output file for a Web report with “hot links”
Chapter 5. How to Make a Web Report 311

Using HTML Tables in your Web Report

If you like, you can use HTML tags to format your Web report as a table. HTML tables are
often used as a tool for organizing data on a Web page. One common use of tables is to
align multiple lines of text with a single image.

HTML tables consist of a number of rows. Within each row is one or more data cells (which
form the columns). Each data cell can contain report text and/or an image.

Surround your HTML table with <TABLE> and </TABLE> tags. Use the <TR> tag to start a new
table row. Use the <TD> tag to start each new data cell within a row.

The Web report in Figure 43 incorporates two separate HTML tables. (Figure 44 (page 313)
shows the control statements used to create this report. Figure 45 (page 314) shows the
actual HTML output file created by Spectrum Writer for this report.)

The first table contains only the title information. (This table was drawn without borders,
so it doesn’t look like a typical table.) We used the table as a convenient way to align
multiple lines of text with the logo graphic. This table has just one row. That row contains
two cells. The first cell contains the logo image. The second cell contains the two lines of
title text. Here are the statements we used to build this table:

PRESCRIPT('<TABLE><TR><TD>')
PRESCRIPT('<TD ALIGN=CENTER>')
PRESCRIPT('ABC COMPANY')

Figure 43. A Web report that uses “tables”
312 Spectrum Writer User’s Guide

Using HTML Tables in your Web Report
PRESCRIPT('PERSONNEL DIRECTORY')
PRESCRIPT('</TABLE>')

Notice that we used PRESCRIPT options to write out this HTML code once at the beginning
of the report. That means that our title will only appear once at the top of the whole report.
By specifying the NOTITLES option (see Figure 44), we suppressed the regular report titles
at the top of each page.

In the PRESCRIPT statements above, the <TABLE> tag defines the beginning of the table.
Since we did not specify a "BORDER=n" parm in this tag, this table has no visible border or
grid lines. The first (and only) row in this table is defined with the <TR> tag. The <TD> tag
marks the beginning of the first cell in this row. In this cell, we just specified the
tag for the company's logo graphic. We then started the second cell with another <TD> tag.
Within this cell are two lines of text. We put different tags around each line to make
them different colors, fonts and sizes. Finally, we ended the table by specifying the
</TABLE> tag.

The second table in our report contains the main body of the report. We also used
PRESCRIPT options to write the HTML code for the initial part of this table:

PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')
PRESCRIPT('<TR><TD>PHOTO<TD>NAME & ADDRESS<TD>EMP#<TD>DEPT<TD>ACCOUNTS<
 TD>SEX<TD>HIRE DATE<TD>TELEPHONE')

For this table, we chose to show grid lines by specifying BORDER=1 in the <TABLE> tag. The
first row of our table, also defined by a PRESCRIPT option, contains our table's column
headings. (Notice that this PRESCRIPT text was too long to fit onto a single line. We
continued the literal by typing up to column 72 in the first line, and then continuing in
column 2 of the next line.)

OPTION: NOTITLES NOGRANDTOTALS COLSPACE(0)
 HTML('ABC COMPANY PERSONNEL DIRECTORY')
 PRESCRIPT('<TABLE><TR><TD>')
 PRESCRIPT('<TD ALIGN=CENTER>')
 PRESCRIPT('ABC COMPANY')
 PRESCRIPT('PERSONNEL DIRECTORY')
 PRESCRIPT('</TABLE>')
 PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')
 PRESCRIPT('<TR><TD>PHOTO<TD>NAME & ADDRESS<TD>EMP#<TD>DEPT<TD>ACCOUNTS<
 TD>SEX<TD>HIRE DATE<TD>TELEPHONE')
 POSTSCRIPT('</TABLE>')
INPUT: EMPL-FILE
COMPUTE: PICTURE-TAG = ''
COMPUTE: NAME = #COMPRESS(LAST-NAME 0 ',' 1 FIRST-NAME)
SORT: NAME
COLUMNS: '<TR><TD>' PICTURE-TAG
 '<TD>' NAME '
' ADDRESS '
' CITY 1 STATE 1 ZIP
 '<TD>' EMPL-NUM
 '<TD>' DEPT-NUM
 '<TD>' NUM-ACCOUNTS
 '<TD>' SEX
 '<TD>' HIRE-DATE
 '<TD>' TELEPHONE

Figure 44. Control statements used to create a Web report with “tables”
Chapter 5. How to Make a Web Report 313

Using HTML Tables in your Web Report
<H
TM

L>
<H

EA
D>

<T
IT

LE
>A

BC
 C

OM
PA

NY
 P

ER
SO

NN
EL

 D
IR

EC
TO

RY
</

TI
TL

E>
</

HE
AD

>
<B

OD
Y>

<P
RE

>
<T

AB
LE

><
TR

><
TD

><
IM

G
SR

C=
WO

RL
D.

GI
F

WI
DT

H=
27

5
AL

IG
N=

MI
DD

LE
>

<T
D

AL
IG

N=
CE

NT
ER

><
FO

NT
 C

OL
OR

=R
ED

 S
IZ

E=
7

FA
CE

="
CU

PE
RT

IN
O"

>
AB

C
CO

MP
AN

Y<
/F

ON
T>

<F
ON

T
CO

LO
R=

BL
UE

 S
IZ

E=
6

FA
CE

=B
AS

SO
ON

>P
ER

SO
NN

EL
 D

IR
EC

TO
RY

</
FO

NT
><

/T
AB

LE
>

<T
AB

LE
 B

OR
DE

R=
1

CE
LL

PA
DD

IN
G=

2>
<T

R>
<T

D>
PH

OT
O<

TD
>N

AM
E

&
AD

DR
ES

S<
TD

>E
MP

#<
TD

>D
EP

T<
TD

>A
CC

OU
NT

S<
TD

>S
EX

<T
D>

HI
RE

 D
AT

E<
TD

>T
EL

EP
HO

NE
<T

R>
<T

D>
<I

MG
 S

RC
=E

MP
04

4.
JP

G
WI

DT
H=

60
><

TD
>B

AK
ER

,
VI

VI
AN

 <

BR
>6

67
 C

RE
ST

HA
VE

N
BL

VD
 <

BR
>W

AL
NU

T
CR

EE
K

 C

A
94

59
8<

TD
>0

44
<T

D>

4<
TD

>

 1
47

<T
D>

F<
TD

>0
6/

04
/8

2<
TD

>(
41

5)
 5

55
-1

20
9

<T
R>

<T
D>

<I
MG

 S
RC

=E
MP

04
3.

JP
G

WI
DT

H=
60

><
TD

>C
HR

IS
TO

PH
ER

SO
N,

 M
EL

IS
SA

 <
BR

>6
17

52
 T

IM
BE

RI
DG

E
RD

 <
BR

>P
HO

EN
IX

 A
Z

90
50

2<
TD

>0
43

<T
D>

1<

TD
>

65
<T

D>
F<

TD
>0

8/
15

/8
1<

TD
>(

60
2)

 5
55

-4
55

6
<T

R>
<T

D>
<I

MG
 S

RC
=E

MP
03

9.
JP

G
WI

DT
H=

60
><

TD
>J

OH
NS

ON
,

LI
ND

A

 <

BR
>1

2
LI

NC
OL

N
DR

IV
E

 <

BR
>S

AN
TA

 R
OS

A

 C

A
95

41
2<

TD
>0

39
<T

D>

2<
TD

>

 1
04

<T
D>

F<
TD

>1
1/

25
/7

9<
TD

>(
41

5)
 5

55
-6

78
5

<T
R>

<T
D>

<I
MG

 S
RC

=E
MP

03
7.

JP
G

WI
DT

H=
60

><
TD

>J
OH

NS
ON

,
TH

OM
AS

 <
BR

>4
00

0
LI

ND
A

VI
ST

A

 <
BR

>S
CO

TT
SD

AL
E

 A
Z

90
01

2<
TD

>0
37

<T
D>

1<

TD
>

 1

28
<T

D>
M<

TD
>0

6/
21

/7
5<

TD
>(

60
2)

 5
55

-6
65

4
<T

R>
<T

D>
<I

MG
 S

RC
=E

MP
03

6.
JP

G
WI

DT
H=

60
><

TD
>J

ON
ES

,
JE

RR
Y

 <

BR
>1

25
 M

AI
N

ST
RE

ET

 <

BR
>S

AN
 F

RA
NC

IS
CO

 C

A
94

01
2<

TD
>0

36
<T

D>

2<
TD

>

78

<T
D>

M<
TD

>0
1/

31
/8

0<
TD

>(
41

5)
 5

55
-7

65
3

<T
R>

<T
D>

<I
MG

 S
RC

=E
MP

04
0.

JP
G

WI
DT

H=
60

><
TD

>M
AC

DO
NA

LD
,

RI
CH

AR
D

 <
BR

>5
25

 F
OO

TH
IL

L
DR

IV
E

 <
BR

>P
LE

AS
AN

TO
N

 C
A

94
56

8<
TD

>0
40

<T
D>

2<

TD
>

 6
<T

D>
M<

TD
>0

7/
04

/8
2<

TD
>(

41
5)

 5
55

-9
88

7
<T

R>
<T

D>
<I

MG
 S

RC
=E

MP
04

2.
JP

G
WI

DT
H=

60
><

TD
>M

OR
RI

SO
N,

 M
IC

HA
EL

 <

BR
>9

8
SO

UT
H

LA
KE

SI
DE

 D
R<

BR
>G

LE
ND

AL
E

 C

A
91

20
2<

TD
>0

42
<T

D>

3<
TD

>

 1
54

<T
D>

M<
TD

>1
1/

30
/7

9<
TD

>(
81

8)
 5

55
-4

74
8

<T
R>

<T
D>

<I
MG

 S
RC

=E
MP

04
1.

JP
G

WI
DT

H=
60

><
TD

>S
IM

PS
ON

,
TI

MO
TH

Y

 <
BR

>8
98

76
 W

ES
T

53
 S

TR
EE

T<
BR

>A
RC

AD
IA

 C
A

91
00

6<
TD

>0
41

<T
D>

3<

TD
>

16
<T

D>
M<

TD
>1

2/
01

/8
2<

TD
>(

81
8)

 5
55

-1
88

7
<T

R>
<T

D>
<I

MG
 S

RC
=E

MP
04

5.
JP

G
WI

DT
H=

60
><

TD
>T

HO
MA

S,
 M

AR
TI

N

 <

BR
>7

78
12

 S
.

HU
NT

IN
GT

ON
 <

BR
>C

ON
CO

RD

 C

A
94

51
9<

TD
>0

45
<T

D>

4<
TD

>

 1
18

<T
D>

M<
TD

>0
6/

04
/8

2<
TD

>(
41

5)
 5

55
-1

15
2

</
TA

BL
E>

</
PR

E>
</

BO
DY

>
</

HT
ML

>

Fi
gu

re
 4

5.
H

TM
L

fil
e

fo
r a

 W
eb

 re
po

rt
w

ith
 "t

ab
le

s"
314 Spectrum Writer User’s Guide

Using HTML Tables in your Web Report
We used a POSTSCRIPT option to specify the closing </TABLE> tag:
POSTSCRIPT('</TABLE>')

The POSTSCRIPT text will appear after the entire report. It simply closes the main report
table.

Between the PRESCRIPT lines and the POSTSCRIPT line will come the actual report lines
specified by the COLUMNS statement:

COLUMNS: '<TR><TD>' PICTURE-TAG
 '<TD>' NAME '
' ADDRESS '
' CITY 1 STATE 1 ZIP
 '<TD>' EMPL-NUM
 '<TD>' DEPT-NUM
 '<TD>' NUM-ACCOUNTS
 '<TD>' SEX
 '<TD>' HIRE-DATE
 '<TD>' TELEPHONE

The COLUMNS statement above begins with a literal containing a <TR> tag. That means that
each detail line of our report will begin with a <TR> tag and become a new table row. We
then used <TD> tags to put each data item into its own separate cell — with one exception.
In the "Name & Address" table column, we included multiple data items in the same cell.
We used
 (break) tags to specify where a new line should be started within the cell.
Note that we used spacing factors of "1" between the fields within the same cell. That
overrides the default spacing factor of "0" that we specified with the COLSPACE(0) option
(see page 313.) We specified the COLSPACE(0) option just to keep from having to type 0's
around all of the HTML tag literals in the COLUMNS statement. The PICTURE-TAG field used
in the above statement was discussed on page 306.

Using HTML Tables in your Web ReportUsing Dynamic HTML Tags

When you put a literal containing an HTML tag in your COLUMNS statement, that tag appears
in all of the report detail lines. (It is also copied into the column heading lines and control
break total lines.) What if you want to use a different HTML tag for different report lines?
You can build dynamic HTML tags to do that.

Dynamic HTML tags are tags whose contents vary, depending on the other data in the report
line. Dynamic HTML tags are assigned to COMPUTE fields instead of being specified as
literals.

We have already seen some examples of dynamic HTML tags. The reports on page 307 and
page 312 built dynamic tags for each employee's photograph. And on page 310 we
built dynamic tags to display regional logos at the beginning of each region's data.

Now let's look at another use of dynamic HTML tags. Assume that we want our Web report
to show sales amounts that are over $100 in green and all other sales amounts in red.
Instead of putting a literal tag in our COLUMNS statement, we would use these
statements to compute a dynamic tag:

COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')
Chapter 5. How to Make a Web Report 315

Using Dynamic HTML Tags
Notice that we padded the "red" tag with enough blanks to make it the same size as the
"green" tag. This is important to keep the resulting report properly aligned. Remember that
the Web browser strips all HTML tags from the report before displaying it to the viewer. To
preserve column alignment, the same number of bytes must be stripped from all report
lines.

In our COLUMNS statement, we now use this COLOR-TAG field instead of a literal tag:
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER
 COLOR-TAG('<!--xxxxxxxxxxx-->') 0 AMOUNT TAX 0 ''('<!---->')

In the report detail lines, either "" or "" will now appear
before the AMOUNT field. (You can see this on page 318.) In both cases, the same closing
tag ("") appears after the TAX column.

The report in Figure 46 uses the above statements.

Notice the unusual column heading for the COLOR-TAG column. Tags that begin with "<!--"
and end with "-->" are considered HTML "comment" tags. You can place any number of
other characters between these tags. Comment tags do not affect the formatting of the Web
report in any way. However, they are stripped from the Web page like all other HTML tags.

This special column heading was needed to preserve correct alignment of the report.
Remember that when you put an HTML tag literal in the COLUMNS statement, Spectrum
Writer automatically copies the literal tag into all of the column heading lines as well. That
ensures that the same amount of HTML text is stripped from the column headings as from
the detail lines, which allows the column headings to remain aligned over the data.

However, Spectrum Writer does not copy dynamic HTML tags (that is, tags contained within
COMPUTE fields) into the column heading. This means that in the resulting report, the detail
lines would have an HTML tag which the column heading lines do not have. When those
HTML tags are stripped from the detail lines (but not from the column heading lines) the
column headings become skewed.

Thus, for our dynamic COLOR-TAG field we specified our own column heading containing
an HTML comment tag. We made sure that the HTML comment in the column heading was
the same length as the HTML tags appearing in the detail lines. (You can see this by looking
at the output on page 318.) As a result, the same number of HTML bytes are removed from
the column headings lines and from the detail lines. The resulting report remains aligned
in your web browser.

If you look at the actual output on page 318, you will notice something else. Although we
only specified one line of override column headings, Spectrum Writer used it for all three
column heading lines. This is necessary to keep all column headings properly aligned.
Spectrum Writer does this for you automatically (as long as either the HTML or HTMLAID
option is specified).

We also specified an HTML comment as the column heading for the closing literal.
Without this override column heading, Spectrum Writer would have copied the
literal itself into the column headings. That would have caused an HTML error since there is
no corresponding opening tag in the column heading lines.

The default Grand Total line would also have been skewed for similar reasons. (It would
not contain the dynamic tag, and would contain an unmatched
316 Spectrum Writer User’s Guide

Using Dynamic HTML Tags
Figure 46. A Web report that uses dynamic HTML tags

These Control Statements:

OPTION: HTML('ABC COMPANY -- COLOR CODED SALES')
TITLE: '<CENTER></CENTER>'
TITLE: '<CENTER><H2><I>SALES OVER $100 IN GREEN</I></H2></CENTER>'
INPUT: SALES-FILE
COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER
 COLOR-TAG('<!--xxxxxxxxxxx-->') 0 AMOUNT TAX 0 ''('<!---->')
BREAK: #GRAND NOTOTALS
 FOOTING('GRAND TOTALS' 40 AMOUNT(TOTAL) TAX(TOTAL))

Result in this Web Report:
Chapter 5. How to Make a Web Report 317

Using Dynamic HTML Tags
 tag.) Therefore, we used a BREAK statement to suppress the default Grand Totals.
Then we used a FOOTING parm to specify precisely how the Grand Total line should look.

There is also another technique you can use to align the column headings in reports that
have dynamic HTML tags. That is to suppress the default column headings by specifying the
NOCOLHDGS option. Then use TITLE statements to specify your own column headings. The
report in Figure 39 (page 307) illustrates this.

Using Dynamic HTML TagsUsing the PRESCRIPT and POSTSCRIPT Options

The PRESCRIPT option is used to write one or more lines of text before the beginning of the
report. The POSTSCRIPT option is used to write lines of text after the end of the report.

In Figure 41 (page 310), we used these options to put hot link texts and HTML labels at the
beginning and end of the report.

<HTML>
<HEAD>
<TITLE>ABC COMPANY -- COLOR CODED SALES</TITLE>
</HEAD>
<BODY>
<PRE>
 <CENTER></CENTER>
 <CENTER><H2><I>SALES OVER $100 IN GREEN</I></H2></CENTER>

 EMPL SALES SALES <!--xxxxxxxxxxx--> <!---->
REGION NAME DATE TIME CUSTOMER <!--xxxxxxxxxxx--> AMOUNT TAX <!---->
______ __________ ________ ________ _______________ <!--xxxxxxxxxxx-->______________ ___________<!---->

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

GRAND TOTALS 1,383.66 83.05
</PRE>
</BODY>
</HTML>

Figure 47. HTML file with dynamic HTML tags
318 Spectrum Writer User’s Guide

Using the PRESCRIPT and POSTSCRIPT Options
Another use of the PRESCRIPT and POSTSCRIPT options is to provide formatting tags that
apply to your entire report. For example:

OPTION: HTML
OPTION: PRESCRIPT('')
OPTION: POSTSCRIPT('')

The first statement above tells Spectrum Writer to begin your output file with the standard
opening HTML tags. These tags will be followed by the tag specified in
the PRESCRIPT option above. Then the actual report will follow. After the report, the
closing tag specified by the POSTSCRIPT option will appear, followed by Spectrum
Writer's other standard closing HTML tags. When viewed on the Web, all text in the report
(titles, column headings, data, Grand Totals) will be red.

The above example uses the PRESCRIPT and POSTSCRIPT options in addition to the HTML
option. You can also use these options instead of the standard HTML option. This allows you
to specify all of the HTML tags yourself. For example:

OPTION: HTMLAID
OPTION: PRESCRIPT('<HTML>')
OPTION: PRESCRIPT('<HEAD>')
OPTION: PRESCRIPT('<TITLE>ABC COMPANY SALES REPORT</TITLE>')
OPTION: PRESCRIPT('</HEAD>')
OPTION: PRESCRIPT('<BODY BACKGROUND="BACKLOGO.JPG">')
OPTION: PRESCRIPT('<PRE>')
*
OPTION: POSTSCRIPT('</PRE>')
OPTION: POSTSCRIPT('</BODY>')
OPTION: POSTSCRIPT('</HTML>')

The statements above show an alternative to using the HTML option. These statements result
in a Web report similar to that produced by just using the HTML option. However, we did
add one special option to the BODY tag. The BACKGROUND option names an image file on
the Web site that contains a corporate logo graphic. That image will be repeated as
necessary and used as the background for the Web report. This option can point to any
image file on your site. For example, instead of a logo, you might want to use an image file
that contains a "textured" background for your report.

Another option you can specify in the BODY tag is the BGCOLOR option. Use it to specify a
solid background color for your Web report. For example:

OPTION: PRESCRIPT('<BODY BGCOLOR=PINK>')

Note: If you choose to write all of your own HTML tags (rather than use the HTML
option), you should also specify the HTMLAID option (page 564). That option helps
solve some potential alignment problems in reports that contain HTML tags.
Chapter 5. How to Make a Web Report 319

Summary of Options for Web Reports

The following table summarizes some of the OPTIONS statement options that are useful
when creating Web reports.

OPTIONS RELATED TO WEB REPORTS

OPTION DESCRIPTION

HTMLAID

Tells Spectrum Writer that you will be putting HTML tags
within your report and that Spectrum Writer should
recognize and support those tags. This option itself does not
cause Spectrum Writer to add any HTML code to your report.
See the OPTIONS statement syntax for a complete
description of the HTMLAID option (page 564). Example:

OPTION: HTMLAID

HTML[('title')]

Tells Spectrum Writer to wrap standard HTML code around
the report. It also lets you specify an optional HTML title for
the Web page. This option also turns on the HTMLAID option.
Examples:

OPTION: HTML

OPTION: HTML('ABC COMPANY SALES REPORT')

NOCC

Tells Spectrum Writer not to begin each output line with a
"carriage control" character. Such characters are only
necessary when the output is being sent to a mainframe
printer. You do not need to specify NOCC if you specify
either the HTML or HTMLAID options, since these options
automatically invoke the NOCC option. Example:

OPTION: NOCC

NOCOLHDGS

Tells Spectrum Writer to not print column headings for the
report. When the default column headings have alignment
problems, specify this option and then use TITLE statements
to specify your own column headings. Example:

OPTION: NOCOLHDGS

NOUNDERSCORES

Tells Spectrum Writer not to underscore the column
headings in the report. This is often desirable for reports
that will be viewed online, since the underscore line uses up
an additional line on the screen. Example:

OPTION: NOUNDERSCORES
320 Spectrum Writer User’s Guide

Summary of Options for Web Reports
Summary of Options for Web ReportsCommon HTML Tags

The following table lists some common HTML tags that you may want to use in your Web
reports. Please note, however, that there are a number of different versions of HTML and it
is constantly evolving as new versions of Web browsers are released. In addition, different
browsers sometimes process the same HTML tag in slightly different ways. At the time of
publication, the HTML tags shown below work as described. Of course, we cannot guarantee
they will always work the same way in the future. Also, future versions of HTML will
undoubtedly include many new features not documented here. You can always perform a
web search to learn what features are available in the current version of HTML. At the time
of this writing, one online resource for the current HTML specifications is at WWW.W3.ORG.

POSTSCRIPT('text')

Tells Spectrum Writer to write this text once, after the ac-
tual report. This option allows you to specify any closing
HTML tags that you need. You can have as many POST-
SCRIPT options as you want. If the HTML option is also spec-
ified, the POSTSCRIPT text(s) will appear after the report
and immediately before the closing HTML tags created by
the HTML option. Example:

OPTION: POSTSCRIPT(<'/FONT>')

PRESCRIPT('text')

Tells Spectrum Writer to write this text once, before the ac-
tual report. This option allows you to specify any opening
HTML tags that you need. You can have as many PRESCRIPT
options as you want. If the HTML option is also specified, the
PRESCRIPT text(s) will appear before the report and imme-
diately after the initial HTML tags created by the HTML op-
tion. Example:

OPTION: PRESCRIPT('')

TITLEONCE

Tells Spectrum Writer to write out the report titles (and
column headings) only once — at the beginning of the
report. This prevents titles from seeming to appear
"randomly" throughout the report when a viewer pages
through it online. Example:

OPTION: TITLEONCE

OPTIONS RELATED TO WEB REPORTS (CONTINUED)

OPTION DESCRIPTION
Chapter 5. How to Make a Web Report 321

Common HTML Tags
COMMON HTML TAGS

HTML TAG DESCRIPTION

 ...

Specifies the beginning of a hypertext link. When
the user clicks on the text or graphic within these tags,
the action implied by the "url" will be performed.

TITLE: '' 0
 'CLICK HERE TO READ ABOUT THE ABC COMPANY'

Specifies a label that can be referred to in a hypertext
link. It requires no closing tag.

OPTION: PRESCRIPT('')

 ...

Makes the text within the tags bold.

TITLE:'SALES BY REGION'

<BLINK> ... </BLINK>

Makes the text within the tags blink on and off. (This
option may only work with Netscape browsers.)

TITLE: 'SALES BY <BLINK>REGION</BLINK>'

Inserts a line "break" in the report. It requires no
closing tag.

COLUMNS: REGION CUSTOMER AMOUNT '
'

<CENTER>...</CENTER>

Centers the text within the tags.

TITLE: '<CENTER>SALES BY REGION</CENTER>'

<FONT
[SIZE=n]
[FACE="fontname"]
[COLOR=color]
 ...

This specifies information about the font to be used
for the text within the tags. Font sizes between 1
(smallest) and 7 (largest) are currently supported. For
example:

TITLE: 'SALES BY REGION'

The 16 colors currently supported by name in most
browsers are: black, olive, teal, red, blue, maroon,
navy, gray, lime, fuchsia, white, green, purple, silver,
yellow and aqua. Example:

TITLE: 'SALES BY REGION'
322 Spectrum Writer User’s Guide

Common HTML Tags
<FONT
[SIZE=n]
[FACE="fontname"]
[COLOR=color]
 ...

The face parm specifies the name of the font to be
used. However, to preserve the column alignment of
your report, in most cases you should only use non-
proportional fonts. Another caution: the font you
specify may not be available on your viewer's PC, and
a substitute font may be substituted by the browser,
causing unexpected results. Use this option with
caution. Example:

TITLE: 'SALES BY REGION'

<H1>...</H1>
<H2>...</H2>
...
<H6>...</H6>

This formats the text within the tags as a "level 1" (or
2, 3, etc.) header.

TITLE: '<H1>SALES BY REGION</H1>'

<HR>

This produces a "horizontal rule" (a line) in your
report. It requires no closing tag.

TITLE: 'ABC COMPANY SALES REPORT'
TITLE: '<HR>'

<I> ... </I>

This makes the text within the tags italic.

TITLE: 'SALES BY <I>REGION</I>
'

<IMG SRC="url"
 [ALIGN=TOP/
 MIDDLE/BOTTOM]
 [WIDTH=nnn]>

Specifies that a graphic image should be placed here.
The "url" must be the name of the graphic file, which
will often be a .gif or a .jpg file. The optional ALIGN
parm determines how any text that follows the image
will be aligned with it. The optional WIDTH parm
specifies the size that the image should take up in the
display. This tag requires no closing tag.

TITLE: ''

<MARQUEE>...</MARQUEE>

Makes the text within the tag scroll across the
screen. (This option may only work with Microsoft
browsers.)

TITLE: 'SALES BY<MARQUEE>REGION</MARQUEE>'

<SMALL> ... </SMALL>

Makes the text within the tags smaller.

TITLE: 'SALES BY <SMALL>REGION</SMALL>'

COMMON HTML TAGS (CONTINUED)

HTML TAG DESCRIPTION
Chapter 5. How to Make a Web Report 323

Common HTML Tags
_{...}

Makes the text within the tags subscripts (smaller
and lower than the regular baseline).

TITLE: 'SALES BY _{REGION}'

^{...}

Makes the text within the tags superscripts (smaller
and higher than the regular baseline).

TITLE: 'SALES BY ^{REGION}'

<TABLE
 [BORDER=n]
 [CELLPADDING=n]
 [CELLSPACING=n]>
 ...
</TABLE>

Specifies that the text and images within these tags
should be formatted as a table. The optional BORDER
parm determines whether there will be a border
around the cells of the table. The optional
CELLPADDING value tells how much space to leave
between the border of a cell and its contents. The
optional CELLSPACING value tells how much space to
leave between the cells of the table. For example:

OPTION: PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')

<TD>

Specifies the beginning of a new table item ("data
cell") within a table row. It requires no closing tag.
For example:

COLUMNS: '<TR>' '<TD>' REGION '<TD>' EMPL-NAME

<TR>

Specifies the beginning of a new table row (within a
table). It requires no closing tag. For example:

COLUMNS: '<TR>' '<TD>' REGION '<TD>' EMPL-NAME

<U> ... </U>

Underlines the text within the tags.

TITLE: 'SALES BY <U>REGION</U>'

<!–– ... ––>

This is an HTML comment. It has no effect on what the
viewer sees on the Web browser. It can be used to
document your HTML code. It can also be used in some
situations to help align a Web report. Use it to strip
excess bytes from a line of Spectrum Writer output.
(See page 315 for an example of this.)

COMMON HTML TAGS (CONTINUED)

HTML TAG DESCRIPTION
324 Spectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 6. How to Define Your Input Files

Chapter Table of Contents

Chapter 6. How to Define Your Input Files . 325

How to Define a File . 328
How to Use the FILE Statement –– OS/390 . 328
How to Use the FILE Statement –– VSE . 331

How to Define a Field . 333
How to Define a Character Field . 333
How to Define a Numeric Field . 335
Should You Define a Field as Character or Numeric? . 339
How to Define a Date Field . 340
How to Define a Time Field . 344
How to Define a Bit Field . 347
How to Specify a Field’s Column Heading . 350
How to Specify a Field’s Location in a Record . 350
Variably Located Record Segments . 353
How to Define Arrays . 355
How to Specify What File a Field Belongs To . 356
How to Define a Field Created by a Data Exit . 357

Keeping Your File Definitions in a Copy Library . 360
Including the Definition Statements "In–Line" . 360
Using the Spectrum Writer Copy Library . 363
How to Use a Copy Library Alias . 367
Defining One–Time Fields . 368

Using Cobol and Assembler Record Layouts . 369
Live Runs Using Cobol Record Layouts . 370
Live Runs Using Assembler Record Layouts . 372
Handling Date and Time Fields in Record Layouts . 375
How Spectrum Writer Handles Cobol Arrays . 377
Converting Cobol and Assembler Layouts to FIELD Statements . 378
How to Copy Cobol and Assembler Record Layouts from Libraries . 382
Mixing FIELD Statements with COBOL and ASM Statements . 383
The Starting Column of a Cobol or Assembler Layout . 384
The "Default Location" After a Cobol or Assembler Layout . 384
The Scope of the COBOL and ASM Statements . 384
Technical Notes on Cobol Support . 385
Technical Notes on Assembler Support . 387
Chapter 6. How to Define Your Input Files 325

Chapter 6. How to Define Your Input Files

How to Define Your Input Files This chapter is intended primarily for programmers "setting up" new files for Spectrum
Writer. Users who simply request reports and PC files from input files that have already
been set up do not need to read this chapter.

Spectrum Writer needs to know a few things about your company’s files before it can use
those files to produce reports. For example, it needs to know: whether a file is a VSAM file
or not; the names of the fields present in the file; which column each field begins in, and
so on.

There are two control statements that supply this information about your files to Spectrum
Writer:

! the FILE statement, which gives information about the overall characteristics of a
file

! the FIELD statement, which gives information about one individual field within a
file

A Spectrum Writer file definition simply consists of a single FILE statement, followed by a
number of FIELD statements. (Appendix F, "Files Used in Examples" on page 648 shows
some sample file definitions.)

Defining a file is a one–time thing. You will write these definition statements once and then
save them in Spectrum Writer’s copy library. After that, you can produce as many different
reports and PC files from the file as you like, without having to worry about these definition
statements again.

For this reason a certain amount of care should be given to writing these definition
statements. For example, a little time spent at this point in assigning useful column
headings to each field may save you a lot of time in the future. If you specify a HEADING
parm in your FIELD statement, you will not have to specify column headings in the
COLUMNS statement of every report requested in the future. (Of course, if the field name
itself makes a suitable column heading, then there’s no need to specify a column heading
at all.) Here is an example of specifying a column heading when defining a field:

FIELD: RECA–MSTR–EMPL–FIRST–NAME LEN(20) HEADING(’FIRST NAME’)

Another example is the use of the NOACCUM parm. When defining numeric fields that
should not be totalled (such as employee numbers, cost center numbers, telephone
numbers, social security numbers, etc.) specify the NOACCUM parm in the FIELD statement
to prevent totalling. This keeps the user from having to specify it in each report requested
later on. Here is an example of specifying NOACCUM when defining a field that should not
be totalled:

FIELD: DEPT–NUM TYPE(NUM) LEN(1) NOACCUM

Also, you should specify a FORMAT parm for any field that should normally be displayed
in a special way. For example, a U.S. telephone number will normally be display with
parentheses around the first three digits (the area code) and with a dash before the last 4
digits. If you specify such a PICTURE in the FIELD statement, users won’t need to specify it
326 Spectrum Writer User’s Guide

How to Define Your Input Files
Figure 48. A sample Spectrum Writer file definition

Remarks:
• the FILE statement for Spectrum Writer VSE would be:

FILE: MSTR–FILE ATTR(DASD,'MSTRDD',80,160)

• the common prefix (RECA–MSTR) was dropped to make the field names more user friendly
• for numeric fields, Spectrum Writer always requires the length (in bytes) that a field occupies in the

input record — not necessarily the number of digits it contains
• the DECIMAL parm specifies the number of decimal digits in a field
• the COLUMN(* – 6) parm for HIRE–DATE–YY is used to "back up 6 bytes" to redefine the HIRE–DATE

field
• the OCCURS table in the Cobol layout is defined as four individual fields for Spectrum Writer

These Cobol Statements:

FILE–CONTROL.
 SELECT RECA–MSTR–FILE ASSIGN TO UT–S–MSTRDD.
...
FD RECA–MSTR–FILE
 LABEL RECORDS ARE STANDARD
 RECORD CONTAINS 80 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.

01 RECA–MSTR–RECORD.
 05 RECA–MSTR–LAST–NAME PIC X(20).
 05 RECA–MSTR–FIRST–NAME PIC X(20).
 05 RECA–MSTR–JULIAN–BIRTH–DATE PIC 9(5).
 05 RECA–MSTR–SALARY PIC S9(7)V99 COMP–3.
 05 RECA–MSTR–DEPARTMENT–NUM PIC 9.
 05 RECA–MSTR–HIRE–DATE.
 10 RECA–MSTR–HIRE–DATE–YY PIC 99.
 10 RECA–MSTR–HIRE–DATE–MM PIC 99.
 10 RECA–MSTR–HIRE–DATE–DD PIC 99.
 05 RECA–MSTR–QUARTERLY–SALES–TABLE OCCURS 4 TIMES.
 10 RECA–MSTR–SALES–QTR PIC S9(5)V9(2) COMP–3.
 05 RECA–MSTR–NUMBER–OF–SALES PIC S9(4) COMP.
 05 FILLER PIC X(5).

Are Equivalent to these Spectrum Writer Statements:

FILE: MSTR–FILE DDNAME(MSTRDD) LRECL(80)

FIELD: LAST–NAME LENGTH(20)
FIELD: FIRST–NAME LENGTH(20)
FIELD: BIRTH–DATE TYPE(YYDDD)
FIELD: SALARY LENGTH(5) TYPE(COMP–3) DECIMAL(2)
FIELD: DEPARTMENT–NUM LENGTH(1) TYPE(NUM) NOACCUM
FIELD: HIRE–DATE TYPE(YYMMDD)
FIELD: HIRE–DATE–YY LENGTH(2) TYPE(NUM) COLUMN(* – 6)
FIELD: HIRE–DATE–MM LENGTH(2) TYPE(NUM)
FIELD: HIRE–DATE–DD LENGTH(2) TYPE(NUM)
FIELD: SALES–QTR–1 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–2 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–3 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–4 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: NUMBER–OF–SALES LENGTH(2) TYPE(COMP)
Chapter 6. How to Define Your Input Files 327

How to Define Your Input Files
in COLUMNS statements later on. You may also want to specify the NOCOMMA format for
numeric fields that should not be displayed with commas (such as cost centers, subscription
numbers, etc.) Here are some examples of specifying a display format when defining
fields:

FIELD: TELEPHONE TYPE(NUM) LEN(10) FORMAT(PIC’(999) 999–9999’)
FIELD: COST–CENTER TYPE(NUM) LEN(7) FORMAT(NOCOMMA) NOACCUM

The remainder of this chapter is divided into four sections.

! the first section explains how to use the FILE statement to define the overall
characteristics of a file (below)

! the second section explains how to use FIELD statements to define the individual
fields within the file (page 333)

! the third section describes how to store these statements in a Spectrum Writer
Copy Library, to make requesting reports easy (page 360)

! the fourth section shows how to use Cobol or Assembler record layouts to define
your files to Spectrum Writer. You can use such record layouts in place of a
Spectrum Writer file definition. Or, you can use the record layouts to create a
standard Spectrum Writer file definition (page 369).

Sometimes a picture is worth a thousand words. So, before we get into the details of how
to define files, notice Figure 48 (page 327). It gives you an idea of how a typical Cobol
definition might be defined to Spectrum Writer.

 How to Define Your Input FilesHow to Define a File

This section explains:

! how to use the FILE statement to define a file to Spectrum Writer

! how you can later override aspects of a file definition in the INPUT or READ
statement

Input files are defined to Spectrum Writer with the FILE statement. The parms used in the
FILE statement differ between Spectrum Writer OS/390 and Spectrum Writer VSE. Please
refer to the correct section for your operating system:

! for OS/390, see below
! for VSE, see page 331

How to Use the FILE Statement –– OS/390

There are a number of parms that can be used in a FILE statement to provide information
about a file. (The complete syntax of the FILE statement is found beginning on page 531.)
Only a few of these parms are actually required. The others are optional, and are only
needed in unusual cases.
328 Spectrum Writer User’s Guide

How to Use the FILE Statement –– OS/390
The four things that Spectrum Writer must know about a file are:

! the filename (that is, the "user friendly" name by which it will be referred to in
other Spectrum Writer control statements)

! the TYPE of file (that is, the access method to be used when reading the file)

! the LRECL of the file (that is, the size of the largest record that Spectrum Writer
could encounter when reading the file)

! the DDNAME that identifies the file in the job control language (JCL)

The first item in a FILE statement is always the filename. For example:
FILE: SALES–FILE

The above statement defines a file named SALES–FILE. You may choose any name you like
for a file (within the rules governing file names given on page 446). This is the name that
will be used in Spectrum Writer control statements when referring to this file. It does not
have to be the actual DSNAME ("data set name") or DDNAME of the file.

After the filename parm, the other parm(s) may appear in any order in the FILE statement.

Use the TYPE parm to tell Spectrum Writer what type of file is being defined. This tells
Spectrum Writer which access method to use when performing I/O to the file. Spectrum
Writer supports two types of files:

! SEQUENTIAL (or just SEQ)
! VSAM

If the TYPE parm is not specified, the default file type is SEQUENTIAL. The FILE statement
shown above did not specify a file type, so the SALES–FILE is assumed to be sequential.
Spectrum Writer uses SAM/QSAM I/O with sequential files. The "sequential" file type covers
most non–VSAM files. Sequential files include:

! "flat" disk files, such as those maintained with TSO editors

! members of partitioned data sets (PDS)

! most files stored on magnetic tapes

The second type of file supported by Spectrum Writer is a VSAM file:
FILE: EMPL–FILE TYPE(VSAM)

The above statement defines a file named EMPL–FILE as being a VSAM file. Spectrum Writer
supports KSDS, ESDS and RRDS VSAM files.

Note: you can also use other types of files with Spectrum Writer. However, you
will need to write an I/O Exit program in order to do that. I/O Exits are discussed in
Appendix I, "I/O Exits" (page 673).

Use the DDNAME parm to supply the name of a DD statement that will be present in the
execution JCL. This DD statement will contain the actual DSNAME (data set name) of the file.
Spectrum Writer uses the DDNAME in order to "open" an input file and read from it. For
example:

FILE: SALES–FILE DDNAME(SALESDD)
Chapter 6. How to Define Your Input Files 329

How to Use the FILE Statement –– OS/390
The above statement defines a file named SALES–FILE. When Spectrum Writer needs this
file to produce a report, it will open and read the dataset named in the SALESDD DD
statement in the JCL.

Use the LRECL (logical record length) parm to specify the size of the largest record that the
file will possibly contain. For example:

FILE: SALES–FILE DDNAME(SALESDD) LRECL(5000)

The above statement specifies that a record as large as 5000 bytes may be encountered in
the SALES–FILE. This statement tells Spectrum Writer to provide a 5000–byte I/O area to
use when reading records from this file. If no LRECL parm is present, Spectrum Writer
reserves a 1000 byte I/O area as a default.

Note: When defining variable length (VB) SEQ files, the LRECL parm should include
the length of the 4–byte "record descriptor word" (RDW) at the beginning of each
record.

Note: It is not a problem to specify a larger LRECL value than is actually needed. In
fact, if you suspect that a file’s LRECL may grow in the future, you may want to
specify a larger LRECL with some "growth" room in it. On the other hand, specifying
an excessively large LRECL may result in higher CPU usage in certain circumstances.

The NORMALIZE parm can be useful if the file you are defining contains an array. (See
"Using Normalization to Process Arrays" on page 237 for detailed information.) For
example, the EMPL-FILE has an array of four quarterly sales amounts (page 649). If we
wished to normalize that array whenever the EMPL-FILE was used as an input file, we would
add a NORMALIZE parm:

FILE: EMPL-FILE TYE(VSAM) NORMALIZE(SALES-QTR1, 4)

Other optional parms that can be specified in the FILE statement are:

! EXITPARM (for use with file fields created in user-written data exits — see
page 534)

! IOEXIT (for files which will be accessed from a user-written I/O Exit — see
page 534 and page 673)

! KEEPRDW (use with VB files if you want "column 1" of the record to point to the
"record descriptor word" (RDW), rather than to the data after the RDW. See
page 352 and page 535.)

! NORMWHEN (for normalizing only certain types of records — see page 536 and
page 247)

! STOPWHEN (if you always want to process a file only up to a certain point — see
page 536)

How to Override a File Definition
Remember that the FILE statement simply defines a file to Spectrum Writer for later use. It
does not make that file an input file to a report. The INPUT and READ statements request that
a file be used as input for a report. When an INPUT or READ statement specifies a particular
file, Spectrum Writer will know all about that file from the FILE statement processed earlier.
330 Spectrum Writer User’s Guide

How to Use the FILE Statement –– OS/390
Sometimes you may want to change one or more aspects of the file definition for a certain
run. You can do this by specifying one or more file definition parms directly in the INPUT
or READ statement. These parms will override any such parm specified in the FILE
statement — but only for the current run. All of the file definition parms can be specified
in the INPUT and READ statements.

For example, to override the DDNAME used for a particular run, you could specify:

INPUT: SALES-FILE DDNAME(TEMPSALE)

How to Use the FILE Statement –– OS/390How to Use the FILE Statement –– VSE

The FILE statement’s ATTR parm is used to describe the attributes of a VSE file to Spectrum
Writer. Here is an example of an ATTR parm in a FILE statement:

FILE: SALES–FILE ATTR(DASD,’SALEFIL’,80,160)

The statement above defines a file called SALES–FILE. It has the following attributes:

! it is a SAM file on DASD. (Other possibilities are SAM files on TAPE, and VSAM
files)

! the DLBL name used for this file in the JCL is SALEFIL

! the records in this file are 80 bytes long, and the blocks are 160 bytes long

Note: The complete syntax of the ATTR parm is shown on page 532.

Here is another example of defining a VSE file with the ATTR parm. In this example, we
define a VSAM file to Spectrum Writer:

FILE: EMPL–FILE ATTR(VSAM,’EMPFILE’,150)

The EMPL–FILE defined above is a VSAM file. The DLBL name used in the JCL is EMPFILE.
The records in the file may be up to 150 bytes long. No block size is used with VSAM files.

Note: Use VSAM only for true VSAM ESDS, KSDS or RRDS datasets. DASD should be
used for all SAM files on disk — even SAM files that are in VSAM-managed space.

Here is an example of defining a file with variable-length blocked records:
FILE: VAR–FILE ATTR(TAPE,’FILEIN’,SYS009,V,100,5000)

The file defined above is a SAM file on TAPE. The TLBL name used in the JCL is FILEIN. The
tape will be mounted on the tape drive at logical unit SYS009. The records are variable
length. The largest record that the file might contain is 100 bytes long. The longest block
that the file might contain is 5000 bytes long.

Note: When defining variable length SAM files, the record size should include the
length of the 4-byte "record descriptor word" (RDW) at the beginning of each record.
Likewise, the block size should include the 4-byte block prefix.

The NORMALIZE parm can be useful if the file you are defining contains an array. (See
"Using Normalization to Process Arrays" on page 237 for detailed information.) For
example, the EMPL-FILE has an array of four quarterly sales amounts (page 649). If we
Chapter 6. How to Define Your Input Files 331

How to Use the FILE Statement –– VSE
wished to normalize that array whenever the EMPL-FILE was used as an input file, we would
add a NORMALIZE parm:

FILE: EMPL-FILE ATTR(VSAM,’EMPFILE’,150) NORMALIZE(SALES-QTR1, 4)

Other optional parms that can be specified in the FILE statement are:

! EXITPARM (for use with file fields created in user-written data exits — see
page 534)

! IOEXIT (for files which will be accessed from a user-written I/O Exit — see
page 534 and page 673)

! KEEPRDW (use with VB files if you want "column 1" of the record to point to the
"record descriptor word" (RDW), rather than to the data after the RDW. See
page 352 and page 535.)

! NORMWHEN (for normalizing only certain types of records — see page 536 and
page 247)

! STOPWHEN (if you always want to process a file only up to a certain point — see
page 536)

How to Override a File Definition
Remember that the FILE statement simply defines a file to Spectrum Writer for later use. It
does not make that file an input file to a report. The INPUT and READ statements request that
a file be used as input for a report. When an INPUT or READ statement specifies a particular
file, Spectrum Writer will know all about that file from the FILE statement processed earlier.

The ATTR parm can also be used directly in the INPUT and READ statements. This
temporarily changes the way a file is defined for a single Spectrum Writer run.

If an INPUT or READ statement contains an ATTR parm, the information from that ATTR parm
overrides the information from the ATTR parm in the FILE statement. Also, you may omit
the ATTR parm in the FILE statement altogether, as long as you specify it each time in the
INPUT or READ statement.

For example, assume that for a single run we wanted to use a tape backup copy of the
SALES–FILE defined above (instead of the copy on disk). Rather than changing the FILE
statement, we could just use an ATTR parm in our INPUT statement, like this:

INPUT: SALES–FILE ATTR(TAPE,’SALEFIL’,SYS004,80,160)

The statement above changes the attributes of the SALES–FILE (for the current run only) to
the following:

! the file is on tape

! the TLBL name for this file in the JCL is SALEFIL

! the tape will be mounted on the tape drive at logical unit SYS004

! the records in the file are 80 bytes long, and the blocks are 160 bytes long

Note that even though the record size and block size did not change from their values in
the FILE statement, we had to specify them in this ATTR parm. If you specify an ATTR parm
in an INPUT or READ statement, you must specify all of the required items in that parm.
None of the ATTR information from the FILE statement is retained.
332 Spectrum Writer User’s Guide

How to Define a Field

This section explains:

! how to use the FIELD statement to define individual fields to Spectrum Writer

There are five general types of fields used in Spectrum Writer:

! character
! numeric
! date
! time
! bit

Each type of field is defined somewhat differently. For example, the following statement
defines a character field:

FIELD: LAST–NAME LENGTH(15)

The FIELD statement necessary to define a numeric field that is stored in packed format and
which includes two decimal digits is a little longer:

FIELD: TOTAL–SALES LENGTH(7) TYPE(PACKED) DECIMAL(2)

In the sections that follow we discuss how to define each type of field. The complete syntax
of the FIELD statement is given on page 522.

Note: Spectrum Writer OS/390 and Spectrum Writer VSE both use exactly the
same FIELD statements.

How to Define a Character Field

This section explains:

! what a character field is

! which parms are required to define a character field

! which optional parms can be used when defining character fields

Most of the examples used in this section are illustrated in the sample report in Figure 49.

Character fields can contain any combination of letters, numerals, spaces, punctuation
marks, and other special characters. Character fields contain such things as names,
addresses, descriptions, etc.

Note: Fields defined as character fields cannot be used in arithmetic comparisons
or calculations — even if the field contains only numeric characters. If you wish to
treat such fields as numeric data, define them as numeric rather than character fields.
See page 339 for more on this subject.
Chapter 6. How to Define Your Input Files 333

How to Define a Character Field
Figure 49. A report with FIELD statements that define character fields

Remarks:
• a COLUMN parm was used in the first FIELD statement, since the LAST–NAME field does not begin in

the first column of the record
• no COLUMN parm was required for FIRST–NAME, since that field begins immediately after the

previously defined field
• the HEX–STATUS–BYTE field occupies the same byte in the record as the STATUS–BYTE field. It

simply has a different default display format.
• the HEADING parm specifies the column heading to use when the HEX–STATUS–BYTE field appears

as a report column –– the other columns have the field names themselves for column headings

These Control Statements:

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: FIRST–NAME LENGTH(15)
FIELD: STATUS–BYTE COLUMN(42) LENGTH(1)
FIELD: HEX–STATUS–BYTE COLUMN(42) LENGTH(1) FORMAT(HEX)
 HEADING('EMPLOYEE|STATUS BYTE')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING CHARACTER FIELDS'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME STATUS–BYTE
 HEX–STATUS–BYTE

Produce this Report:
 EXAMPLES OF DEFINING CHARACTER FIELDS

 LAST FIRST STATUS EMPLOYEE
 NAME NAME BYTE STATUS BYTE

BAKER VIVIAN A C1
CHRISTOPHERSON MELISSA A C1
JOHNSON LINDA A C1
JOHNSON THOMAS A C1
JONES JERRY A C1
MACDONALD RICHARD 40
MORRISON MICHAEL A C1
SIMPSON TIMOTHY A C1
THOMAS MARTIN A C1

*** GRAND TOTAL (9 ITEMS)
334 Spectrum Writer User’s Guide

How to Define a Character Field
Character fields are the easiest kind of field to define. When no TYPE parm is supplied in a
FIELD statement, a character field is assumed. Therefore, the only parms required to define
a character field are:

! fieldname
! LENGTH

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 448.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.

The LENGTH parm is required to tell Spectrum Writer how many bytes (or "characters")
the field occupies in the record. For example:

FIELD: LAST–NAME LENGTH(15)

The above example defines a field named LAST–NAME that occupies 15 bytes of the input
record. It is a character field by default, since no TYPE parm was specified. If you wish to
include the TYPE parm for clarity or consistency, you can do so like this:

FIELD: LAST–NAME LENGTH(15) TYPE(CHAR)

Spectrum Writer assumes that the LAST–NAME field occupies the 15 bytes immediately after
the previously defined field. If you want to explicitly specify where the 15–byte field is
located, use the COLUMN or the DISP parm. The use of these parms is discussed on
page 350. As an example, if the LAST–NAME field begins in the fourth byte of the record,
we could define it like this:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)

The FORMAT parm of the FIELD statement specifies the default display format to use when
displaying a field in a report. The FORMAT parm is not normally used when defining
character fields. One instance when you might want to use the FORMAT parm is when you
have a character field that you normally want to display in its hexadecimal representation.
(A status byte or flag byte are examples of such fields.) You can specify a display format
of HEX when defining such a field. The following statement defines a 1–byte character field
named STATUS–BYTE and specifies that, by default, it should be displayed in hexadecimal
notation when it appears in a report.

FIELD: STATUS–BYTE LENGTH(1) FORMAT(HEX)

How to Define a Character FieldHow to Define a Numeric Field

This section explains:

! what a numeric field is

! which parms are required to define a numeric field

! which optional parms can be used when defining numeric fields

Most of the examples used in this section are illustrated in the sample report in Figure 50.

Numeric fields contain numeric values. Examples of numeric fields are costs, salaries,
sales volumes, interest rates, etc. There are a number of different ways that a numeric field
Chapter 6. How to Define Your Input Files 335

How to Define a Numeric Field
Figure 50. A report with FIELD statements that define numeric fields

Remarks:
• we used abbreviations for the COLUMNS, LENGTH and DECIMAL parms. See page 522 for a list of

abbreviations allowed in the FIELD statement
• the NOACCUM parm prevents the DEPT–NUM column from being totalled
• the PICTURE in the FORMAT parm causes DOLLAR–SALES to be displayed with a leading dollar sign,

and with no decimal digits
• the use of special characters (namely, the parentheses) in the PICTURE for TELEPHONE keeps that

column from being totalled

These Control Statements:

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME COL(4) LEN(15)

FIELD: DEPT–NUM COL(40) LEN(1) TYPE(NUM) NOACCUM

FIELD: TOTAL–SALES COL(56) LEN(7) TYPE(NUM) DEC(2)
 HEADING('YEARLY SALES TOTAL')

FIELD: DOLLAR–SALES COL(56) LEN(7) TYPE(NUM) DEC(2)
 FORMAT(PIC'$$$,$$$,$$$')

FIELD: TELEPHONE COL(153) LEN(10) TYPE(NUM)
 FORMAT(PIC'(999) 999–9999')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING NUMERIC FIELDS'
COLUMNS: LAST–NAME TELEPHONE TOTAL–SALES
 DOLLAR–SALES DEPT–NUM

Produce this Report:

 EXAMPLES OF DEFINING NUMERIC FIELDS

 LAST DOLLAR DEPT
 NAME TELEPHONE YEARLY SALES TOTAL SALES NUM

BAKER (415) 555-1209 92,125.89 $92,126 4
CHRISTOPHERSON (602) 555-4556 47,665.31 $47,665 1
JOHNSON (415) 555-6785 75,023.55 $75,024 2
JOHNSON (602) 555-6654 86,999.24 $86,999 1
JONES (415) 555-7653 42,509.89 $42,510 2
MACDONALD (415) 555-9887 2,560.98 $2,561 2
MORRISON (818) 555-4748 98,054.99 $98,055 3
SIMPSON (818) 555-1887 8,723.88 $8,724 3
THOMAS (415) 555-1152 60,193.49 $60,193 4

*** GRAND TOTAL (9 ITEMS) 513,857.22 $513,857
336 Spectrum Writer User’s Guide

How to Define a Numeric Field
can be stored in a record. It can be stored as character–type digits, as packed data, or as
binary data, to name a few possibilities. The FIELD statement’s TYPE parm tells Spectrum
Writer exactly how the number is stored in the record.

Note: Once a numeric field has been defined, you do not need to remember how it
is stored in the record. You may freely compare any kind of numeric field (packed,
binary, etc.) with any other numeric field. Spectrum Writer automatically takes care
of any required conversion. You may also mix any combination of numeric fields
when performing arithmetic computations.

The only parms required to define a numeric field are:

! fieldname
! TYPE
! LENGTH

The following optional parms also relate specifically to numeric fields:
! DECIMAL
! ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 446.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.

When defining a numeric field to Spectrum Writer, the TYPE parm is required. This parm
indicates the exact way in which the numeric data is stored in the record. There are several
ways that are commonly used to store numeric values in a record. Spectrum Writer needs
to know which method is used for a particular field in order to process it correctly. A
complete list of numeric data types appears on page 610. Here is an example of defining a
numeric field:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7)

The above statement defines a numeric field named TOTAL–SALES. Its data is stored in the
record in "display numeric" format (that is, using numeric digits in character format).
Spectrum Writer’s NUM data type is equivalent to Cobol’s USAGE DISPLAY. Other common
numeric data types are:

! PACKED or COMP–3, which correspond to Cobol’s COMP–3, and

! BINARY or COMP, which correspond to Cobol’s COMP

The LENGTH parm is required to tell Spectrum Writer how many bytes the field occupies
in the record. (Note that for some types of numeric data the LENGTH parm is not necessarily
the same as the number of digits.)

Note: To determine how many bytes a PACKED (COMP–3) field occupies in a record,
use this formula: add 1 to the total number of digits; then divide this sum by 2,
throwing away any remainder. The result is the number of bytes the field occupies
in the record.

As an example, take the RECA–MSTR–SALARY field (in Figure 48 on page 327). It has
a total of 9 digits (seven before the decimal point and two after). Adding 1 to this
gives us 10. Dividing 10 by 2 gives us its length — 5 bytes.
Chapter 6. How to Define Your Input Files 337

How to Define a Numeric Field
Fields stored as BINARY data (COMP) are usually either 2 or 4 bytes long. If the
BINARY field contains no more than 4 digits, it is usually 2 bytes long. If the field has
more than 4 digits, it is generally 4 bytes long.

Spectrum Writer assumes that the TOTAL–SALES field defined in the previous example
occupies the 7 bytes immediately after the previously defined field. If you want to
explicitly specify where the 7–byte field is located, use the COLUMN or the DISP parm. The
use of these parms is discussed on page 350. As an example, if the TOTAL–SALES field
began in the 56th byte of a record, we could define it like this:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7) COLUMN(56)

Since no DECIMAL parm was specified in the preceding examples, Spectrum Writer would
assume that the TOTAL–SALES field contained no decimal digits. If a numeric field does
contain one or more decimal digits, use the DECIMAL parm to indicate that. For example, if
the data for TOTAL–SALES includes two decimal digits, we would use the following
statement to define the field:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7) DECIMAL(2)

The DECIMAL parm above tells Spectrum Writer that the last two digits in the field are to be
considered decimal digits. The DECIMAL parm may be used with any numeric field,
regardless of which TYPE parm is used.

The ACCUM and NOACCUM parms can also be used when defining numeric fields. They
specify whether or not to accumulate the field when it appears as a column in a report.
Fields which are accumulated receive Grand Totals at the end of the report and subtotals at
control breaks. Accumulated fields also appear in any other statistical lines that appear in
a report (such as average lines, maximum lines, etc.)

By default, all numeric fields (except those displayed with certain non–numeric PICTUREs)
are accumulated. Some numeric fields, such as a telephone number, a department number,
or an employee number, should not be totalled. Use the NOACCUM parm to prevent these
kinds of numeric fields from appearing in the total lines. For example:

FIELD: DEPT–NUM LENGTH(1) TYPE(NUM) NOACCUM

The above statement specifies that the DEPT–NUM field should not be accumulated when it
appears as a column in a report. Therefore, the DEPT–NUM column will not be totalled at
control breaks and at the end of the report, even though it is defined as a numeric field. For
a more detailed discussion about which fields appear in the total lines, see page 148.

Another parm you may want to use when defining numeric fields is the FORMAT parm. By
default, all numeric fields (regardless of their TYPE) are displayed with the NUMERIC display
format. The NUMERIC display format: suppresses leading zeros; uses commas to separate
groups of three digits; and adds a leading minus sign for negative values. If you want a
numeric field to have a different default display format, use the FORMAT parm. For
example:

FIELD: COST–CENTER TYPE(NUM) FORMAT(NOCOMMA) NOACCUM

The above statement specifies that whenever the COST–CENTER field is displayed in a
report, the NOCOMMA format should be used. The NOCOMMA format does not use commas
to separate groups of digits. When displaying fields like cost centers, employee numbers,
account numbers, etc., you normally do not want them formatted with commas. (You also
338 Spectrum Writer User’s Guide

How to Define a Numeric Field
do not want them totalled, which is why we also specified NOACCUM in the above
statement.)

A complete list of numeric display formats is found on page 619.

The PICTURE display format gives you great flexibility in describing how a numeric field
should be formatted. For example:

FIELD: DOLLAR–SALES LENGTH(7) TYPE(PACKED) DECIMAL(2)
 FORMAT(PIC’$$$,$$$,$$$’)

The above statement uses a PICTURE to specify the display format of the DOLLAR–SALES
field. In this example, a total of 11 positions (the size of the PICTURE text) will be reserved
for displaying the field. (That will accommodate a value with as many as nine numeric
digits.) A floating dollar sign will precede the first non–zero digit in the amount. No
decimal digits will be displayed. (The two decimal digits contained in the raw data will be
rounded out when the field is formatted for the report.)

Here is another example of using a PICTURE in the FORMAT parm to customize the way a
numeric field is displayed:

FIELD: TELEPHONE LENGTH(10) TYPE(NUM)
 FORMAT(PIC’(999) 999–9999’)

This example uses parentheses and a dash as part of the PICTURE in order to display the
TELEPHONE field’s 10 digits in the standard format:

(415) 555–1212

The section titled "PICTURE Display Formats" (page 451) explains the rules for writing
PICTUREs.

Note: The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

How to Define a Numeric FieldShould You Define a Field as Character or Numeric?

This section explains:

! how to decide whether a field that contains only numeric digits should be defined
as a character field or as a numeric field

Most files have some fields that contain only numeric digits, stored in "display numeric"
format. When defining these fields you must decide whether you want to define them as
character or numeric fields.

It is better to define certain types of fields as character fields, even though they contain
only numeric digits. Examples of such fields are: employee numbers, department numbers,
and product code numbers. If such fields were defined as numeric, they would be formatted
as numbers (by default), with commas inserted among the digits. They would also be
totalled (by default) at the end of the report. They would appear in any statistical lines
printed in the report. This kind of processing is not normally wanted for such things as
employee numbers and department numbers. To avoid this, define the fields as character
fields rather than as numeric fields. Character fields are always displayed just as they are
Chapter 6. How to Define Your Input Files 339

Should You Define a Field as Character or Numeric?
(no commas are inserted) and they are never totalled. Remember to use character literals
(in quotation marks) when working with fields defined as character:

INCLUDEIF: EMPL–NUM = ’037’

On the other hand, there is one advantage to defining certain of these fields as numeric
fields. You can use a PICTURE to specify special display formats for numeric fields. Some
examples of fields that you might want to use a PICTURE with are telephone numbers and
social security numbers. For example, you might want to use a PICTURE such as PIC’(999)
999–9999’ to format a telephone number in a report. Or, you way want to format a social
security number using PIC’999–99–9999’. If you want to use a PICTURE to specify a
customized display format, you must define the field as numeric. (PICTUREs are not
allowed for character fields.) Remember to use numeric literals (no quotation marks)
when working with fields defined as numeric:

INCLUDEIF: TELEPHONE = 4155557653

Once you have decided how to define a field, you can still "change your mind."

If you find that you need to treat a character field as a number, you can convert it to a
numeric value by using the #MAKENUM built–in function in a COMPUTE statement. (See
page 636.) For example, if EMPL–NUM has been defined as a character field, and you want
to add 900 to it, you could do that by first converting it to a numeric value:

COMPUTE: NEW–EMPL–NUM = #MAKENUM(EMPL–NUM) + 900

The result field (NEW–EMPL–NUM) will be numeric, since the computational expression was
numeric. (It involved the addition of two numeric operands.) You would use numeric
literals (no quotes) when working with this field:

INCLUDEIF: NEW–EMPL–NUM = 937

If you find the need to treat a numeric field as a character field, you can convert it to a
character value using the #FORMAT built–in function. (See page 632.) Assume that
TELEPHONE has been defined as a numeric field. You can make a character field that
contains the formatted telephone number by using the following statement:

COMPUTE: CHAR–TELEPHONE = #FORMAT(TELEPHONE, PIC’(999) 999–9999’)

The result field (CHAR–TELEPHONE) will be a 14–byte character field (the size of the
PICTURE). You would use character literals (with quotes) when working with this field:

INCLUDEIF: CHAR–TELEPHONE = ’(415) 555–7653’

You could also extract certain digits out of this telephone number now that it is character
data:

COMPUTE: AREA–CODE = #SUBSTR(CHAR–TELEPHONE,2,3)

Should You Define a Field as Character or Numeric?How to Define a Date Field

This section explains:

! what a date field is

! which parms are required to define a date field
340 Spectrum Writer User’s Guide

How to Define a Date Field
! which optional parms can be used when defining date fields

Most of the examples used in this section are illustrated in the sample report in Figure 51.

Date fields contain calendar dates. Examples of date fields are birth dates, hire dates,
expiration dates, sales dates, etc. There are a number of different ways that a date field can
be stored in a record. It can be stored as a 6–byte character YYMMDD date, as a packed Julian
date, or as a 3–byte hexadecimal MMDDYY field (to name just a few possibilities). The FIELD
statement’s TYPE parm tells Spectrum Writer exactly how the date is stored in the record.

Note: Once a date field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of date field with any other
date field. Spectrum Writer automatically takes care of any required conversion.

The only parms required to define a date field are:

! fieldname
! TYPE

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 446.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

When defining a date field to Spectrum Writer the TYPE parm is required. This parm
indicates the exact way in which the date is stored in the record. There are a number of
ways that are commonly used to store dates in a record. Spectrum Writer needs to know
which method is used for a particular field in order to process it correctly. A complete list
of date data types appears on page 611. Here are two examples:

FIELD: HIRE–DATE TYPE(YYMMDD)
FIELD: BIRTH–DATE TYPE(H–MMDDYY)

The first example above defines a field named HIRE–DATE that contains a date in character
YYMMDD format (for example, "951231" for December 31, 1995). This type of date field
takes up 6 bytes in the record. The second statement specifies that the BIRTH–DATE field is
stored in hexadecimal MMDDYY format (for example, X’123195’ for the same date). This type
of date requires only 3 bytes in the record.

The LENGTH parm is generally not required for date fields. Depending on the particular
data type, Spectrum Writer assumes a default length for each date field. For example, the
length of a date field in YYMMDD form is 6 bytes. The length of a date field in H–MMDDYY
form is 3 bytes, and so on. The default length and the allowable lengths for each date data
type are shown in the table on page 611. If Spectrum Writer’s default length is correct, you
do not need to specify the LENGTH parm (although you may do so). However, if your field
size is different than the default, you must specify its actual length using the LENGTH parm.

Spectrum Writer assumes that the HIRE–DATE field defined in the preceding example
occupies the six bytes immediately after the previously defined field. If you want to
explicitly specify where the 6–byte field is located, use the COLUMN or the DISP parm. The
use of these parms is discussed on page 350. For example, if HIRE–DATE begins in the 34th
column of a record, we could define it like this:

FIELD: HIRE–DATE TYPE(YYMMDD) COLUMN(34)
Chapter 6. How to Define Your Input Files 341

How to Define a Date Field
Figure 51. A report with FIELD statements that define date fields

Remarks:
• the HIRE–DATE field and the LONG–HIRE–DATE field both point to the same data in the record (at

column 34)
• the HIRE–DATE field is printed in the default display format since no FORMAT parm is specified in its

FIELD statement
• the FORMAT parm causes the LONG–HIRE–DATE field to be printed in the LONG1 format, with the

month name spelled out
• the HEADING parm specifies the column heading to use for the LONG–HIRE–DATE field

These Control Statements:

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD)
FIELD: LONG–HIRE–DATE COLUMN(34) TYPE(YYMMDD)
 FORMAT(LONG1)
 HEADING('DATE HIRED')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING DATE FIELDS'
COLUMNS: LAST–NAME HIRE–DATE LONG–HIRE–DATE

Produce this Report:
 EXAMPLES OF DEFINING DATE FIELDS

 LAST HIRE
 NAME DATE DATE HIRED

BAKER 06/04/82 JUNE 4, 1982
CHRISTOPHERSON 08/15/81 AUGUST 15, 1981
JOHNSON 06/21/75 JUNE 21, 1975
JOHNSON 11/25/79 NOVEMBER 25, 1979
JONES 01/31/80 JANUARY 31, 1980
MACDONALD 07/04/82 JULY 4, 1982
MORRISON 11/30/79 NOVEMBER 30, 1979
SIMPSON 12/01/82 DECEMBER 1, 1982
THOMAS 06/04/82 JUNE 4, 1982

*** GRAND TOTAL (9 ITEMS)
342 Spectrum Writer User’s Guide

How to Define a Date Field
By default, all date fields are displayed in MM/DD/YY format when they appear in a report
(regardless of how they are stored in the record). If you would like a date field to have a
different default display format, use the FORMAT parm. For example:

FIELD: HIRE–DATE TYPE(YYMMDD) FORMAT(LONG1)

The above example specifies that whenever the HIRE–DATE field is printed in a report, the
LONG1 format should be used. The LONG1 format spells out the name of the month
completely (for example, "JANUARY 31, 1999"). A complete list of date display formats is
found on page 620.

Note: The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

A Note About Julian Dates
You may wonder if Julian date fields require different handling from other kinds of date
fields (such as Gregorian). The answer is no. Once you have defined a field with the
appropriate Julian data type, you (and other users of the file) can simply forget that the date
was originally stored in Julian format. You will work with that date field in exactly the
same way as you work with any other date field.

Internally, Spectrum Writer converts all date fields from their input record format into its
own standard format. Thus, all conversions required to make various kinds of date fields
compatible is done for you automatically.

Specifically, this means that — even for fields stored in Julian format — you will use date
literals in the standard MM/DD/YYYY (or MM/DD/YY) format when making comparisons to them.
Here is an example of comparing a Julian date with two date literals:

INCLUDEIF: MY-JULIAN-DATE > 1/1/2001 AND < 12/31/2001

You can also compare a Julian date field with another date field stored in a different format
without any special effort on your part:

INCLUDEIF: MY-JULIAN-DATE = MY-GREGORIAN-DATE OR MY-SMF-DATE OR MY-STCK-DATE

Note: The one exception to the above is if your Julian date fields contain non-date
values with special significance (perhaps all zeros, all nines, high-value, etc.) Since
such values are not valid Julian dates, Spectrum Writer considers these values to be
"invalid" data. (Thus, you would see ***I*** in your report in such cases.) It is
possible to test for these special cases. But to do so, you will need to be aware of
how the field is stored in the input record. You should compare the field to an
explicit character or hexadecimal literal of the correct length. For example:

INCLUDEIF: MY-JULIAN-DATE <> ’99999’ /*COMPARE CHAR JULIAN DATE TO NINES*/

INCLUDEIF: MY-JULIAN-PACKED-DATE <> X’000000’ /*COMPARE PACKED DATE TO LOW-VALUES*/

As far as report output goes, by default Spectrum Writer formats Julian date fields (like all
other date fields) in the standard MM/DD/YY format. So again, you don’t need to do anything
special to have a Julian date field "re-formatted" into Gregorian in your report. Of course,
you can also use an override display format to format a Julian date in any of the other date
formats available.
Chapter 6. How to Define Your Input Files 343

How to Define a Time Field

This section explains:

! what a time field is

! which parms are required to define a time field

! which optional parms can be used when defining time fields

Most of the examples used in this section are illustrated in the sample report in Figure 52.

Time fields contain a time value consisting of a number of hours and minutes. Time fields
can optionally contain seconds as well, and even decimal portions of a second.

Time fields often indicate the time of day that an event occurred. They can also indicate an
elapsed time (the time interval between two events). There are a number of different ways
that a time field can be stored in a record. Often they are stored as a 6–byte character
HHMMSS fields. CICS stores some time fields as binary hundredths of seconds since
midnight. The S/390 STCK machine instruction represents times as the number of "timer
units" since the beginning of the 20th century.

Spectrum Writer supports all of these kinds of time fields and about two dozen others. The
FIELD statement’s TYPE parm tells Spectrum Writer exactly how a time field is stored in the
record.

Note: Once a time field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of time field with any other
time field. Spectrum Writer automatically takes care of any conversion that may be
necessary.

The only parms required to define a time field are:

! fieldname
! TYPE

The following optional parms can also be used to define a time field:
! LENGTH
! DECIMAL
! ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 446.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The TYPE parm indicates the exact way in which the time is stored in the record. The valid
time data types are listed on page 613. Use these data types in the FIELD statement to define
time fields. For example:

FIELD: SALES–TIME TYPE(HHMMSS)

The above statement defines a field called SALES–TIME which is a 6–byte field containing
a time in HHMMSS format.
344 Spectrum Writer User’s Guide

How to Define a Time Field
Figure 52. A report with FIELD statements that define time fields

Remarks:
• the HH–MM display format causes SALES–TIME–B to be rounded to the nearest minute
• only those fields defined with the ACCUM parm are totalled
• TIME–ON–PHONE–B uses a TPICTURE that does not include any decimal digits. The value is rounded

to the nearest whole second.

These Control Statements:

FILE: SALES-FILE DDNAME(SALEFILE)
*
FIELD: EMPL-NAME LENGTH(10)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
FIELD: SALES-TIME COLUMN(42) TYPE(HHMMSS)
FIELD: SALES-TIME-B COLUMN(42) TYPE(HHMMSS) FORMAT(HH-MM)
FIELD: TIME-ON-PHONE COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
FIELD: TIME-ON-PHONE-B COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
 FORMAT(TPIC'99:99:99') ACCUM
FIELD: TIME-ON-PHONE-C COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
 FORMAT(SECS) ACCUM
 HEADING('SECONDS ON|TELEPHONE')
*
INPUT: SALES-FILE
TITLE: 'EXAMPLES OF DEFINING TIME FIELDS'
COLUMNS: EMPL-NAME CUSTOMER
 SALES-TIME SALES-TIME-B
 TIME-ON-PHONE TIME-ON-PHONE-B TIME-ON-PHONE-C

Produce this Report:
 EXAMPLES OF DEFINING TIME FIELDS

 TIME
 SALES TIME ON
 EMPL SALES TIME ON PHONE SECONDS ON
 NAME CUSTOMER TIME B PHONE B TELEPHONE

JOHNSON ACE ELECTRICAL 10:25:00 10:25 00:00:07.9 00:00:08 7.9
BAKER JACKS CAFE 12:09:09 12:09 00:00:10.2 00:00:10 10.2
MORRISON STAR MARKET 15:30:22 15:30 00:00:59.9 00:01:00 59.9
MORRISON A1 PHOTOGRAPHY 19:05:41 19:06 00:01:00.0 00:01:00 60.0
SIMPSON EUROPEAN DELI 08:17:57 08:18 00:00:15.0 00:00:15 15.0
JOHNSON VILLA HOTEL 17:02:47 17:03 00:01:32.9 00:01:33 92.9
JOHNSON MARYS ANTIQUES 14:33:10 14:33 00:00:00.0 00:00:00 0.0
BAKER JACKS CAFE 14:31:12 14:31 00:00:23.1 00:00:23 23.1
THOMAS YOGURT CITY 15:41:38 15:42 00:09:02.1 00:09:02 542.1
JONES EZ GROCERY 07:58:32 07:59 00:01:21.0 00:01:21 81.0
JONES TOY TOWN 08:01:59 08:02 00:02:00.0 00:02:00 120.0
JONES TOY TOWN 13:52:41 13:53 00:00:52.3 00:00:52 52.3
JOHNSON ACME BUILDING 11:48:33 11:49 00:01:42.5 00:01:43 102.5
SIMPSON J & S LUMBER 15:30:21 15:30 00:04:05.1 00:04:05 245.1

*** GRAND TOTAL (14 ITEMS) 00:23:32 1,412.0
Chapter 6. How to Define Your Input Files 345

How to Define a Time Field
The LENGTH parm is generally not required for time fields. Depending on the particular
data type, Spectrum Writer assumes a default length for each time field. For example, the
default length of a time field in HHMMSS format is six bytes. The default length of a time
field in P–HHMM format is three bytes, and so on. The default length of each time data type
is shown in the table on page 613. If Spectrum Writer’s default length is correct, you do
not need to specify the LENGTH parm (although you may do so). However, if your field size
is different than the default, you must specify its actual length using the LENGTH parm. For
example:

FIELD: LOG-START-TIME TYPE(HHMMSS) LENGTH(8) DECIMAL(2)

The above statement defines a time field that occupies eight bytes in the input record. Its
data type is HHMMSS, which by default is assumed to be only a 6-byte field. The extra two
bytes in this field contain hundredths of seconds. The DECIMAL parm tells Spectrum Writer
that the last two digits in the field are decimal digits — that is, decimal portions of a second.
(You might think of this as a field containing HHMMSSHH.)

Spectrum Writer assumes that the LOG–START–TIME field defined in the preceding example
occupies the eight bytes immediately after the previously defined field. If you want to
explicitly specify where the field is located, use the COLUMN or the DISP parm. The use of
these parms is discussed on page 350. For example, if LOG–START–TIME begins in the 100th
column of a record, we could define it like this:

FIELD: LOG-START-TIME TYPE(HHMMSS) LENGTH(8) DECIMAL(2) COLUMN(100)

As mentioned, you may use the DECIMAL parm in the FIELD statement. Do this whenever
the time field contains decimal portions of seconds (for example, tenths of seconds, or
hundredths of seconds). For example:

FIELD: LOG–TIME LENGTH(4) TYPE(B–SECS) DEC(2)

The above statement defines a field called LOG–TIME which is stored as a 4–byte B–SECS
("binary seconds") value. B–SECS fields have their time stored as the number of seconds
since midnight. The DEC(2) parm indicates that the binary value actually represents
hundredths of seconds since midnight.

The ACCUM and NOACCUM parms can also be used when defining time fields. They specify
whether or not to accumulate the field when it appears as a column in a report. Fields which
are accumulated receive Grand Totals at the end of the report and subtotals at control
breaks. Accumulated fields also appear in any other statistical lines that appear in a report
(such as average lines, maximum lines, etc.)

By default, time fields are not accumulated (since it makes no sense to add up various times
of day). However, if you have a time field which represents a time interval or a duration
you may want to total that field. Use the ACCUM parm to cause a time field to be totalled.
For example:

FIELD: LONG-DISTANCE-TIME TYPE(HHMMSS) LENGTH(8) DEC(2) ACCUM

The above statement specifies that the LONG-DISTANCE-TIME field should be accumulated
when it appears as a column in a report. Therefore, the LONG-DISTANCE-TIME column will
be totalled at control breaks and at the end of the report. For a more detailed discussion
about which fields appear in the total lines, see page 148.
346 Spectrum Writer User’s Guide

How to Define a Time Field
Time fields, regardless of how they are stored in the input file, are normally formatted in
your reports and PC files like this:

HH:MM:SS

However, time fields defined as containing only hours and minutes (the HHMM data type,
for example) are formatted by default like this:

HH:MM

If you would like a time field to have a different default display format, use the FORMAT
parm. For example:

FIELD: SALES–TIME TYPE(HHMMSS) FORMAT(HH-MM-AMPM)

The above example specifies that whenever the SALES–TIME field is printed in a report, the
HH-MM-AMPM format should be used. This format displays the hours (in 12-hour format) and
the minutes, plus either AM or PM.The seconds are not shown and the time is rounded to
the nearest minute. You can also use a "time picture" to indicate how a time is to be
formatted. A complete list of time display formats is found on page 622.

Note: The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

How to Define a Time FieldHow to Define a Bit Field

This section explains:

! what a bit field is

! which parms are required to define a bit field

! which optional parms can be used when defining bit fields

Most of the examples used in this section are illustrated in the sample report in Figure 53.

Bit fields consist of only a single bit within a byte. A single bit can only have a value of 0
(zero) or 1 (one). We say that a bit with a value of 0 is "off," while a bit with a value of 1
is "on." Bit fields are often used to indicate a status. For example, the FULL–TIME field in
the EMPL–FILE is a bit field. If the bit is on, it means that the employee is full–time. If the
bit is "off," the employee is not full–time.

The only parms required to define a bit field are:

! fieldname
! BIT

The following optional parms also relate specifically to bit fields:
! ONTEXT
! OFFTEXT

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 446.
Chapter 6. How to Define Your Input Files 347

How to Define a Bit Field
Figure 53. A report with FIELD statements that define bit fields

Remarks:
• all three bit fields point to the same bit in the record (bit 1 of the 42nd byte) since the "default location"

is not incremented after FIELD statements that define bit fields
• the FULL–TIME field uses the default ONTEXT and OFFTEXT, which are based on the field name
• the EMPL–STATUS field specifies its own ONTEXT and OFFTEXT, as well as a column heading
• the PART–TIME field uses blanks for the ONTEXT, to make part time employees stand out better

These Control Statements:

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME LEN(15) COL(4)
FIELD: FULL–TIME BIT(1) COL(42)

FIELD: EMPL–STATUS BIT(1) ONTEXT('FULL')
 OFFTEXT('PART')
 HEADING('FULL TIME STATUS')

FIELD: PART–TIME BIT(1) ONTEXT(' ')
 OFFTEXT('PART TIME')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING BIT FIELDS'
COLUMNS: LAST–NAME FULL–TIME EMPL–STATUS PART–TIME

Produce this Report:
 EXAMPLES OF DEFINING BIT FIELDS

 LAST FULL PART
 NAME TIME FULL TIME STATUS TIME

BAKER FULL-TIME FULL
CHRISTOPHERSON FULL-TIME FULL
JOHNSON FULL-TIME FULL
JOHNSON FULL-TIME FULL
JONES FULL-TIME FULL
MACDONALD NOT FULL-TIME PART PART TIME
MORRISON FULL-TIME FULL
SIMPSON FULL-TIME FULL
THOMAS FULL-TIME FULL

*** GRAND TOTAL (9 ITEMS)
348 Spectrum Writer User’s Guide

How to Define a Bit Field
After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The BIT parm is required to tell Spectrum Writer which specific bit (within a byte) the field
refers to. Every byte contains 8 bits. Spectrum Writer numbers them from 1 to 8, starting
with the leftmost (or "high order") bit. Here is an example of defining a bit field:

FIELD: FULL–TIME BIT(1)

The above example defines a bit field named FULL–TIME. The BIT(1) parm specifies that the
FULL–TIME field occupies the first (high order) bit within the byte.

Spectrum Writer assumes that the byte containing the FULL–TIME bit field occurs in the
input record immediately after the previously defined field. If you want to explicitly
specify where the byte containing a bit is located, use the COLUMN or the DISP parm. The
use of these parms is discussed on page 350. For example, if the FULL–TIME bit is located
within the 42nd byte of the record, we could define it like this:

FIELD: FULL–TIME BIT(1) COLUMN(42)

The above statement explicitly specifies that the FULL–TIME bit is the first (high–order) bit
in the 42nd byte of the record.

Note: A single byte in a record will often contain more than one bit field. Therefore,
the "default location" is not incremented after FIELD statements that define bit
fields. This allows you to define multiple bit fields within the same byte of the
record. For more information, see "The Default Location After Bit Fields" on
page 352.

A bit field can be printed in a report just like any other kind of field. But remember that a
bit field can have only one of two possible values: "on" or "off." Rather than just printing
the words "on" or "off" in the report, more meaningful texts are used. One text (called the
ONTEXT) will be printed if the bit is "on." Another text (the OFFTEXT) will be printed if the
bit is "off."

By default, the ONTEXT is the name of the field itself, while the OFFTEXT is the word "NOT"
followed by the field name itself. In the above example, the text "FULL–TIME" would print
whenever the field’s value is "on," and the text "NOT FULL–TIME" would print whenever the
field is "off."

You may specify your own ONTEXT and OFFTEXT values by using the respective parms in
the FIELD statement. For example:

FIELD: FULL–TIME BIT(1) ONTEXT(’FULL’) OFFTEXT(’PART’)

The above statement causes the word FULL to print whenever the bit field is "on," and the
word PART to print when the field is "off."

You may also use blanks as an ONTEXT or OFFTEXT. For example:
FIELD: FULL–TIME BIT(1) ONTEXT(’ ’) OFFTEXT(’PART TIME’)

The above statement will print only a blank when the field is "on," but prints the words
PART TIME when the field is "off." The use of blanks for one of the texts helps cause the
other text to stand out whenever it appears in the report.
Chapter 6. How to Define Your Input Files 349

How to Specify a Field’s Column Heading

This section explains:

! how to use the HEADING parm to specify column headings

By default, whenever a field appears as a column in a report, the field name itself is used
as the column heading. (The name is split onto a different column heading line at each dash
and underscore.)

To specify a different column heading, use the HEADING parm in the FIELD statement. The
HEADING parm can be used when defining any type of field. It specifies the default column
heading to be used whenever a field appears as a column in a report or PC file. For
example:

FIELD: FIRST–NAME LEN(15) HEADING("EMPLOYEE’S|LAST NAME")

The vertical bar (|) in the HEADING parm above indicates that the column heading should be
split onto separate lines at that point. The first part (EMPLOYEE’S) will go on one line, and
the second part (LAST NAME) will go on the next line of the column heading. You may break
your column heading into as many lines as you like.

Note: The vertical bar is the "Shift 1" key on most mainframe terminals. When
working at a PC running terminal emulation software, you will probably not see a
key with this symbol on it. Some terminal emulator programs use the "pipeline" key
as the vertical bar key. Some others use the right–hand square bracket key "]" for
this purpose.

You can also use the HDGSEP parm of the OPTIONS statement to select a character other than
the vertical bar (|) to use as the separator character. Here is an example of using a slash,
rather than a vertical bar, to separate column headings lines:

OPTIONS: HDGSEP(’/’)
FIELD: LAST–NAME LEN(15) HEADING("EMPLOYEE’S/LAST NAME")

Note that the HEADING parm simply specifies the default column headings that will be used
for the field. Override column headings can still be specified in the COLUMNS statement to
change the column heading for a particular run.

For more information on specifying column headings, see page 130.

How to Specify a Field’s Location in a Record

This section explains how to specify where a field begins within a record. This discussion
applies to fields of all types. Topics include:

! how a field’s default location is determined

! how to use the COLUMN or DISP parm to specify a field’s location

! how the default location works when defining bit type fields

! how columns are numbered in variable length (VB) files
350 Spectrum Writer User’s Guide

How to Specify a Field’s Location in a Record
Default Location
Some of the sample FIELD statements in the preceding sections did not use the COLUMN
parm. When no parm is used to indicate where a field begins, a default location is
assumed. By default, the first field defined for a file is assumed to begin in column one.
Subsequent fields are assumed to begin immediately after the previously defined field. For
example, assume that the following two statements appeared together:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)
FIELD: FIRST–NAME LENGTH(15)

The first field defined above (LAST–NAME) has a COLUMN parm specifying that the field
begins in the 4th byte of the record. The field is 15 bytes long. The second field
(FIRST–NAME) does not have a COLUMN parm. Therefore, this field is assumed to begin
immediately after the LAST–NAME field. Since the LAST–NAME field begins in column 4 and
occupies 15 bytes, the FIRST–NAME field would begin in column 19.

The COLUMN and DISP Parms
When defining consecutive fields in a file, you will not normally need a COLUMN parm.
You will only need this parm in a few cases:

! after defining a bit field (the default location is not incremented after defining a
bit field)

! when you want to "back up" and redefine part of a record

! when you want to skip over part of a record that doesn’t need to be defined (such
as filler)

Some companies prefer to think of fields in terms of displacements, rather than columns.
A field’s starting displacement is simply its starting column minus one. Spectrum Writer
also lets you use the DISP (or DISPLACEMENT) parm to indicate a field’s location in a record.
For example, both of the following statements define the LAST–NAME field as beginning in
the 4th byte of the record:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)
FIELD: LAST–NAME LENGTH(15) DISP(3)

There are other methods you can use to specify a field’s starting column. You can use the
location of another field as a reference point, like this:

FIELD: LAST–NAME LENGTH(15) COLUMN(FIRST–NAME + 25)

The above example specifies that the LAST–NAME field begins 25 bytes after the starting
column of the FIRST–NAME field. (For this statement to be acceptable, the FIRST–NAME field
must have already been defined in a preceding FIELD statement.)

The following example specifies that the LAST–NAME field begins 20 bytes before the start
of the FIRST–NAME field:

FIELD: LAST–NAME LENGTH(15) COLUMN(FIRST–NAME – 20)

Note: Be sure to put blanks around dashes that are used as minus signs (as above)
to avoid confusion with dashes that are a part of the field name. (Blanks are optional
around the plus sign.)
Chapter 6. How to Define Your Input Files 351

How to Specify a Field’s Location in a Record
You may also use an asterisk (*) within the COLUMN or DISP parm. The asterisk represents
the current location within the record. In other words, it represents the starting column that
would be assigned if you did not specify a COLUMN parm at all. For example:

FIELD: LAST–NAME LENGTH(15) COLUMN(* + 7)

The above example specifies that the LAST–NAME field, rather than beginning immediately
after the previously defined field, should begin 7 bytes after that.

You can also use the asterisk to back up the current location. This is useful when you want
to define more than one field for a given part of the record. For example, assume the
following two statements appeared together:

FIELD: HIRE–DATE TYPE(MMDDYY)
FIELD: HIRE–YEAR COLUMN(* – 2) LENGTH(2)

The first statement above defines HIRE–DATE as a 6–byte date field in the format MMDDYY.
The second field backs up 2 bytes and redefines the last 2 bytes of the hire date as a separate
field named HIRE–YEAR. HIRE–YEAR is just a 2–byte character field containing the YY
portion of the HIRE–DATE field.

The Default Location After Bit Fields
The default location is handled a little differently when working with bit fields. A single
byte in a record often contains more than one bit field. Therefore, the default location is not
incremented after FIELD statements that define bit fields. This allows you to define multiple
bit fields within the same byte of the record. After the FIELD statement for the last bit that
you wish to define within a byte, you must use the COLUMN (or DISP) parm to specify the
location of the next field. For example:

FIELD: ACTIVE–FLAG BIT(1)
FIELD: PARTTIME–FLAG BIT(2)
FIELD: DELETE–FLAG BIT(5)
FIELD: CUSTOMER COLUMN(*+1) LENGTH(20)

The first three FIELD statements above define bit fields. All three bit fields are located in
the same byte of the record. The default location was not incremented after processing
those FIELD statements since they defined bit fields. To define the CUSTOMER field, which
begins in the next byte of the record, we used the COLUMN parm. The "*+1" within that parm
specifies that the CUSTOMER field should begin in the current location (the byte containing
the bit fields) plus one byte.

Column Numbering in Variable Length (VB) Files
Records in variable length (VB) flat files contain a 4–byte record prefix called the "record
descriptor word" (RDW). This RDW appears before the actual user data in each record. By
default, Spectrum Writer ignores this RDW. That is, a field defined as beginning in
column 1 does not point to the RDW, but rather to the first byte of data after the RDW.
Consider these statements:

FILE: VAR–FILE DDNAME(FILEIN) LRECL(5000)
FIELD: NAME COLUMN(1) LENGTH(15)

Assuming that VAR–FILE is a variable length file, Spectrum Writer will ignore the 4–byte
RDW at the beginning of each record. Thus, the field that begins in column 1 (NAME) is the
first item we can define for this file. We cannot define a field that is within the RDW prefix
of the record.
352 Spectrum Writer User’s Guide

How to Specify a Field’s Location in a Record
If you do not want Spectrum Writer to ignore the RDW, use the KEEPRDW keyword in the
FILE statement (or in the INPUT statement). For example:

FILE: VAR–FILE DDNAME(FILEIN) LRECL(5000) KEEPRDW
FIELD: RECORD–LENGTH COLUMN(1) TYPE(HALFWORD)
FIELD: NAME COLUMN(5) LENGTH(15)

The KEEPRDW parm in the FILE statement above causes Spectrum Writer to treat the RDW
as part of the input records. Thus, we defined a halfword field starting in column 1 that
points within the RDW. That field (RECORD–LENGTH) will contain the length of the record
(which is what is the first 2 bytes of the RDW contains). The first field after the RDW — the
NAME field — now starts in column 5.

How to Specify a Field’s Location in a RecordVariably Located Record Segments

Some records contain segments (consisting of one or more fields) that do not begin in a
fixed column within the record. Instead, the segment begins at different offsets in different
records. (SMF records are one common example of this.) Such records usually have a field
that provides the "offset" to the beginning of the variably located segment.

The FIELD statement’s OFFSET parm allows you to easily define fields within such variably
located segments. The contents of the OFFSET parm tell Spectrum Writer the offset from
the beginning of the record to the variably located segment. The OFFSET parm can contain
any numeric expression. Spectrum Writer computes the value of the OFFSET parm anew for
each input record (since the value can vary from record to record). It then adds this value
to the location specified in the DISP or COLUMN parm (if there is one) to determine where
the field is located within the input record.

Note: In the discussion that follows, you can also use a COLUMNS parm anywhere
that a DISP parm is mentioned. For brevity, we will just refer to the DISP parm.

Use an OFFSET parm in the FIELD statement of the first field in a variable segment.
Specifying an OFFSET parm does this:

! It specifies that the field being defined is the first field in a variably located
segment, and provides the offset (or "displacement") from the beginning of the
record to that segment.

! It resets the default location pointer to "displacement zero." Thus, unless an
explicit DISP parm is also specified, the field being defined will be at
displacement zero within the variably located segment. (If needed, you can use
an explicit DISP parm to specify that the field begins at some other displacement
within the segment.)

! The OFFSET value remains in effect for all subsequent FIELD statements — until
another OFFSET parm is used to change or cancel this one. This simplifies the
definition of the other fields in the same segment.

For subsequent FIELD statements, the offset value remains in effect and the current location
pointer is updated as usual. This lets you easily define the other fields in the same
segment — generally without needing to specify either an OFFSET parm or a DISP parm.
Just define the subsequent fields in the usual way. If they immediately follow the previous
field, you don’t need any DISP parm. If you are skipping over fields in the segment (or
backing up), use a DISP parm as needed. Remember that he DISP parm now applies to the
Chapter 6. How to Define Your Input Files 353

Variably Located Record Segments
displacement within the variably located segment — not to the displacement from the very
beginning of the input record.

After you’ve defined all of the fields in the segment, you can write a FIELD statement with
a new OFFSET parm to begin defining the fields in a different segment. Or simply cancel
the offset parm by specifying OFFSET(0) in a FIELD statement.

Note: Specifying OFFSET(0) parm in a FIELD statement cancels the OFFSET parm.
That field (and subsequent ones) will be located at the fixed location specified by
the DISP parm. Note that specifying OFFSET(0) also resets the default location pointer
to zero — the beginning of the whole input record. Thus, you will probably want to
use an explicit DISP (or COLUMN) parm along with the OFFSET(0) parm.

Note: If you use an OFFSET parm in a member of the Spectrum Writer Copy
Library, it is a good idea to have a final FIELD statement that contains an OFFSET(0)
parm. (It can just be for a "dummy" field.) That way there will be no "surprises" if
someone later adds additional FIELD statements "in line" for a report request. They
might not be aware that an OFFSET value was still in effect and was being applied to
their "in line" FIELD statements.

Let’s look an example of defining variably located segments in a record. Here is a partial
definition of the SMF type 30 record:

** FIELDS IN FIXED LOCATIONS
FLD: ID–OFFSET DISP(32) TYPE(FULLWORD) /* DISP TO IDENTIFICATION SEGMENT */
FLD: ID–LEN TYPE(HALFWORD)
FLD: ID–NUM TYPE(HALFWORD)
FLD: IO–OFFSET TYPE(FULLWORD) /* DISP TO I/O ACTIVITY SEGMENT */
FLD: IO–LEN TYPE(HALFWORD)
FLD: IO–NUM TYPE(HALFWORD)
**
** SELECTED FIELDS FROM THE VARIABLY LOCATED IDENTIFICATION SEGMENT
FLD: JOBNAME LEN(8) OFFSET(ID–OFFSET)
FLD: PGMNAME LEN(8)
FLD: STEPNAME LEN(8)
**
** SELECTED FIELDS FROM THE VARIABLY LOCATED I/O ACTIVITY SEGMENT
FLD: NUM-CARDS TYPE(FULLWORD) OFFSET(IO–OFFSET)
FLD: NUM-TPUTS TYPE(FULLWORD) DISP(*+4)
FLD: NUM-TGETS TYPE(FULLWORD)
**
FLD: FILLER OFFSET(0) LEN(1) /* A "DUMMY" FIELD TO CANCEL THE OFFSET PARM */

In the fixed portion of the record — at displacement 32 — a fullword field name ID-OFFSET
is defined. This field contains a binary number which is the offset from the beginning of
the SMF record to the beginning of the "identification" segment. A few fields later is the
IO-OFFSET field. Its value, similarly, is the offset from the beginning of the SMF record to
the beginning of the "I/O activity" segment.

Later, you see a comment that the "identification segment" of the record follows. Then, the
first field in this ID segment of the SMF record is defined — the JOBNAME field. It uses an
OFFSET parm to tell Spectrum Writer where the segment containing the JOBNAME field
begins. Since JOBNAME is located at displacement zero in the ID segment, no DISP parm
was necessary. The next field within the ID segment, PGMNAME, also does not use a DISP
parm, nor does it have an OFFSET parm. Thus, PGMNAME will immediately follow JOBNAME
in the variably located ID segment. And STEPNAME similarly follows PGMNAME in that
same segment.
354 Spectrum Writer User’s Guide

Variably Located Record Segments
Next comes the definition of the fields in another variably located segment — the I/O
segment. Again, the first field in that segment, NUM-CARDS, uses an OFFSET parm to
specify it’s offset from the beginning of the record. The new OFFSET parm is now in effect
for this field and the following fields. Notice that the NUM-TPUTS field has a DISP(* + 4)
parm. Thus, instead of beginning immediately after the NUM-CARDS field, it begins 4 bytes
further in the segment.

Last comes a final FIELD statement for a "dummy" field. That is, it doesn’t define an actual
field within the record. Its purpose is just to cancel the outstanding offset value. It does this
by specifying OFFSET(0). It is a good idea to use such a trailing FIELD statement for file
definitions that are stored in the copy library.

The OFFSET parms in the example above simply contained the name of a single field.
However, you may use any numeric expression in the OFFSET parm. For example, to define
a field that appears after an array of variable size, you might use statements similar to this:

FIELD: NUM–SLOTS TYPE(COMP–3) LENGTH(2) /* NUMBER OF OCCURENCES IN SALE ARRAY */
...
FIELD: LAST–FIELD OFFSET(75 + (NUM–SLOTS * 12)) LENGTH(10)

There are some additional examples of FIELD statements that use the OFFSET parm in
"Working with SMF Records" on page 263.

Offset Errors
A ***F*** error indicator in your report means that an "offset error" occurred for the field.
Offset errors occur when the sum of the OFFSET value and the DISP value are not within the
I/O area reserved for the input record. (The size of this I/O area is determined by the LRECL
parm in a FILE, INPUT or READ statement.) Offset errors also occur when a computation error
arises while trying to compute the OFFSET value. This includes division by zero, overflow,
or any reference to a field that contains invalid data.

Variably Located Record SegmentsHow to Define Arrays

Many records contain arrays. One useful way to process arrays is to "normalize" the
records. (See "Using Normalization to Process Arrays" on page 237.) The FIELD statements
that you use to define an array will depend on whether you plan to normalize that array.

If you are not normalizing a record and you want to access all the data from an array, you
must define each occurrence of the array as a separate field. That is because the only way
to access each occurrence of the array is to refer to it specifically by a unique fieldname.

However, if you are using normalization to process an array, it is not necessary to define
all of the occurrences of the array. It is sufficient to define just the fields in the first
occurrence of the array. (Plus, you may need to define one additional field that includes the
entire first occurrence of the array. You will use that field in the NORMALIZATION parm of
your INPUT statement.)
Chapter 6. How to Define Your Input Files 355

How to Define Arrays
Figure 54 illustrates the different ways to define an array. Of course, for maximum
flexibility to all users, you may want to include FIELD statements that make it possible to
process the array using either method.

How to Define ArraysHow to Specify What File a Field Belongs To

Our examples up until now have not used the FILE parm of the FIELD statement. By default,
fields are assumed to exist in the "current file" –– the file defined in the most recent FILE
statement. To specify that a field belongs to some other (previously defined) file, use the
FILE parm. For example, assume that the following statements appeared together:

FILE: EMPL–FILE
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FILE: SALES–FILE
FIELD: EMPL–NAME LENGTH(10)
FIELD: FIRST–NAME LENGTH(15) FILE(EMPL-FILE)

The first statement above defines a file named EMPL–FILE. The next statement defines a
field named LAST–NAME. Since no FILE parm is used, that field is assumed to exist in the
EMPL–FILE –– the most recently defined file. The next statement defines a new file named
SALES–FILE. The following statement defines a field named EMPL–NAME. It also has no FILE
parm. So, it is assumed to exist in the SALES–FILE –– the most recently defined file at that

COBOL RECORD
LAYOUT

01 SALES-HISTORY-REC
 05 NAME PIC X(10).
 05 CITY PIC X(10).
 05 NUM-SLOTS PIC 9.
 05 SALE-ARRAY OCCURS 6 TIMES.
 10 SALE-DATE PIC 9(6).
 10 SALE-AMT PIC 9(5)V9(2).
 05 RECORD-STATUS PIC X(1).

SPECTRUM WRITER
DEFINITION

(IF NOT NORMALIZING)

FIELD: NAME LENGTH(10)
FIELD: CITY LENGTH(10)
FIELD: NUM-SLOTS LENGTH(1) TYPE(NUM)
FIELD: SALE-DATE-1 TYPE(YYMMDD)
FIELD: SALE-AMT-1 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-2 TYPE(YYMMDD)
FIELD: SALE-AMT-2 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-3 TYPE(YYMMDD)
FIELD: SALE-AMT-3 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-4 TYPE(YYMMDD)
FIELD: SALE-AMT-4 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-5 TYPE(YYMMDD)
FIELD: SALE-AMT-5 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-6 TYPE(YYMMDD)
FIELD: SALE-AMT-6 LENGTH(7) TYPE(NUM) DEC(2)
FIELD: RECORD-STATUS LENGTH(1)

SPECTRUM WRITER
DEFINITION

(IF NORMALIZING)

FIELD: NAME LENGTH(10)
FIELD: CITY LENGTH(10)
FIELD: NUM-SLOTS LENGTH(1) TYPE(NUM)
FIELD: SALE-ARRAY LENGTH(13) /*ENTIRE OCCURENCE*/
FIELD: SALE-DATE COLUMN(* - 13) TYPE(YYMMDD)
FIELD: SALE-AMT LENGTH(7) TYPE(NUM) DEC(2)
FIELD: RECORD-STATUS COLUMN(SALE-ARRAY + 78) LENGTH(1)

Figure 54. Different ways to define an array depending on how it will be processed
356 Spectrum Writer User’s Guide

How to Specify What File a Field Belongs To
point. The last statement defines a field named FIRST–NAME. This statement does have a
FILE parm. That statement explicitly specifies that the FIRST–NAME field exists in the
EMPL–FILE –– not the most recently defined file (the SALES–FILE).

Since no COLUMN parm was specified, the FIRST-NAME field begins in the "default location"
for the EMPL-FILE. Thus, the FIRST-NAME field will follow immediately after the LAST-NAME
field in the EMPL-FILE.

How to Specify What File a Field Belongs ToHow to Define a Field Created by a Data Exit

This section explains:

! what a data exit is

! which parms are required to define a field that uses a data exit

! which optional parms can be used when defining fields that use data exits

There are occasions when an external program, called a data exit program (or just "exit
program"), must manipulate data before Spectrum Writer can use it. Examples of this
include:

! data that is stored in encrypted format in a record

! date fields that are stored in an unusual format that Spectrum Writer does not
directly support

Even in such situations, Spectrum Writer can still use the data to produce a report. But a
data exit program must first be called to convert the data into a standard format that
Spectrum Writer can process. For example, in the cases listed above, a data exit program
could be used to:

! decrypt the encrypted data

! convert the unusual date field into a standard date field that Spectrum Writer can
process

Note: Data exit programs are programs written by programmers at your own
company. Appendix H, "Sample Data Exit Programs" (page 666) shows two
examples of sample data exit programs.

When Spectrum Writer needs to use a data exit field in producing a report, it temporarily
passes control to the data exit program. The exit program will be passed such information
as: the name of the field that Spectrum Writer needs a value for; some portion of the current
input record; and, a parm text.

The exit program then performs whatever processing is required, and passes back to
Spectrum Writer one of the following:

! a character string, of the length specified in the DXRETLEN parm (explained
below)

! a numeric value, stored as a 16–byte packed field

! a date value, stored as a 4–byte X’YYYYMMDD’ field
Chapter 6. How to Define Your Input Files 357

How to Define a Field Created by a Data Exit
! a time value, stored as a 16–byte packed number of seconds (or decimal parts of
seconds)

! a bit value, stored as a 1–byte character "0" or "1"

Once an exit program has passed data back to Spectrum Writer, that data can then be used
just like the data from any other field in producing reports and PC files. It can be printed,
sorted on, compared with other fields, used in computations, etc.

When data exit fields are defined, several special parms must be used in the FIELD
statement. These additional parms give information about: the name of the data exit
program to execute; what data should be passed to that program; and, what kind of data
Spectrum Writer can expect to get back from that program.

The parms required to define a field created by an exit program are:

! fieldname
! TYPE
! DXPROG

! DXRETLEN (for character fields)
! DXRETDEC (for numeric and time fields)

The following optional parm also relates specifically to fields created by data exits:

! DXPARM (used to pass an optional parameter string to the exit — see page 525)

In addition, the parms that specify how to display fields in a report (such as HEADING,
FORMAT, ACCUM/NOACCUM, ONTEXT, and OFFTEXT) can also be specified for these fields.

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 446.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The TYPE parm is required to tell Spectrum Writer that the field’s data is not in the input
record, but must be obtained by calling an exit program. It also tells what kind of data
(character, numeric, date, time or bit) the exit program will return. The valid values for the
TYPE parm are: CHAREXIT, NUMEXIT, DATEEXIT, TIMEEXIT and BITEXIT.

The DXPROG parm is required to tell Spectrum Writer the name of the program that should
be called to create the field’s data.

The DXRETLEN parm is required for CHAREXIT fields. This parm specifies the length of the
character data that will be returned to Spectrum Writer by the exit program.

The DXRETDEC parm is required for NUMEXIT and TIMEEXIT fields. This parm specifies the
number of decimal digits that will be included in the packed number returned to Spectrum
Writer by the exit program.

Let’s consider an example of a file that contains names stored in a special encrypted
format. Assume that the encrypted name starts in column 15 and is 20 bytes long. Also
358 Spectrum Writer User’s Guide

How to Define a Field Created by a Data Exit
assume that a program named DCRYPROG can be used to decrypt such names into a clear
text 18-byte name. Consider the following FIELD statement:

FIELD: CLEAR–NAME COLUMN(15) LENGTH(20) TYPE(CHAREXIT)
 DXPROG(’DCRYPROG’) DXRETLEN(18)

The above statement defines a field named CLEAR–NAME. The contents of this field will be
the name in "clear" format (that is, not encrypted). But in order to get the decrypted name,
Spectrum Writer must call an exit program. Therefore, the field is defined with a TYPE
parm of CHAREXIT. This specifies that a data exit program will be used, and that the exit
program will return character type data to Spectrum Writer.

The DXPROG parm supplies the name of the exit program to call. In this example, a
program named DCRYPROG will be called. Under OS/390, a load module by this name must
exist in one of the job’s STEPLIB or JOBLIB libraries. (Under VSE, a phase by this name must
be in a sublibrary named in the "// LIBDEF PHASE,SEARCH=..." JCL statement.)

When Spectrum Writer calls that program it will pass it the 20 byte encrypted name, which
begins in column 15 of the record. Note that the COLUMN and LENGTH parms identify the
data to be passed to the data exit program.

The DXRETLEN parm tell Spectrum Writer to expect an 18–byte character value back from
the exit program. It is this 18-byte character value returned from the exit program that will
be used whenever the CLEAR–NAME field appears in a report.

Here is an example of using a data exit to create a date field. Assume that in column 17 of
the input record there are 2 bytes that contain a date, stored in a special "in–house" format.
A program called DATECONV has been written to convert this date into the standard 4–byte
X’YYYYMMDD’ format date that Spectrum Writer uses internally. The following statement
could be used to define the field:

FIELD: SPECIAL–DATE COLUMN(17) LENGTH(2) TYPE(DATEEXIT) DXPROG(’DATECONV’)

The above statement defines a field named SPECIAL–DATE that can be used just as any other
date field in Spectrum Writer. It can be compared to other dates, printed using any date
display format, etc.

Following is an example of a data exit used to create a numeric field. Assume that bytes
5 through 7 of the input record contain a key that can be used to read a special "in–house"
data base file. The data base file contains the unit cost of a product. Since Spectrum Writer
cannot read the data base file directly, an exit program named READCOST has been written
to read a record from the file and return the unit cost as a 16–byte packed number. The
packed numeric value returned by the exit program will contain 2 decimal digits.

FIELD: UNIT–COST COLUMN(5) LENGTH(3) TYPE(NUMEXIT)
 DXPROG(’READCOST’) DXRETDEC(2)

The last example is of a bit field that is created using a data exit program. In this example,
we want to define a bit field that tells whether a report job is running on the shop’s
production machine, or on its development machine. This information is not stored in any
record. But a program named CHEKMACH can determine which machine it is running on. In
this example, we don’t specify a COLUMN or LENGTH, because the data exit program does
not require any data from our input file in order to do its processing. This exit program will
return an "on" value ("1") if the production machine is running, and an "off" value ("0’) if
Chapter 6. How to Define Your Input Files 359

How to Define a Field Created by a Data Exit
the development machine is running. The optional ONTEXT and OFFTEXT parms have been
used in this example.

FIELD: MACHINE TYPE(BITEXIT) DXPROG(’CHEKMACH’) ONTEXT(’PROD’) OFFTEXT(’DEV’)

Note: The EXITPARM parm in the FILE statement (page 534) may also be useful
when working with fields created in data exits. It defines an exit parm text that is
passed to the data exits for all fields in the file. This parm text is in addition to the
parm text in the FIELD statement’s DXPARM parm, which is specific to an individual
field.

How to Define a Field Created by a Data ExitKeeping Your File Definitions in a Copy Library

This section explains:

! how to define files without using a copy library

! how to simplify the file definition process by using a copy library to store your
FILE and FIELD statements

The first part of this chapter explained how to write FILE and FIELD statements (called
"definition statements"). But where should you put your definition statements? This
section discusses two approaches to handling these definition statements:

! you can code the definition statements "in–line," including them right along with
the other control statements for each report

! or, a better way is to save the definition statements in the Spectrum Writer Copy
Library, where they can be automatically accessed when needed

The following sections describe these two methods.

Keeping Your File Definitions in a Copy LibraryIncluding the Definition Statements "In–Line"

If you like, you can produce Spectrum Writer reports and PC files without using a copy
library at all. Simply include the necessary FILE and FIELD statements ahead of the other
control statements (that describe the report or PC file). Figure 55 shows an example of a
report which has the necessary definition statements included ahead of the other control
statements. No copy library was involved in producing this report. (Figure 56 on page 362
shows the same example under VSE.)

Note that if you use this method, you only need to define those fields that are actually used
in the report. It is not necessary to define every field in the file.

If a report requires more than one input file (by using a READ statement) be sure to include
the definition statements for each of those files at the beginning of your control statements.
360 Spectrum Writer User’s Guide

Including the Definition Statements "In–Line"
Figure 55. A Spectrum Writer report that does not use a copy library — OS/390

Remarks:
• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it
• each of the fields used in the report are defined with FIELD statements before being referred to
• no SWCOPY DD is needed in the JCL to run this report, since the copy library is not used

This JCL:
//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, SPECTRUM WRITER
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWLIST DD SYSOUT=* CONTROL LISTING
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
**** THESE STATEMENTS DEFINE THE SALES–FILE
FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
FIELD: EMPL–NAME LENGTH(10)
FIELD: EMPL–NUM LENGTH(3)
FIELD: AMOUNT COLUMN(22) LENGTH(6) TYPE(NUM) DEC(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DEC(2)
FIELD: SALES–DATE COLUMN(36) TYPE(YYMMDD)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
**** THESE STATEMENTS REQUEST A REPORT FROM THE SALES–FILE
INPUT: SALES–FILE
COLUMNS: EMPL–NAME EMPL–NUM SALES–DATE CUSTOMER AMOUNT TAX
SORT: EMPL–NAME
//*

Produces this Report:
MON 06/12/95 9:02 AM DATA FROM SALES-FILE PAGE 1

 EMPL EMPL SALES
 NAME NUM DATE CUSTOMER AMOUNT TAX

BAKER 044 03/26/92 JACKS CAFE 137.00 8.22
BAKER 044 04/12/92 JACKS CAFE 135.75 8.15
JOHNSON 037 03/12/92 ACE ELECTRICAL 101.38 6.09
JOHNSON 037 04/01/92 VILLA HOTEL 234.45 14.07
JOHNSON 039 04/05/92 MARYS ANTIQUES 9.98 0.60
JOHNSON 039 04/16/92 ACME BUILDING 500.00 30.00
JONES 036 04/15/92 EZ GROCERY 10.25 0.62
JONES 036 04/15/92 TOY TOWN 10.25 0.62
JONES 036 04/15/92 TOY TOWN 121.76 7.31
MORRISON 042 03/29/92 STAR MARKET 44.35 2.66
MORRISON 042 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 041 04/01/92 EUROPEAN DELI 14.99 0.90
SIMPSON 041 04/30/92 J & S LUMBER 23.87 1.43
THOMAS 045 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 6. How to Define Your Input Files 361

Including the Definition Statements "In–Line"
Figure 56. A Spectrum Writer report that does not use a copy library — VSE

Remarks:
• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it
• each of the fields used in the report are defined with FIELD statements before being referred to
• no OPTIONS: SUBLIB parm is needed to run this report, since a copy library is not used

This JCL:
// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// ASSGN SYS011,006 REPORT OUTPUT
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE'
// EXTENT SYS015,,,,6764,1000
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
**** THESE STATEMENTS DEFINE THE SALES–FILE
FILE: SALES–FILE ATTR(DASD,'SALEFIL',80,160)
FIELD: EMPL–NAME LENGTH(10)
FIELD: EMPL–NUM LENGTH(3)
FIELD: AMOUNT COLUMN(22) LENGTH(6) TYPE(NUM) DEC(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DEC(2)
FIELD: SALES–DATE COLUMN(36) TYPE(YYMMDD)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
**** THESE STATEMENTS REQUEST A REPORT FROM THE SALES–FILE
INPUT: SALES–FILE
COLUMNS: EMPL–NAME EMPL–NUM SALES–DATE CUSTOMER AMOUNT TAX
SORT: EMPL–NAME
/*
/&

Produces this Report:
MON 06/12/95 9:02 AM DATA FROM SALES-FILE PAGE 1

 EMPL EMPL SALES
 NAME NUM DATE CUSTOMER AMOUNT TAX

BAKER 044 03/26/92 JACKS CAFE 137.00 8.22
BAKER 044 04/12/92 JACKS CAFE 135.75 8.15
JOHNSON 037 03/12/92 ACE ELECTRICAL 101.38 6.09
JOHNSON 037 04/01/92 VILLA HOTEL 234.45 14.07
JOHNSON 039 04/05/92 MARYS ANTIQUES 9.98 0.60
JOHNSON 039 04/16/92 ACME BUILDING 500.00 30.00
JONES 036 04/15/92 EZ GROCERY 10.25 0.62
JONES 036 04/15/92 TOY TOWN 10.25 0.62
JONES 036 04/15/92 TOY TOWN 121.76 7.31
MORRISON 042 03/29/92 STAR MARKET 44.35 2.66
MORRISON 042 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 041 04/01/92 EUROPEAN DELI 14.99 0.90
SIMPSON 041 04/30/92 J & S LUMBER 23.87 1.43
THOMAS 045 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
362 Spectrum Writer User’s Guide

 Using the Spectrum Writer Copy Library

There is a better way to handle the definition statements. Spectrum Writer can
automatically access the definition statements it needs for a particular report by using a
"copy library." In OS/390, this copy library is just a regular partitioned data set (PDS). In
VSE, this copy library is just a regular Librarian sublibrary. The copy library will have one
member for each of your company’s files that have been defined. The FILE and FIELD
statements for each file will be kept in these members.

Note to OS/390 Programmers: The Spectrum Writer Copy Library works in much
the same way as a Cobol copybook library (SYSLIB DD). We recommend that you
create a new PDS to serve exclusively as your Spectrum Writer Copy Library.
(However, you can also use an existing 80–byte PDS, if you prefer.) Use the SWCOPY
DD in your execution JCL to tell Spectrum Writer what PDS you are using as the copy
library. See "Setting Up File Definitions — OS/390" (page 420) for detailed
information on setting up the Spectrum Writer Copy Library.

Note to VSE Programmers: The Spectrum Writer Copy Library works in much
the same way as a Cobol copybook library. We recommend that you define a
separate sublibrary to serve exclusively as your Spectrum Writer Copy Library.
(However, you can also use an existing sublibrary, if you prefer.) Use the SUBLIB
parm — in an OPTIONS statement — to tell Spectrum Writer the name of your copy
library. The member type for all members should be SPECTWTR. (Or, use the
OPTIONS statement MEMTYPE parm if you need to use a different member type. See
page 566.) See "Setting Up File Definitions — VSE" (page 437) for detailed
information on setting up the Spectrum Writer Copy Library.

There are several advantages to keeping the FILE and FIELD statements in a copy library.
Among them are: easier maintenance of the definitions; standardization of file definition
among the various jobs that use the same file; and the ability for users to request reports
more easily, without concerning themselves each time with writing definition statements.

To add a file’s definition to the copy library, simply create a new member in the copy
library. The member name can be either the file name itself (if it conforms to the naming
rules for PDS or Librarian members), or it can be some other name (in which case you’ll
create an alias entry for it, as described on page 367). After you have created a member in
the copy library for a file, simply save its FILE and FIELD statements there. You can also
include any COMPUTE statements that are commonly used with the file. That’s all there is
to adding a file to the Spectrum Writer Copy Library.

Automatic Copying
Once a file’s definition statements have been stored in the copy library, Spectrum Writer
will automatically copy and process those statements whenever they are needed in order to
produce a report or PC file. You remember that the INPUT and the READ statement identify
files as inputs in a run. By default, whenever either of these statements names a file that
has not yet been defined, Spectrum Writer attempts to copy control statements from the
copy library member that corresponds to that file. Those control statements then define the
file for Spectrum Writer.

Thus, each input file to a report is automatically defined for you as it is needed. You don’t
need to concern yourself with the FILE and FIELD statements every time you request a report
or PC file.
Chapter 6. How to Define Your Input Files 363

Using the Spectrum Writer Copy Library
Figure 57 (OS/390) and Figure 58 (VSE) show a sample report that allows the INPUT
statement to automatically copy the FILE and FIELD control statements from the copy
library. Most of the examples in this manual also use this method –– that is why you don’t
see the FILE and FIELD statements explicitly specified in most cases. Appendix F, "Files
Used in Examples" (page 648) show the contents of the copy library members that define
the sample files used in this manual.

By default, the control statements copied from the copy library are not printed in the
control listing. If you would like to see all of the control statements that are copied from
the copy library, add the LIST(YES) parm to your INPUT or READ statement, like this:

INPUT: EMPL–FILE LIST(YES)

The INPUT statement above will cause all of the statements copied from the copy library to
be printed in the control listing. If you are having errors involving "undefined files" or
"undefined fields," you should use the LIST(YES) parm to see exactly how the file and fields
are being defined.

If for any reason you do not want an automatic copy performed for an INPUT or READ
statement, you may use the COPY(NO) parm, like this:

INPUT: EMPL–FILE COPY(NO)

The above statement specifies EMPL–FILE as the input file and requests that no automatic
copy be performed from the copy library. (Also, remember that the default is not to perform
a copy if the file named in the INPUT or READ statement has already been defined some
other way.)

The COPY Statement
In addition to file definition statements, the copy library can also be used to store any
commonly used group of control statements. To explicitly copy the contents of a copy
library member into your control statements, use the COPY statement (page 516).

For example, you might store a set of complicated COMPUTE statements that are used by
many reports. Or, if you frequently run reports that use multiple input files, you could store
the INPUT statement, any COMPUTE statements needed to create the read keys, and the READ
statements all as one member of the copy library. That way the end–users would not need
to remember how to link all of the input files. They could just begin their report request
with a COPY statement that accomplishes all of that for them.

Under OS/390, the COPY statement can also copy standard sequential datasets (not
partitioned). If your FILE and FIELD statements are stored in a dataset other than a PDS, you
may want to use the COPY statement to include them in your report request. Be sure to put
the COPY statement before the INPUT or READ statement.
364 Spectrum Writer User’s Guide

Using the Spectrum Writer Copy Library
Figure 57. A report which uses Spectrum Writer’s Copy Library — OS/390

Remarks:
• the SWCOPY DD (in the execution JCL) would identify the PDS to use as the copy library
• as the INPUT statement is processed, the EMPLDEF copy library member is automatically copied into

this report request. That member contains the definition statements for the EMPL–FILE.

• the following line appears in the SWALIAS member of the copy library:

• the following statements are stored in the EMPLDEF member of the copy library:

These Control Statements:
INPUT: EMPL–FILE
TITLE: 'USING THE COPY LIBRARY TO DEFINE FIELDS'
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE

Produce this Report:
USING THE COPY LIBRARY TO DEFINE FIELDS

 LAST FIRST HIRE
 NAME NAME DATE

BAKER VIVIAN 06/04/82
CHRISTOPHERSON MELISSA 08/15/81
JOHNSON LINDA 11/25/79
JOHNSON THOMAS 06/21/75
JONES JERRY 01/31/80
MACDONALD RICHARD 07/04/82
MORRISON MICHAEL 11/30/79
SIMPSON TIMOTHY 12/01/82
THOMAS MARTIN 06/04/82

*** GRAND TOTAL (9 ITEMS)

EMPL–FILE = EMPLDEF

FILE: EMPL–FILE DDNAME(EMPLDD) TYPE(VSAM)
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: FIRST–NAME LENGTH(15)
FIELD: HIRE–DATE TYPE(YYMMDD)
Chapter 6. How to Define Your Input Files 365

Using the Spectrum Writer Copy Library
Figure 58. A report which uses Spectrum Writer’s Copy Library — VSE

Remarks:
• the OPTIONS statement names LIB.SPECTWTR as the Librarian sublibrary to use as the Spectrum

Writer Copy Library for this run.
• as the INPUT statement is processed, the EMPLDEF.SPECTWTR copy library member is automatically

copied into this report request. That member contains the definition statements for the EMPL–FILE.

• the following line appears in the SWALIAS.SPECTWTR member of the copy library:

• the following statements are stored in the EMPLDEF.SPECTWTR member of the copy library

These Control Statements:
OPTIONS: SUBLIB('LIB.SPECTWTR')
INPUT: EMPL–FILE
TITLE: 'USING THE COPY LIBRARY TO DEFINE FIELDS'
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE

Produce this Report:
USING THE COPY LIBRARY TO DEFINE FIELDS

 LAST FIRST HIRE
 NAME NAME DATE

BAKER VIVIAN 06/04/82
CHRISTOPHERSON MELISSA 08/15/81
JOHNSON LINDA 11/25/79
JOHNSON THOMAS 06/21/75
JONES JERRY 01/31/80
MACDONALD RICHARD 07/04/82
MORRISON MICHAEL 11/30/79
SIMPSON TIMOTHY 12/01/82
THOMAS MARTIN 06/04/82

*** GRAND TOTAL (9 ITEMS)

EMPL–FILE = EMPLDEFEMPL–FILE = EMPLDEF

FILE: EMPL–FILE ATTR(VSAM,'EMPLDD',100)
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: FIRST–NAME LENGTH(15)
FIELD: HIRE–DATE TYPE(YYMMDD)
366 Spectrum Writer User’s Guide

How to Use a Copy Library Alias

This section explains:

! which member of the copy library will be copied

! how to create an alias entry for use with the copy library

As mentioned in the preceding section, whenever an INPUT or READ statement is
encountered for a file name which has not been defined, Spectrum Writer attempts to copy
a member from the copy library to define the file. Which member of the copy library is
copied? The member name used will be either:

! the member name specified by an "alias entry" for the file name, if any, or

! the file name itself, if that name is valid for use as a member name

If there is no alias entry for a file, and the file name is not valid as a member name, no copy
is attempted. If a copy is attempted, but the member does not exist in the copy library, no
copy is performed. Processing continues normally in either of these cases. The failure to
find a member to copy is not considered an error when processing INPUT and READ
statements.

Alias entries are kept in a special member of the copy library. That member is named
SWALIAS. The purpose of an alias entry is to relate a Spectrum Writer file name (which can
be up to 70 characters long) to the 8–byte name of the copy library member where that
file’s definitions are stored. When the file name and the member name are the identical, no
alias is needed. Thus, if you have a file named PAYROLL and you keep its file definition
statements in a member named PAYROLL, no alias entry would be needed for that file.

But, if you’d like to use longer, more user–friendly file names in your Spectrum Writer
statements, you can certainly do so. You’ll just need to add an alias entry to the special
member named SWALIAS in your copy library. For example, let’s say we wanted to call our
payroll file HEADQUARTERS–PAYROLL. That name is too big to use as the member name in
the copy library. So, you would pick a shorter member name to keep the file definition
statements in –– say HQPAYROL. Now just add an alias entry like this within SWALIAS:

HEADQUARTERS–PAYROLL = HQPAYROL

The above alias entry tells Spectrum Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.
"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Spectrum Writer
control statements (such as the INPUT statement). It’s also the name you will use in the FILE
statement when defining the file. "HQPAYROL" will only be used internally by Spectrum
Writer as the member name for reading the definition statements from the copy library.

Consider the following statement:
INPUT: HEADQUARTERS–PAYROLL

When Spectrum Writer encounters the above INPUT statement it searches the SWALIAS copy
library member for a line that begins with "HEADQUARTERS–PAYROLL." It will find the alias
entry shown earlier that names HQPAYROL as the member name. Spectrum Writer will then
copy the control statements from the HQPAYROL member of the copy library. Those
statements define the HEADQUARTERS–PAYROLL file.
Chapter 6. How to Define Your Input Files 367

How to Use a Copy Library Alias
Here are some additional points about the SWALIAS member:

! The alias entries in SWALIAS do not have to be in alphabetical order.

! Each file name may appear only once in SWALIAS.

! You may include comment lines in the SWALIAS member by putting an asterisk
in the first column of the line.

Appendix F, "Files Used in Examples" (page 648) shows the contents of the SWALIAS
member used in producing the sample reports in this manual.

How to Use a Copy Library AliasDefining One–Time Fields

The FIELD statements for a file are normally kept in the copy library member for that file.
You may, however, want to add one or more FIELD statements of your own for a particular
run.

This usually occurs when you want to define some part of a record differently than the way
it is defined in the copy library. For example, you may want to subdivide a date field into
its year, month, and day components. Or, you might want to define a cost center field as
numeric, whereas it is defined as character in the copy library.

It is very easy to add your own FIELD statements for use in your report. Just include them
in-line, along with your other control statements. Put them somewhere after the INPUT or
READ statement for the file, and before the first statement that refers to the field. Remember
to choose different names for your fields — ones that are not used in the copy library FIELD
statements.

As an example, let’s say that we want to produce a report of all employees hired in the
month of January (of any year). To do this, we need a field that contains the month that an
employee was hired. There is no such field defined in the regular FIELD statements
contained in the copy library. The closest thing is the HIRE–DATE field, which is defined as
a YYMMDD date. We could do the following:

INPUT: EMPL–FILE
FIELD: HIRE–MONTH COLUMN(HIRE–DATE+2) LENGTH(2) TYPE(NUM)
INCLUDEIF: HIRE–MONTH = 1
TITLE: ’EMPLOYEES HIRED IN JANUARY OF SOME YEAR’
COLUMNS: HIRE–MONTH LAST–NAME FIRST–NAME HIRE–DATE

As soon as Spectrum Writer encounters the above INPUT statement, the copy library
members for the EMPL–FILE are processed. These statements define all of the regular fields
in the EMPL–FILE. However, in this report we want the 2–byte month portion of the
HIRE–DATE field defined as a separate field. So, we add our own FIELD statement to define
a new field called HIRE–MONTH. It is located 2 bytes after the start of the HIRE–DATE field
— at the MM portion of the YYMMDD date. The HIRE–MONTH field is 2 bytes long, and is
defined as a numeric field. The INCLUDEIF statement can now refer to the HIRE–MONTH field,
and select just those records with a month value of 1. We also list the new HIRE–MONTH
field in the COLUMNS statement, along with a number of the regular fields from the
EMPL–FILE.
368 Spectrum Writer User’s Guide

Defining One–Time Fields
Here is another example of defining an additional field in-line.
OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
INCLUDEIF: DEPT–NUM = 2
COLUMNS: RECORD

In this example, we want to create an output file, rather than a report. We want to select
just the EMPL–FILE records for employees in department 2, and write those records to an
output file. To do this, we defined an additional field named RECORD. This is a character
field that includes the entire EMPL–FILE record. We use the INCLUDEIF statement to select
only those records whose DEPT–NUM field is equal to 2. Our COLUMNS statement simply
lists the single RECORD field. Thus, our output file contains the complete EMPL–FILE record
for those employees in department 2.

Note: If your report uses multiple input files, you may need to use the FILE parm in
your FIELD statement to specify which file your new field exists in. If the FILE parm
is omitted, your FIELD statements will be assumed to belong to the most recently
defined file.

Defining One–Time FieldsUsing Cobol and Assembler Record Layouts

This section explains how to use Cobol or Assembler record layouts with Spectrum Writer.

Earlier in this chapter you learned how to use FIELD statements to define an input file to
Spectrum Writer. Spectrum Writer can also interpret most Cobol and Assembler record
layouts. If you have such a record layout for your file, it is not necessary to write FIELD
statements to define it.

There are two ways to use Spectrum Writer’s Cobol and Assembler interpreter.

1. In a "live" run. Provide a Cobol or Assembler record layout to Spectrum Writer
and produce a custom report or PC file in the same run. With this method, you
never create a standard Spectrum Writer file definition.

2. In a "conversion" run. Provide a Cobol or Assembler record layout to
Spectrum Writer and let it write corresponding FIELD statements to an output file.
Save these FIELD statements in your Spectrum Writer Copy Library for use in
future runs. This method gives you greater flexibility because you can modify
and customize the FIELD statements created by Spectrum Writer. This lets you
take advantage of features available in FIELD statements that aren’t available in
Cobol or Assembler layouts (such as specifying column headings and display
formats).

Spectrum Writer has two special control statements that are used when working with Cobol
or Assembler record layouts. The COBOL statement tells Spectrum Writer that a Cobol
record layout is about to follow. The ASM statement tells Spectrum Writer that an
Assembler record layout follows. The following sections describe how to use these
statements in both "live" and "conversion" runs.

Terminology: to avoid ambiguity when using the words "Cobol" and "COBOL
statement," we have used the following convention throughout this chapter:
Chapter 6. How to Define Your Input Files 369

Using Cobol and Assembler Record Layouts
Cobol (spelled with mixed case letters) refers to the programming language. Thus
"Cobol statement" refers to a line of code in a Cobol program.

COBOL (spelled in upper case letters) refers to the Spectrum Writer control statement
by that name. Thus "COBOL statement" means the Spectrum Writer control statement
that begins with the prefix "COBOL:".

Using Cobol and Assembler Record LayoutsLive Runs Using Cobol Record Layouts

This section shows how to request reports (or PC files) using a Cobol record layout to
define the input file. No additional data definition is required.

Figure 59 shows an example of a such report. Let’s examine the Spectrum Writer control
statements shown in the top box of that figure.

A FILE statement is always required before fields can be defined. It tells Spectrum Writer
the name of the file that the fields belong to. In this case, we named the file SALES–FILE.
Normally a number of FIELD statements would then follow to define the fields in the file.
But in this case a COBOL statement follows instead.

The COBOL statement tells Spectrum Writer that subsequent control statements will be in
the Cobol language. After the COBOL statement, actual lines of a Cobol record layout
appear. The Cobol code must be error-free and must be formatted according to the rules of
Cobol syntax. (For example, the first 6 columns are reserved for sequence numbers,
column 7 is reserved for continuation indicators or comment indicators, etc.) Spectrum
Writer processes the Cobol record layout, noting the names of the Cobol fields and their
characteristics. Internally, Spectrum Writer creates the equivalent of a FIELD statement for
each Cobol field in the record layout.

Note: See "Technical Notes on Cobol Support" (page 385) for certain limitations
on the Cobol syntax that Spectrum Writer accepts.

Spectrum Writer continues treating each subsequent line as Cobol code until it reaches a
line that begins with a Spectrum Writer control statement prefix. In this example, the line
beginning "INPUT:" is recognized as a Spectrum Writer control statement. So, starting with
the INPUT statement, the lines are no longer treated as Cobol code. (The scope of the COBOL
statement is discussed more fully on page 384.)

After the Cobol record layout, we simply resumed the report request in the normal way.
The INPUT statement specifies the input file for the report. It is the SALES–FILE that we just
defined using the Cobol record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS
statement we can refer to any of the fields defined in the Cobol record layout. The field
names used are the same names that appeared in the Cobol layout. By default, the column
headings will also be the Cobol field names, broken apart at the dashes. Of course, you can
specify an override column heading, if you like.

Fields defined by a Cobol record layout can be used in all of the same ways as fields
defined with FIELD statements. You can use the Cobol field names in SORT statements,
COMPUTE statements, BREAK statements, and so on.
370 Spectrum Writer User’s Guide

Live Runs Using Cobol Record Layouts
Figure 59. A report produced using a Cobol record layout

These Control Statements:

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
 01 SALES-REC.
 05 EMPL-NAME PIC X(10).
 05 EMPL-NUM PIC X(3).
 05 BACKUP-EMPL-NUM PIC X(3).
 05 REGION PIC X(5).
 05 AMOUNT PIC 9999V99.
 05 TAX PIC 99V99.
 05 COMMISSION-RATE PIC 9V999.
 05 SALES-DATE PIC 9(6).
 05 SALES-TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 TIME-ON-PHONE PIC 999V9.
 05 PRODUCT-CODE PIC X(3).
 05 FILLER PIC X(1).
INPUT: SALES–FILE
COLUMNS: EMPL–NAME
 SALES–DATE(PIC'999999',NOACCUM)
 SALES–TIME(PIC'999999',NOACCUM)
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:
TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
 NAME DATE TIME CUSTOMER AMOUNT TAX

JOHNSON 950312 102500 ACE ELECTRICAL 101.38 6.09
BAKER 950326 120909 JACKS CAFE 137.00 8.22
MORRISON 950329 153022 STAR MARKET 44.35 2.66
MORRISON 950330 190541 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 950401 081757 EUROPEAN DELI 14.99 0.90
JOHNSON 950401 170247 VILLA HOTEL 234.45 14.07
JOHNSON 950405 143310 MARYS ANTIQUES 9.98 0.60
BAKER 950412 143112 JACKS CAFE 135.75 8.15
THOMAS 950414 154138 YOGURT CITY 9.98 0.60
JONES 950415 075832 EZ GROCERY 10.25 0.62
JONES 950415 080159 TOY TOWN 121.76 7.31
JONES 950415 135241 TOY TOWN 10.25 0.62
JOHNSON 950416 114833 ACME BUILDING 500.00 30.00
SIMPSON 950430 153021 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 6. How to Define Your Input Files 371

Live Runs Using Cobol Record Layouts
Notice in the COLUMNS statement that we used two special parms for the SALES–DATE and
SALES–TIME fields. Those two fields were defined as numeric values in the Cobol record
layout. The PIC’999999’ parm specifies how those numeric values should be formatted in the
report. Otherwise, they would have been formatted in the default way for numeric fields —
as ZZZ,ZZ9. And, the NOACCUM parm indicates that those fields should not be accumulated
(totalled). Otherwise, those columns would have been totalled in the Grand Total line. For
more information, see "Handling Date and Time Fields in Record Layouts" on page 375.

Note: By default, the Cobol record layout defines fields for the most recently
defined file. Use a FILE parm in the COBOL statement if the fields belong to some
other file (see page 495).

Note: To see a listing of the internal FIELD statements that Spectrum Writer creates
from a Cobol layout, add the SHOWFLDS(YES) parm to the COBOL statement:

COBOL: SHOWFLDS(YES)

If we had used the above statement in the report in Figure 59, the following FIELD
statements would have appeared in the control listing:

FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL–NAME LEN(10) COL(1)
FIELD: EMPL–NUM LEN(3)
FIELD: BACKUP–EMPL–NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: COMMISSION–RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES–DATE LEN(6) TYPE(NUM)
FIELD: SALES–TIME LEN(6) TYPE(NUM)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
FIELD: TIME–ON–PHONE LEN(4) TYPE(NUM) DEC(1)
FIELD: PRODUCT–CODE LEN(3)
FIELD: FILLER#001 LEN(1)

Note: You can use the NOSEQ parm in the COBOL statement to prevent Spectrum
Writer from validity-checking the sequence numbers in your Cobol record layout.
Use this parm if the Cobol record layout you use has non–numerics in columns 1
through 6 and you do not want warning messages to appear in the control listing.
(See page 495.)

Live Runs Using Cobol Record LayoutsLive Runs Using Assembler Record Layouts

This section shows how to request reports (or PC files) using an Assembler record layout
to define the input file. No additional data definition is required.

Figure 60 shows an example of such a report. Let’s examine the Spectrum Writer control
statements shown in the top box of that figure.

A FILE statement is always required before fields can be defined. It tells Spectrum Writer
the name of the file that the fields belong to. In this case, we named the file SALES–FILE.
Normally a number of FIELD statements would then follow to define the fields in the file.
But in this case an ASM statement followed instead.
372 Spectrum Writer User’s Guide

Live Runs Using Assembler Record Layouts
Figure 60. A report produced using an Assembler record layout

These Control Statements:

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
ASM:
SALESREC DS 0CL80
EMPLNAME DS CL10
EMPLNUM DS CL3
BACKEMPN DS CL3
REGION DS CL5
AMOUNT DS ZL6'9999.99'
TAX DS ZL4'99.99'
COMMRATE DS ZL4'9.999'
SALEDATE DS CL6
SALETIME DS CL6
CUSTOMER DS CL15
TELEPHON DS ZL10
TIMEPHON DS ZL4'999.9'
PRODCODE DS CL3
 DS CL1
INPUT: SALES–FILE
COLUMNS: EMPLNAME
 SALEDATE
 SALETIME
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:
TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPLNAME SALEDATE SALETIME CUSTOMER AMOUNT TAX

JOHNSON 950312 102500 ACE ELECTRICAL 101.38 6.09
BAKER 950326 120909 JACKS CAFE 137.00 8.22
MORRISON 950329 153022 STAR MARKET 44.35 2.66
MORRISON 950330 190541 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 950401 081757 EUROPEAN DELI 14.99 0.90
JOHNSON 950401 170247 VILLA HOTEL 234.45 14.07
JOHNSON 950405 143310 MARYS ANTIQUES 9.98 0.60
BAKER 950412 143112 JACKS CAFE 135.75 8.15
THOMAS 950414 154138 YOGURT CITY 9.98 0.60
JONES 950415 075832 EZ GROCERY 10.25 0.62
JONES 950415 080159 TOY TOWN 121.76 7.31
JONES 950415 135241 TOY TOWN 10.25 0.62
JOHNSON 950416 114833 ACME BUILDING 500.00 30.00
SIMPSON 950430 153021 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 6. How to Define Your Input Files 373

Live Runs Using Assembler Record Layouts
The ASM statement tells Spectrum Writer that subsequent control statements will be in the
IBM S/370 Assembler language. After the ASM statement, actual lines of an Assembler record
layout appear. The Assembler code must be error-free and must be formatted according to
the rules of Assembler syntax. (That is, labels must begin in column 1, column 72 is the
continuation column, etc.) Spectrum Writer processes the Assembler record layout, noting
the names of the Assembler fields and their characteristics. Internally, Spectrum Writer
creates the equivalent of a FIELD statement for each Assembler field in the record layout.

Note: See "Technical Notes on Assembler Support" (page 387) for certain
limitations on the Assembler syntax that Spectrum Writer accepts.

Spectrum Writer continues treating each subsequent line as Assembler code until it reaches
a line that begins with a Spectrum Writer control statement prefix. In this example, the line
beginning "INPUT:" is recognized as a Spectrum Writer control statement. So, starting with
the INPUT statement the lines are no longer treated as Assembler code. (The scope of the
ASM statement is discussed more fully on page 384.)

After the Assembler record layout, we simply resumed the report request in the normal
way. The INPUT statement specifies the input file for the report. It is the SALES–FILE that we
just defined using the Assembler record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS
statement we can refer to any of the fields defined in the Assembler record layout. The field
names used are the same names that appeared in the Assembler layout. By default, the
column headings will also be the Assembler field name. Of course, you can specify an
override column heading, if you like.

Fields defined by an Assembler layout can be used in all of the same way as fields defined
with FIELD statements. You can use the Assembler field names in SORT statements,
COMPUTE statements, BREAK statements, and so on.

Note: By default, the Assembler record layout defines fields for the most recently
defined file. Use a FILE parm in the ASM statement if the fields belong to some other
file (see page 495).

Note: To see a listing of the internal FIELD statements that Spectrum Writer creates
from an Assembler layout, add the SHOWFLDS(YES) parm to the ASM statement:

ASM: SHOWFLDS(YES)

If we had used the above statement in the report in Figure 60, the following FIELD
statements would have appeared in the control listing:

FIELD: SALESREC LEN(80) COL(1)
FIELD: EMPLNAME LEN(10) COL(1)
FIELD: EMPLNUM LEN(3)
FIELD: BACKEMPN LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM-SLD) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM-SLD) DEC(2)
FIELD: COMMRATE LEN(4) TYPE(NUM-SLD) DEC(3)
FIELD: SALEDATE LEN(6)
FIELD: SALETIME LEN(6)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHON LEN(10) TYPE(NUM-SLD)
FIELD: TIMEPHON LEN(4) TYPE(NUM-SLD) DEC(1)
FIELD: PRODCODE LEN(3)
374 Spectrum Writer User’s Guide

Handling Date and Time Fields in Record Layouts

Neither Cobol nor Assembly language have a way to explicitly define a field as a date or a
time. Date and time fields are generally defined as numeric fields (or sometimes as
character fields) in these languages. It is left up to the program code in those languages to
know that the numeric value actually represents a date or a time.

For example, consider the SALES–DATE field in the Cobol example on page 371. The file
actually contains a YYMMDD date for this field. But it is defined in Cobol simply as PIC 9(6).
Spectrum Writer has no way of knowing that this field is anything other than a 6-digit
numeric field. In the report, therefore, it doesn’t appear in MM/DD/YY format as a date field
normally would. It is treated as a numeric field. By default it would have appeared in
"ZZZ,ZZ9" format in the report (for example: 920,415). Also, by default, that column would
have been totalled at the end of the report (like all other numeric columns). To make the
value look more like a date, we used override parms in the COLUMNS statement to change
the display format to PIC’999999’ and to suppress the totals.

The SALES–TIME field has the same problem. The field actually contains a HHMMSS time.
But since it is defined in Cobol as PIC 9(6), it’s just an ordinary numeric field to Spectrum
Writer. Again, we used override parms in the COLUMNS statement to improve its
appearance in the report.

However, there is a simple way to use Cobol and Assembler record layouts and still be able
to define fields as true date or time fields. One extra step is all that’s needed. Consider the
example in Figure 61. In this example, we created a true date field simply by adding this
statement after the Cobol record layout:

FIELD: SALES–DT COLUMN(SALES–DATE) TYPE(YYMMDD)

This statement creates a new field named SALES–DT. The field starts in the same column as
SALES–DATE, but has a data type of YYMMDD. Therefore, SALES–DT is a true date field. That
means that it is formatted like a date in the report (MM/DD/YY). It also means that date literals
can be used when comparing it in a conditional expression (for example, SALES–DT >=
12/31/1996).

By referring back to SALES–DATE in the COLUMN parm, we don’t have to calculate the exact
column that the field starts in. The SALES-DT field just starts in the same column as the
SALES–DATE field. And, if the record layout is later changed and SALES–DATE moves to a
different column, the FIELD statement for SALES–DT will still be correct.

We used the same technique to define a true time field:
FIELD: START–TM COLUMN(START–TIME) TYPE(HHMMSS)

START–TM is a time field that starts in the same column as the numeric field START–TIME.
By using START–TM in the report, the data is formatted as a time (HH:MM:SS). And time
literals can be used when comparing it in a conditional expression (for example, START–TM
< 12:00:00).

The bottom box in Figure 61 shows the report created using these true date and time fields.
As you can see, the SALES–DT and SALES–TM fields are now formatted correctly. In this
example, we no longer needed override parms in the COLUMNS statement.

You can use this same technique for any kind of date or time field. For example, assume
that a file contains a Cobol field named JULIAN–DATE defined as PIC S9(5) COMP-3. Spectrum
Chapter 6. How to Define Your Input Files 375

Handling Date and Time Fields in Record Layouts
Figure 61. Creating true date and time fields from a Cobol layout

These Control Statements:

FILE: SALES–FILE DDNAME(SALEFILE)
COBOL:
 01 SALES-REC.
 05 EMPL-NAME PIC X(10).
 05 EMPL-NUM PIC X(3).
 05 BACKUP-EMPL-NUM PIC X(3).
 05 REGION PIC X(5).
 05 AMOUNT PIC 9999V99.
 05 TAX PIC 99V99.
 05 COMMISSION-RATE PIC 9V999.
 05 SALES-DATE PIC 9(6).
 05 SALES-TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 TIME-ON-PHONE PIC 999V9.
 05 PRODUCT-CODE PIC X(3).
 05 FILLER PIC X(1).
FIELD: SALES–DT COLUMN(SALES–DATE) TYPE(YYMMDD)
FIELD: SALES–TM COLUMN(SALES–TIME) TYPE(HHMMSS)
INPUT: SALES–FILE
COLUMNS: EMPL–NAME
 SALES–DT
 SALES–TM
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:
TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
 NAME DT TM CUSTOMER AMOUNT TAX

JONES 04/15/92 13:15:00 TOY TOWN 10.25 0.62
JONES 04/15/92 12:43:56 TOY TOWN 121.76 7.31
JONES 04/15/92 10:30:32 EZ GROCERY 10.25 0.62
JOHNSON 04/01/92 16:48:59 VILLA HOTEL 234.45 14.07
JOHNSON 04/05/92 14:00:41 MARYS ANTIQUES 9.98 0.60
JOHNSON 03/12/92 08:05:02 ACE ELECTRICAL 101.38 6.09
JOHNSON 04/16/92 09:50:41 ACME BUILDING 500.00 30.00
SIMPSON 04/30/92 11:59:59 J & S LUMBER 23.87 1.43
MORRISON 03/29/92 12:40:11 STAR MARKET 44.35 2.66
MORRISON 03/30/92 15:00:02 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 04/01/92 17:01:38 EUROPEAN DELI 14.99 0.90
BAKER 03/26/92 17:01:29 JACKS CAFE 137.00 8.22
BAKER 04/12/92 16:00:00 JACKS CAFE 135.75 8.15
THOMAS 04/14/92 07:56:00 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
376 Spectrum Writer User’s Guide

Handling Date and Time Fields in Record Layouts
Writer would treat this field like any other 5–digit packed number. But you could create a
true Spectrum Writer date field by adding the following statement:

FIELD: JULIAN–DT COLUMN(JULIAN–DATE) TYPE(P–YYDDD)

JULIAN–DT will be a true date field (in packed Julian format). It is defined as starting in the
same column as the numeric field JULIAN–DATE.

To avoid adding the extra FIELD statements in each run, you may want to create a copy
library member that contains these extra FIELD statements along with your Cobol record
layout. Such a member would include everything you see in the top box in Figure 61 up
until the INPUT statement. (That is, it would contain: a FILE statement; a COBOL (or ASM)
statement; the record layout; and the additional FIELD statements for the date and time
fields.)

This copy member could then be copied automatically whenever it is needed, just like
regular Spectrum Writer file definitions are. For example, you could then request a report
in the following manner:

INPUT: SALES–FILE
COLUMNS: CUSTOMER SALES–DT SALES–TM
INCLUDEIF: SALES–DT > 1/1/1995 AND SALES–TM > 12:00:00

In other words, you could request reports and PC files from the SALES–FILE just as easily
as you do with any other file. The only difference is that the SALES–FILE would now be
defined primarily via a Cobol record layout, rather than FIELD statements.

Handling Date and Time Fields in Record LayoutsHow Spectrum Writer Handles Cobol Arrays

Spectrum Writer requires that every field have a unique name. Therefore, when Spectrum
Writer encounters a Cobol field with an OCCURS clause, it creates a separate field for each
occurrence of the item. Spectrum Writer makes these field names unique by appending a
numeric suffix to the end of the name. For example, consider the following Cobol
statement with an OCCURS clause:

05 ADDR–LINE OCCURS 3 TIMES PIC X(30).

Spectrum Writer would create the following three internal FIELD statements as a result of
the above statement:

FIELD: ADDR–LINE–1 LEN(30)
FIELD: ADDR–LINE–2 LEN(30)
FIELD: ADDR–LINE–3 LEN(30)

You would use the above field names in your report request (rather than ADDR–LINE alone).
For example, to include the second occurrence of the ADDR-LINE array in your report, you
would specify:

COLUMNS: ADDR–LINE–2

Spectrum Writer does the same thing for Assembler fields that have a repetition factor.
Consider the following Assembler statement that includes a repetition factor:

FLAGS DS 4CL1
Chapter 6. How to Define Your Input Files 377

How Spectrum Writer Handles Cobol Arrays
Spectrum Writer would create the following four internal FIELD statements as a result of the
above statement:

FIELD: FLAGS–1 LEN(1)
FIELD: FLAGS–2 LEN(1)
FIELD: FLAGS–3 LEN(1)
FIELD: FLAGS–4 LEN(1)

Spectrum Writer also supports nested arrays in Cobol. Spectrum Writer assigns one
numeric suffix for each level of the array. The first suffix refers to the outer array, the
second suffix refers to the inner array. (The suffixes work in the same way as, and appear
in the same order as, Cobol subscripts.) For example, consider the following Cobol
statements:

05 ADDRESS–ARRAY OCCURS 2 TIMES.
 10 ADDR–LINE OCCURS 3 TIMES PIC X(30).

Spectrum Writer would create the following internal FIELD statements as a result:
FIELD: ADDRESS–ARRAY–1 LEN(90)
FIELD: ADDRESS–ARRAY–2 LEN(90)
FIELD: ADDR–LINE–1–1 LEN(30) COL(1)
FIELD: ADDR–LINE–1–2 LEN(30)
FIELD: ADDR–LINE–1–3 LEN(30)
FIELD: ADDR–LINE–2–1 LEN(30)
FIELD: ADDR–LINE–2–2 LEN(30)
FIELD: ADDR–LINE–2–3 LEN(30)

If you’re not sure what suffix Spectrum Writer has assigned, use the SHOWFLDS(YES) parm
in your COBOL or ASM statement. That way you will see a complete listing of the internal
FIELD statements that Spectrum Writer has created from your record layout.

Note: By default, Spectrum Writer creates internal FIELD statements for up to 100
occurrences of any item that has an OCCURS clause (or a repetition factor). This is
to avoid wasting memory for items that may not actually be needed in the report run.
If you want a higher (or lower) limit on the number of occurrences that will be
individually defined, use the MAXOCCURS parm in your COBOL or ASM statement.
(See page 495.) Note that even when all occurrences of a field are not individually
defined, the record layout is still processed correctly. That is, items appearing after
the array will still be defined in their correct locations.

Note: For Cobol items defined with the OCCURS DEPENDING ON clause, Spectrum
Writer creates fields for the maximum possible number of occurrences (subject to
the MAXOCCURS limit just described).

Note: See "Working With Arrays" (page 237) for more information on processing
arrays with Spectrum Writer.

How Spectrum Writer Handles Cobol ArraysConverting Cobol and Assembler Layouts to FIELD Statements

Until now we have looked at examples of "live" runs. That is, runs where you provide a
Cobol or Assembler layout to Spectrum Writer and then request a report in the same run.
This is very convenient for occasions when you need to quickly produce a custom report
from a file that you’ve never used with Spectrum Writer before.
378 Spectrum Writer User’s Guide

Converting Cobol and Assembler Layouts to FIELD Statements
However, for input files that will be used often with Spectrum Writer, it may be better to
create a standard Spectrum Writer file definition (consisting of a FILE statement and
multiple FIELD statements). This allows you to use features available in the FIELD statement
that aren’t available in Cobol or Assembler layouts. For example, in the FIELD statement
you can specify your own default column headings. You can also specify special display
formats that should be used with certain fields (for example, telephone numbers). Using
FIELD statements also lets you define true date and time fields, which are not directly
supported in either Cobol or Assembler.

But rather than create the FIELD statements by hand, you can use Spectrum Writer to
perform a one–time conversion of your Cobol or Assembler layout into FIELD statements.
Spectrum Writer does all of the hard work for you — it calculates the starting columns for
each field, it figures out the length of packed items based on their PICTURE clause, it
handles REDEFINES clauses, OCCURS clauses, etc. Use the resulting FIELD statements as
your starting point. Then go through them and make whatever modifications you desire.
The result will be a standard Spectrum Writer file definition, but without all the manual
work normally involved in writing FIELD statements by hand.

How do you perform such a one–time conversion? You’ve seen that by using the
SHOWFLDS(YES) parm in the COBOL (or ASM) statement, you can get a listing of FIELD
statements that correspond to the Cobol (or Assembler) record layout. This listing appears
imbedded in the normal control statement listing. By using a different parm, you can have
Spectrum Writer write those same FIELD statements to a separate output file. Figure 62
shows an example of converting a Cobol record layout to FIELD statements.

Notice the control statements in the top box in Figure 62. Once again, a FILE statement is
required because fields must always be defined for a specific file. Spectrum Writer won’t
process record layouts or FIELD statements unless it has a file that it can associate those
fields with. In this case, the file name specified isn’t important (since no report will be
produced from the file in this run). Use any file name you like in the FILE statement.

The COBOL statement tells Spectrum Writer to expect a Cobol record layout to follow. In
this case, we used an additional parm in the COBOL statement. The OUTDDN parm tells
Spectrum Writer the name of a DD statement in the JCL where the FIELD statements should
be written. In this example, we told Spectrum Writer to write the FIELD statements to a DD
named FLDOUT. The file named in this DD statement must have a record length of 80 bytes.

VSE Note: Use the OUTATTR parm, rather than the OUTDDN parm, in the COBOL or
ASM statement. The complete syntax of the OUTATTR parm is shown on page 496.
Here is a typical example of a COBOL statement with an OUTATTR parm:

COBOL: OUTATTR(DASD,’FLDOUT’)

The above statement causes the FIELD statements to be written to a SAM output file
on disk. It is identified in the JCL by a DLBL named FLDOUT. The file will be written
as single blocked, 80-byte records.

Spectrum Writer examines the Cobol record layout and writes one FIELD statement to the
output file for each field present in the Cobol layout.

Since we did not want to produce an actual report in this run, we did not follow the Cobol
record layout with an INPUT statement or any other Spectrum Writer statements. Spectrum
Writer writes the FIELD statements to the output file, and then ends execution. (You may
see a message saying that no report was produced because no INPUT statement was found.
Chapter 6. How to Define Your Input Files 379

Converting Cobol and Assembler Layouts to FIELD Statements
Figure 62. Converting a Cobol record layout to Spectrum Writer FIELD statements

These Control Statements:
FILE: DUMMY
COBOL: OUTDDN(FLDOUT)
 01 SALES-REC.
 05 EMPL-NAME PIC X(10).
 05 EMPL-NUM PIC X(3).
 05 BACKUP-EMPL-NUM PIC X(3).
 05 REGION PIC X(5).
 05 AMOUNT PIC 9999V99.
 05 TAX PIC 99V99.
 05 COMMISSION-RATE PIC 9V999.
 05 SALES-DATE PIC 9(6).
 05 SALES-TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 TIME-ON-PHONE PIC 999V9.
 05 PRODUCT-CODE PIC X(3).
 05 FILLER PIC X(1).

Write These FIELD Statements to a Special Output File:
FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL–NAME LEN(10) COL(1)
FIELD: EMPL–NUM LEN(3)
FIELD: BACKUP–EMPL–NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: COMMISSION–RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES–DATE LEN(6) TYPE(NUM)
FIELD: SALES–TIME LEN(6) TYPE(NUM)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
FIELD: TIME–ON–PHONE LEN(4) TYPE(NUM) DEC(1)
FIELD: PRODUCT–CODE LEN(3)
FIELD: FILLER#001 LEN(1)

File Definition After Typical Customization:
FILE: SALES–FILE DDNAME(SALEFILE)
FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL-NAME LEN(10) COL(1) HEADING('EMPLOYEE NAME')
FIELD: EMPL-NUM LEN(3)
FIELD: BACKUP-EMPL-NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: COMMISSION-RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES-DATE LEN(6) TYPE(YYMMDD)
FIELD: SALES-TIME LEN(6) TYPE(HHMMSS)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM) FORMAT(PIC'(999) 999–9999') NOACCUM
FIELD: TIME–ON–PHONE LEN(4) TYPE(NUM) DEC(1)
FIELD: PRODUCT-CODE LEN(3)
FIELD: FILLER#001 LEN(5)
380 Spectrum Writer User’s Guide

Converting Cobol and Assembler Layouts to FIELD Statements
This is normal.) The middle box in Figure 62 shows the FIELD statements produced by
Spectrum Writer.

Having created the FIELD statements automatically, you can now modify them as desired.
For example, you could add HEADING parms or FORMAT parms to specify column headings
and display formats for any or all of the fields. The bottom box in Figure 62 shows an
example of how the FIELD statements might be modified. In this example, we added a
HEADING parm for EMPL–NAME. And, we changed the TYPE parm in the SALES–DATE field
from NUM to YYMMDD. Now SALES–DATE is defined as a true date field. We also made
SALES–TIME a true time field by changing its TYPE parm to HHMMSS. We added a FORMAT
parm and the NOACCUM parm to the FIELD statement for TELEPHONE. That prevents the
telephone number from being accumulated (totalled) and causes it to be formatted
attractively.

If the Cobol field names in your record layout are long and cumbersome, you might also
want to perform some global changes on the names themselves. For example, if all fields
in your Cobol layout began with a prefix (like "SALES–REC–EMPL–NAME",
"SALES–REC–EMPL–NUM", etc.) you might want to perform a global edit to drop the
common prefix ("SALES–REC–") from the field names.

Note: When modifying the FIELD statements, be careful not to make any change
that would affect subsequent FIELD statements. For example, changing the length of
a field might cause the following field to start in the wrong column. Also be careful
about removing FIELD statements or changing their order.

You should also add an appropriate FILE statement ahead of the FIELD statements. When
you’re satisfied with your file definition, save it in your Spectrum Writer Copy Library.
You can then produce reports and PC files using this file definition in the normal manner.
You will not need to use the Cobol record layout in subsequent runs, because you now have
a standard Spectrum Writer file definition for your file.

Note: The example discussed above used a Cobol record layout. You can also
create FIELD statements from an Assembler layout in the same way. Just use the
OUTDDN parm (or OUTATTR parm) in your ASM statement.

There are some additional parms available for use with the COBOL and ASM statements.

! the RELOC parm (page 497) which specifies that the FIELD statements that are
written out should be "relocatable" whenever possible. This option may make it
easier for you to modify your Spectrum Writer file definition when a record
layout changes

! the COLUMN and DISP parms (page 494), which let you specify which of those
parms should be used in the FIELD statements created by Spectrum Writer. These
parms can also specify that all FIELD statements should have either a COLUMN or
DISP parm. (Otherwise, only fields that are defined out of sequence will have
such a parm.)
Chapter 6. How to Define Your Input Files 381

How to Copy Cobol and Assembler Record Layouts from Libraries

Our examples until now have used Cobol and Assembler record layouts written "in line."
That is, they have been imbedded directly among the Spectrum Writer control statements.
But normally Cobol and Assembler record layouts are stored as members in copy libraries,
to be accessed by their respective compilers. Spectrum Writer also allows you to copy such
record layouts directly from those libraries. Just use Spectrum Writer’s COPY statement
wherever you want the Cobol or Assembler lines to be included. For example:

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
COPY: SALEREC
INPUT: SALES–FILE
...

In this example, a Cobol record layout still follows the COBOL statement. But this time it’s
copied from a member named SALEREC in a copy library.

We mentioned in an earlier section that Cobol processing begins immediately after the
COBOL statement and ends when the next Spectrum Writer control statement is
encountered. The COPY statement is an exception to this rule. A COPY statement does not
signal the end of the Cobol (or Assembler) code. This allows you to embed COPY
statements within sections of Cobol or Assembler code.

You may use multiple COPY statements. You may also intermix in–line Cobol code with
Cobol code copied via COPY statements. For example, the following is valid:

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
 01 REC–A.
COPY: SALERECA
 01 REC–B REDEFINES REC–A.
COPY: SALERECB
INPUT: SALES–FILE
...

The following sections explain which library the member will be copied from.

OS/390 COPY Statement
Normally the COPY statement is used to read a member from the Spectrum Writer Copy
Library –– the one pointed to by the SWCOPY DD in the JCL. However, Cobol and Assembler
record layouts are generally kept in different libraries from your Spectrum Writer
definitions (and even in different libraries from each other). Therefore, when processing
Cobol code, Spectrum Writer copies members from the PDS named in the COBLIB DD in the
JCL, if one is present. When processing Assembler record layouts, members are copied
from the PDS named in the ASMLIB DD, if one is present. If the appropriate DD (COBLIB or
ASMLIB) is not present, Spectrum Writer then attempts to perform the copy from the
standard copy library (SWCOPY DD).

If you prefer, you can override these defaults and used any DDNAME you like to identify the
PDS to copy from. Just add a PDSDDN parm to the COPY statement:

COPY: SALEREC PDSDDN(’COPYLIB’)

The above statement would cause the member named SALEREC to be copied from the PDS
identified by the COPYLIB DD in the JCL. The PDSDDN parm is useful if you need to perform
multiple copies in a run and each copy must come from a different library.
382 Spectrum Writer User’s Guide

How to Copy Cobol and Assembler Record Layouts from Libraries
You can also use the COPY statement to copy a "flat" sequential file. This may be necessary
if your shop stores copy members in a proprietary library, such as PANVALET or LIBRARIAN.
Add a utility step to your jobstream that writes the desired member out to a sequential
dataset. Then in the Spectrum Writer step, you can copy that sequential dataset by using
the DDNAME parm in the COPY statement:

COPY: DDNAME(SALEREC)

The above example causes Spectrum Writer to read in the records from the sequential file
pointed to by the SALEREC DD in the JCL.

VSE COPY Statement
Normally the COPY statement is used to read a member from the Spectrum Writer Copy
Library –– the sublibrary named in an OPTIONS statement SUBLIB parm. However, Cobol
and Assembler record layouts are generally kept in different sublibraries from your
Spectrum Writer definitions. Therefore, when processing Cobol code, Spectrum Writer
copies members from the sublibrary named in an OPTIONS statement COBLIB parm, if one
has been specified. When processing Assembler record layouts, members are copied from
the sublibrary named in an OPTIONS statement ASMLIB parm, if one has been specified. If
the appropriate option (COBLIB or ASMLIB) was not specified, Spectrum Writer then
attempts to copy the member from the standard copy library (identified by an OPTIONS
statement SUBLIB parm).

If you prefer, you can override these defaults and copy the member from any sublibrary
that you like. Just add a SUBLIB parm to the COPY statement:

COPY: SALEREC SUBLIB(’COPYLIB.PROD’)

The above statement would cause the member named SALEREC to be copied from the
sublibrary named "COPYLIB.PROD." The SUBLIB parm is useful if you need to perform
multiple copies in a run and each copy comes from a different sublibrary.

The member type used for COPY statements within the scope of a COBOL statement is "C."
Within the scope of an ASM statement, member type "A" is used. You can also override
these defaults by specifying a member type directly in the COPY statement, like this:

COPY: SALEREC.COB

How to Copy Cobol and Assembler Record Layouts from LibrariesMixing FIELD Statements with COBOL and ASM Statements

You may use any combination of FIELD statements, COBOL statements and ASM statements
to define an input file. For example, the following is valid:

FILE: SALES–FILE DDNAME(SALEFILE)
COBOL:
 01 REC–A.
COPY: SALEREC1
ASM: STARTCOL(1)
RECB DS 0CL80
COPY: SALEREC2
FIELD: REC–C COLUMN(1) LENGTH(80)
INPUT: SALES–FILE
...

The above example uses a Cobol record layout to define the fields in one type of record for
the SALES–FILE. It then uses an Assembler record layout to define the fields in a second type
Chapter 6. How to Define Your Input Files 383

Mixing FIELD Statements with COBOL and ASM Statements
of record for the file. Note the STARTCOL(1) parm in the ASM statement causes the first field
from the Assembler code to begin in column 1 (rather than picking up after the last field
defined by the Cobol record layout). Lastly, an explicit FIELD statement defines a field
called REC–C. The COLUMN parm causes it to start in column 1 also.

Mixing FIELD Statements with COBOL and ASM StatementsThe Starting Column of a Cobol or Assembler Layout

By default, Spectrum Writer defines the first item within a Cobol record layout at the file’s
"default location." Thus, if you have no explicit FIELD statements before your Cobol record
layout, the first item in the Cobol layout will be defined as beginning in column 1 of the
record. If you do have preceding FIELD statements (or preceding Cobol or Assembler record
layouts), the first item in the Cobol record layout will begin in the column immediately
following the last field defined. Use the STARTCOL or STARTDISP parm (in the COBOL
statement) if you want the fields from the Cobol record layout to begin in some other
column.

The location of the first field in an Assembler record layout is handled the same way.

The "Default Location" After a Cobol or Assembler Layout

Spectrum Writer updates a file’s "default location" pointer while processing Cobol (and
Assembler) layouts just as it does when processing FIELD statements. Thus, the default
location after processing a Cobol layout is immediately after the last field within the layout.
Any FIELD statements appearing after the Cobol layout which do not contain a COLUMN or
DISP parm would be defined as starting immediately after the last field from the Cobol
layout. Similarly, if you use a second COBOL statement, the first item in that record layout
would immediately follow the last field from the previous Cobol layout (unless you
override this with a STARTCOL or STARTDISP parm in the second COBOL statement).

Caution: If your Cobol code contains multiple 01–level record layouts, remember
that the last field present in the record layout may not be the field that actually
occupies the last bytes within the record. This happens when a shorter record layout
redefines a larger record layout. In that case, the default location counter would be
immediately after the last field from the second, shorter record layout — not after
the last field in the larger record layout. The same thing is possible within a single
record layout if it ends after an explicit REDEFINES of a larger object. Within
Assembler code, a similar situation arises when a smaller DSECT follows a larger
DSECT.

The Scope of the COBOL and ASM Statements

Beginning immediately after a COBOL statement, Spectrum Writer treats input lines as
Cobol code. (However, the COBOL statement itself may be continued onto multiple lines if
necessary.) After the complete COBOL statement, subsequent lines, including lines copied
via a COPY statement, are treated as Cobol code. The Cobol code is assumed to end when
384 Spectrum Writer User’s Guide

The Scope of the COBOL and ASM Statements
the first Spectrum Writer control statement prefix is encountered. There are, however, two
exceptions to this rule.

1. A COPY statement does not end the scope of the COBOL statement. This lets you
use the COPY statement to include additional lines of Cobol code from a library.
(Of course, if one of the copied lines contains a Spectrum Writer control
statement, that line will end the scope of the COBOL statement.)

2. A Spectrum Writer comment line does not end the scope of the COBOL statement.
Thus, a line beginning with an asterisk in column 1 would be treated as Cobol
code and not as a comment line.

The scope of the ASM statement is the same as described above for COBOL.

If you have any question whether Spectrum Writer is treating a particular input line as
Cobol, Assembler, or native Spectrum Writer, just check the control listing output. The
word "COBOL" or "ASM" will appear beside each line that Spectrum Writer is interpreting
as Cobol or Assembler code. Use the LIST(YES) option on any COPY statements to ensure
that the copied lines also appear in the control listing.

The Scope of the COBOL and ASM StatementsTechnical Notes on Cobol Support

Spectrum Writer will accept the vast majority of Cobol record layouts used in most shops.
Still, Spectrum Writer is not a complete Cobol compiler and there are some valid Cobol
features that Spectrum Writer does not support at present.

Even when Spectrum Writer doesn’t support a particular Cobol statement, you will still
save much time by using the FIELD statement output from Spectrum Writer as the beginning
point of your file definition. Many FIELD statements will be correct, and you can modify
any incorrect ones as needed.

It is important that the Cobol record layout be completely error free. Spectrum Writer does
not attempt to perform all of the functions of the Cobol compiler, and may not notify you
of syntax errors. Do not try to develop your Cobol record layouts with Spectrum Writer.
Use the Cobol compiler for that purpose and use only clean, tested record layouts in
Spectrum Writer.

In general, if a record layout would be accepted in the Record Description entry of an FD
(File Description), Spectrum Writer will also accept it. In addition, Spectrum Writer
accepts many types of edited PICTURES (like PIC $$$,$$9.99). This means that Spectrum
Writer can support many report line structures taken from Cobol report programs. This is
useful when a report written by a Cobol program will be used as input to Spectrum Writer.

Level Indicators
Spectrum Writer supports level indicators between 01 and 49. Level 77 is not allowed.
Levels 66 and 88 are ignored but do not interfere with the correct interpretation of the other
statements.

REDEFINES Clauses
If an item contains a REDEFINES clause, both the item and the object of its REDEFINES clause
must be within the scope of the same COBOL control statement. That is, an item within the
scope of one COBOL statement may not redefine an item within the scope of an earlier
COBOL control statement.
Chapter 6. How to Define Your Input Files 385

Technical Notes on Cobol Support
01–Level Implicit Redefines
As with Cobol in a FD clause, Spectrum Writer treats each 01 level item as an implicit
redefine of the entire record. Items beginning with the 01 level are assumed to begin in the
same column as the first field following the COBOL control statement.

Unique Field Names
In Cobol, different records may contain fields with the same name. You use the "field OF
qualifier" notation in Cobol to avoid any ambiguity. Spectrum Writer requires unique field
names for each field within a file. Therefore, if you copy multiple record layouts and the
same field name is used more than once, Spectrum Writer makes the second field name
unique by appending a "tiebreaker" to it. The tiebreaker has the format "#nnn". For
example, if the Cobol layout(s) you use contain two fields with the name DATE, Spectrum
Writer would use DATE for the first item and DATE#001 for the second item. A message is
printed in the control listing whenever Spectrum Writer modifies a name in this way to
make it unique.

Handling FILLER
Spectrum Writer just defines all FILLER items as character fields. However, Spectrum
Writer always appends a tiebreaker to FILLER fields. No message is printed when this
happens (since it is so common), but you can see the actual name of all fields, including
FILLER fields, by using the SHOWFLDS(YES) parm on the COBOL statement.

Handling 88–Level Items
Spectrum Writer does not process 88 level field definitions automatically. However, it is
not difficult to create Spectrum Writer equivalents for 88 items yourself. Following is an
example of how several 88 level items would be defined with Spectrum Writer.

For often-used 88 items, you may want to manually add such statements to your file
definition. Consider these Cobol statements:

05 STATUS–CODE PIC X(1).
 88 PART–TIME VALUE ’1’.
 88 FULL–TIME VALUE ’2’, ’4’.
 88 TERMINATED VALUE ’5’ THRU ’9’.

In the example above, Spectrum Writer would create the 05 level field, STATUS–CODE, for
you. It would then ignore the 88 level statements. To define the 88 fields to Spectrum
Writer, you could add the following statements somewhere after the Cobol record layout.

COMPUTE: PART–TIME = WHEN(STATUS–CODE = ’1’) ASSIGN(#ON)
COMPUTE: FULL–TIME = WHEN(STATUS–CODE = ’2’ OR ’4’) ASSIGN(#ON)
COMPUTE: TERMINATED = WHEN(STATUS–CODE >= 5 AND <= ’9’) ASSIGN(#ON)

The above COMPUTE statements define bit–type fields which can be used in conditional
expressions in Spectrum Writer statements just like they are used in Cobol. For example:

INCLUDEIF: FULL–TIME

The above statement would include all records where the FULL–TIME field was on. That
would be all records whose STATUS–CODE field contained a 2 or a 4. Unlike Cobol, you can
also print these bit fields with Spectrum Writer. For example:

COLUMNS: FULL–TIME
386 Spectrum Writer User’s Guide

Technical Notes on Cobol Support
The above statement causes a column to appear in the report for the FULL–TIME field. The
report column will contain (by default) the words FULL–TIME or NOT FULL–TIME for each
input record.

SIGN IS SEPARATE Clause
Spectrum Writer supports the SIGN IS SEPARATE clause for elemental items, but not for
group items.

Technical Notes on Cobol SupportTechnical Notes on Assembler Support

Spectrum Writer will accept most of the Assembler record layouts used in a typical shop.
Still, Spectrum Writer is not a complete assembler and there are some valid Assembler
features that Spectrum Writer does not support at present.

Even when Spectrum Writer doesn’t support a particular Assembler statement, you will
still save much time by using the FIELD statement output from Spectrum Writer as the
beginning point of your file definition. Many FIELD statements will be correct, and you can
modify any incorrect ones as needed.

It is important that the Assembler record layout be completely error free. Spectrum Writer
does not attempt to perform all of the functions of the assembler, and may not notify you
of syntax errors. Do not try to develop your Assembler record layouts with Spectrum
Writer. Use the assembler for that purpose and use only clean, tested record layouts in
Spectrum Writer.

In general, Spectrum Writer supports the following Assembler statements:

! DS and DC statements
! EQU statements
! ORG statements
! DSECT statements

Character–Numeric Data
One problem with many Assembler record layouts is that they often use the "C" (Character)
data type to define numeric fields. Consider the following Assembler statement:

AMOUNT DS CL6 SALES AMOUNT IN CENTS

Spectrum Writer can only treat this AMOUNT field as a 6-byte character field. There is
nothing to tell Spectrum Writer that its value is actually numeric and that it contains 2
decimal digits.

There is a different way to define such fields in Assembler which allows Spectrum Writer
to correctly interpret them. It is to use the "Z" (Zoned) data type, and to include a sample
initial value that indicates the number of decimal digits that the data contains. Consider the
following Assembler statement:

AMOUNT DS ZL6’9999.99’ SALES AMOUNT IN CENTS
Chapter 6. How to Define Your Input Files 387

Technical Notes on Assembler Support
Spectrum Writer would correctly interpret this field by creating the following FIELD
statement:

FIELD: AMOUNT LEN(6) TYPE(NUM–SLD) DEC(2)

You may want to consider this when creating future Assembler record layouts, if you wish
to use them with Spectrum Writer.

Another way to handle this problem (without modifying your record layout) is to use a
COMPUTE statement. For example, if AMOUNT is defined simply as CL6, you could still get
a numeric field that has 2 decimal digits by adding this COMPUTE statement somewhere
after your record layout:

COMPUTE: REAL–AMOUNT(2) = #MAKENUM(AMOUNT) / 100

The above statement uses the #MAKENUM built–in function to convert the 6–byte character
value into a numeric value. It is then divided by 100 to get the correct number of decimal
digits.

If you will be using a particular file often with Spectrum Writer, it may be better to create
a standard Spectrum Writer file definition for it. Use Spectrum Writer to convert the record
layout into FIELD statements. Then modify the FIELD statements as necessary to correctly
define the numeric fields.

Decimal Digits
Spectrum Writer creates a DEC(n) parm whenever the Assembler DS or DC statement has an
initial value that includes one or more decimal digits. Consider this DS statement for a
packed field:

SALARY DS PL4 SALARY (WITH 2 DECIMAL DIGITS)

Spectrum Writer would have no information about decimal digits and would define it like
this:

FIELD: SALARY LEN(4) TYPE(PACKED)

But if you used this statement:
SALARY DS PL4’12345.67’ SALARY (WITH 2 DECIMAL DIGITS)

then Spectrum Writer could correctly create the following FIELD statement:
FIELD: SALARY LEN(4) TYPE(PACKED) DEC(2)

Another way to handle decimal problems (without modifying your record layout) is to use
a COMPUTE statement. For example, if SALARY is defined simply as PL4, you could still get
a field that has 2 decimal digits by adding this COMPUTE statement somewhere after your
record layout:

COMPUTE: REAL–SALARY(2) = SALARY / 100

Support for expressions
Spectrum Writer supports some, but not all, types of expressions allowed by the IBM
assembler. The following kinds of Assembler "terms" are supported within expressions:

! previously defined symbols (that is, field names created as a result of earlier
Assembler statements). The value of such symbols is their displacement within
388 Spectrum Writer User’s Guide

Technical Notes on Assembler Support
the record. The symbol must have been defined within the scope of the same ASM
statement.

! length constants (example: L’AMOUNT)

! numeric, character and hex literals (examples: 123, C’ABC’, X’FFFF’)

The following operations are supported as long as they are not nested and require no
implicit ranking of operation:

! addition
! subtraction
! multiplication
! division (with the remainder being dropped)

Following are some examples of statements containing expressions that Spectrum Writer
does support:

LABEL DS XL100
LABEL1 DS XL(L’LABEL)
LABEL2 DS XL(L’LABEL–50)
LABEL3 EQU LABEL2,L’LABEL2
LABEL4 DS XL(L’LABEL1+L’LABEL2+5)
LABEL5 EQU LABEL+X’1C’+26+C’P’,5

Restrictions on expressions
Spectrum Writer does not support complex expressions within an Assembler statement. It
interprets only non–nested operations that are performed strictly in left–to–right order.
Thus, the following expression is not supported because it involves a nested operation:

LABEL EQU A+(B*C)

Spectrum Writer prints a warning message when an expression like the one above is
encountered.

You may however use one level of parentheses around an entire expression. Thus, the
following expression is accepted:

LABEL EQU (X+Y–Z)

The following expression is not supported because it implicitly requires that the second
operation (C*D) be performed before the first operation (B+C).

LABEL EQU B+C*D

Spectrum Writer prints a warning message when an expression like the one above is
encountered. You can simplify such expressions, if desired, so that Spectrum Writer can
support your record layout. For example, the above statement could be simplified by
breaking it into 2 statements:

TEMP EQU C*D
LABEL EQU B+TEMP

The above statement are acceptable to Spectrum Writer.
Chapter 6. How to Define Your Input Files 389

Technical Notes on Assembler Support
Multiple Operands
Spectrum Writer does not support DS or DC statements with multiple operands. For
example, neither of the following statements is supported:

TABLE DC AL4(1,2,3,4)
MESSAGE DC H’5’,C’HELLO’

However, DC and DS statements with repetition factors are supported. Thus, the following
statement is acceptable to Spectrum Writer:

TABLE DS 4AL4

Handling EQUs
When Spectrum Writer encounters an EQU statement that contains a label, it defines a field
based on the statement’s operands. (If the EQU statement has no label, the EQU statement is
ignored.) The first operand of the EQU statement must be a self–defining expression. The
value of this expression is used as the displacement for the field. If the EQU statement has
no length operand, a length of 1 is assumed. If the EQU statement has no data type operand,
character data is assumed. The "default location" is not changed as a result of an EQU
statement. Consider the following two EQU statements:

LASTNAME EQU NAME+10,15
R15 EQU 15

The above example would result in two fields being defined. The LASTNAME field would
begin 10 bytes after the start of the NAME field (which must have been previously defined).
It is a character field that is 15 bytes long. The second field, R15, would be a 1–byte
character field beginning at displacement 15 in the record.

Handling DSECTs
When Spectrum Writer encounters a DSECT statement, it does two things. Firstly, it resets
the default location to the value it had at the start of the Assembler code. That would be
column 1 if no other fields had been defined earlier for the file. Or, it would be the value
specified in any STARTCOL or STARTDISP parm in the ASM statement. Secondly, if the DSECT
statement has a label, Spectrum Writer defines a 1-byte character field whose name is the
DSECT name.

Unique field names
Spectrum Writer requires unique field names for each field within a file. Therefore, if you
copy multiple record layouts and the same field name is used more than once, Spectrum
Writer makes the second field name unique by appending a "tiebreaker" to it. The
tiebreaker has the format "#nnn". For example, if the Assembler code you use contains two
fields with the name DATE, Spectrum Writer would use DATE for the first item and DATE#001
for the second item. A message is printed in the control listing whenever Spectrum Writer
modifies a name in this way to make it unique.
390 Spectrum Writer User’s Guide

fSpectrum Writer User’s GuideChapter 7. Working with Databases

Chapter Table of Contents

Chapter 7. Working with Databases . 391

Using Spectrum Writer with DB2 Databases . 392
Using DB2 Data in Reports . 393
Using DB2 Data in PC Programs . 395
What Fields Are in Your DB2 Table? . 397
Using the WHERE Parm . 397
Using the ORDERBY Parm . 399
Using Multiple DB2 Tables . 400
Using Data from Three DB2 Tables . 403
WHERE Parm Syntax . 405
Customizing Your DB2 Fields . 407
Saving DB2 File Definitions . 408
DB2 Setup . 409
DB2 Restrictions . 410
Chapter 7. Working with Databases 391

Chapter 7. Working with Databases

This version of Spectrum Writer MVS supports the following databases:

! DB2

Using Spectrum Writer with DB2 Databases

Spectrum Writer's DB2 Option lets you use DB2 data with Spectrum Writer exactly like you
use other mainframe data. That means you can:

! produce attractive custom reports from DB2 tables in just minutes.

! turn DB2 data into PC files designed especially for PC spreadsheet, database and
graphics programs.

! turn DB2 data into any custom file format you need for use on mainframes, Unix
machines, database servers, etc.

! use DB2 data to create Web reports.

Spectrum Writer's DB2 Option has these features:

! no data dictionary is required when using DB2 data. You just use the standard DB2
names for your DB2 tables, views, and columns. This means you can start using
Spectrum Writer with all of your DB2 tables right away.

! you can combine data from up to 15 different DB2 tables to create a single report
or PC file.

! you can even mix DB2 data with data from non–DB2 files. For example, you might
have a tape file as the primary input to a Spectrum Writer job. Using data from
that file, you could read additional data from VSAM files and/or DB2 tables. Or,
you could use a DB2 table as your primary input and use data from it to read from
additional DB2 tables or VSAM files. The possibilities are endless.

About Spectrum Writer’s DB2 Option

The DB2 option, required to use DB2 tables as input, is an extra-cost
option to Spectrum Writer for OS/390. If you get error messages when
trying to use DB2 tables with Spectrum Writer, your shop may not have
licensed the DB2 option. Please contact us for information on adding the
DB2 Option to your license. You can also check current pricing, and
even obtain a free 30-day trial of the DB2 option, from our web site.

Pacific Systems Group 800-572-5517 or 510-471-7111 www.pacsys.com
392 fSpectrum Writer User’s Guide

Using Spectrum Writer with DB2 Databases
It's easy to use DB2 data with Spectrum Writer. You use the same control statements that
you already know, with just a few differences. In fact, the only statements affected by the
DB2 Option are these:

! the OPTIONS statement

! the INPUT statement

! the READ statement (not required)

! the FILE statement (not required)

For most reports and PC files, you’ll only use the OPTIONS and INPUT statements.

JCL Note: When using DB2 tables with Spectrum Writer, be sure that the STEPLIB
DD in the execution JCL points to the load module where DB2's run–time modules are
located. An example of a DB2 run–time module is DSNTIAR.

In the following sections, we assume that you are already familiar with using Spectrum
Writer to request reports and output files. These sections explain the few differences that
you need to know in order to use DB2 data in Spectrum Writer.

Using Spectrum Writer with DB2 DatabasesUsing DB2 Data in Reports

Let's begin by looking at an actual Spectrum Writer report that uses DB2 data. Notice the
sample report in Figure 63. Two of the control statements in this example contain
DB2–related information. They are the OPTIONS statement and the INPUT statement.

First notice the OPTIONS statement. You'll see that we used the DB2SUBSYS option. This
option tells Spectrum Writer which DB2 subsystem to access. Many shops have multiple
DB2 subsystems. For example, a shop might have a test subsystem and a production
subsystem. This option tells Spectrum Writer which subsystem to access for a particular
run.

In our example, we specified a DB2 subsystem named "DB2T." That's the test subsystem in
our "imaginary" company.

The DB2SUBSYS option is required when using DB2 data in a run. Remember to specify this
option before your INPUT statement.

Next notice the INPUT statement. There are two names used in the INPUT statement:

! PROJECT, which is a user–assigned "Spectrum Writer name" for this input file.
You can put any name here that you like. This name is not known to DB2 at all.
In most runs, this name will never be referred to again. (However, in runs that
use multiple input files, as you'll see later, "PROJECT" would be used to refer
specifically to this input file.)

! DSN8230.PROJ, which is of course the actual name of the DB2 table. You can name
a DB2 table or a DB2 view in this parm. By the way, DSN8230.PROJ is the name of
a real "sample table" that is supplied by IBM with your DB2 system. Therefore,
you can run this same job in your own shop for practice, if you like. This table
contains information about various projects in an imaginary company.
Chapter 7. Working with Databases 393

Using DB2 Data in Reports
Note: The sample IBM tables used in the following examples are named
according to the particular release level of DB2. Thus, under Release 3.1
of DB2, for example, the Project table is named DSN8310.PROJ, rather than
DSN8230.PROJ.

Figure 63. A Spectrum Writer DB2 report

These Control Statements:

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

Produce this Report:
 LISTING OF PROJECT DB2 TABLE

PROJNO PROJNAME DEPTNO RESPEMP PRSTDATE PRSTAFF

AD3100 ADMIN SERVICES D01 000010 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 000070 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 000270 01/01/82 2.00
IF1000 QUERY SERVICES C01 000030 01/01/82 2.00
IF2000 USER EDUCATION C01 000030 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 000010 01/01/82 12.00
MA2110 W L PROGRAMMING D11 000060 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 000220 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 000150 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 000160 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 000050 01/01/82 6.00
OP1010 OPERATION E11 000090 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 000050 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 000100 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 000320 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 000330 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 000340 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 000020 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50
394 fSpectrum Writer User’s Guide

Using DB2 Data in Reports
The INPUT statement does two things.

! it associates an actual DB2 table with a user–friendly Spectrum Writer "file
name." (This association is not permanent–– it lasts only during the one
Spectrum Writer run.)

! it makes that DB2 table the primary input for your Spectrum Writer run.

These are the only required parms for an INPUT statement for a DB2 table. Subsequent
sections of this chapter discuss other, optional, DB2-related parms for the INPUT statement.
(The complete syntax for the INPUT statement appears on page 542.)

Terminology: For the sake of consistency, we'll refer to the DB2 table named in an
INPUT statement as an "input file," even though technically speaking it is not a "file".
Similarly, we'll refer to DB2 columns as "DB2 fields" in this manual.

After your INPUT statement, you can use any of the other Spectrum Writer statements in
any way you like. Refer to the DB2 fields by using their standard, unqualified DB2 names.
Spectrum Writer will automatically recognize these DB2 names. For example, in the
COLUMNS statement in Figure 63 (page 394), we referred to the following DB2 fields from
the project table: PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE and PRSTAFF.

You can also use the DB2 fields in the SORT statement, COMPUTE statements, INCLUDEIF
statements, BREAK statements, and all the other Spectrum Writer statements. Just use the
DB2 fields in exactly the same way as you would use the fields from a non–DB2 input file.

That's all there is to using DB2 data with Spectrum Writer! Here's a review of the
differences from non–DB2 Spectrum Writer requests:

! no data definition of your DB2 file is necessary (that is, no FILE or FIELD
statements are required)

! no Spectrum Writer Copy Library is required

! use an OPTIONS statement with the DB2SUBSYS parm (to identify the DB2
subsystem to use)

! use the DB2NAME parm in your INPUT statement (to identify the primary DB2 table
to use)

Note: Spectrum Writer supports character, numeric, date and time fields from DB2
tables. DB2 "timestamps" are treated as 26–byte character fields by Spectrum Writer.
DB2 "graphic strings" and "floating point" numbers are not supported.

Using DB2 Data in ReportsUsing DB2 Data in PC Programs

We've just seen how easy it is to use DB2 data in custom reports with Spectrum Writer. It's
just as easy to turn your DB2 data into PC files with Spectrum Writer. Simply add the
appropriate PC option to the OPTIONS statement. An example of using DB2 data in a Lotus
1–2–3 spreadsheet is shown in Figure 64.This example shows the same "project table"
data being used in a Lotus 1–2–3 spreadsheet.
Chapter 7. Working with Databases 395

Using DB2 Data in PC Programs
Figure 64. Using DB2 data in a Lotus 1-2-3 spreadsheet

These Control Statements:

OPTION: LOTUS DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

Produce this Lotus 1-2-3 Spreadsheet:
396 fSpectrum Writer User’s Guide

What Fields Are in Your DB2 Table?

You may not remember the names of all of the fields defined for your DB2 table. Spectrum
Writer will list the DB2 fields available in your DB2 file for you. Just use the SHOWFLDS(YES)
parm in your INPUT statement:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field available from the
DSN8230.PROJ table. This list appears in the Spectrum Writer control statement listing. The
list also indicates the data type (character, numeric, date or time) of each of the DB2 fields.

The SHOWFLDS parm can also be used in the READ statement.

Using the WHERE Parm

Here's how Spectrum Writer interacted with the DB2 subsystem in order to produce the
report in Figure 63 (page 394). Spectrum Writer first opened a "cursor" with DB2 that
"selected" the DB2 fields needed to produce the report. It then "fetched" from DB2 all the
rows for that cursor. Since no INCLUDEIF statement was used, Spectrum Writer included in
the report all the rows that were returned by DB2.

Now let's consider a more advanced report. What if we want to include only the records for
department D21 in our report. Of course, the standard way to do that with Spectrum Writer
is to use an INCLUDEIF statement, like this:

INCLUDEIF: DEPTNO = 'D21'

And that method works just fine! If you use this statement, Spectrum Writer would again
fetch all rows from the DB2 table. Spectrum Writer would then examine the DEPTNO field
in each row and include in the report only those rows where the DEPTNO field contained
"D21".

But when using DB2 data as your input, there is another way to accomplish the same thing.
You can let DB2 do the record selection rather than Spectrum Writer. To do this, use a
WHERE parm in the INPUT statement:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')

The WHERE parm in the INPUT statement serves the same function as the WHERE clause in
a DB2 "SELECT" statement. It tells DB2 which rows we want from the DB2 table. If your
INPUT statement contains a WHERE parm, Spectrum Writer will include it as a WHERE clause
in the SELECT statement that it builds for DB2. (If your INPUT statement does not have a
WHERE parm, the SELECT statement will not have a WHERE clause, and DB2 will return all
rows from the DB2 table.)

In the example above, the WHERE parm causes DB2 to return to Spectrum Writer only those
rows from the project table whose DEPTNO field equals "D21". If you used this WHERE parm,
you would not need an INCLUDEIF statement. You would want Spectrum Writer to include
all the rows that DB2 returned to it.
Chapter 7. Working with Databases 397

Using the WHERE Parm
Figure 65. Using the WHERE and ORDERBY parms

Remarks:
• we could have achieved the same result by omitting the WHERE and ORDERBY parms, and adding

these statements:
INCLUDEIF: DEPTNO = 'D21'
SORT: PROJNAME

These Control Statements:

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')
 ORDERBY(PROJNAME)
TITLE: 'PROJECTS FOR DEPARTMENT D21'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

Produce this Report:
 PROJECTS FOR DEPARTMENT D21

PROJNO PROJNAME DEPTNO RESPEMP PRSTDATE PRSTAFF

AD3113 ACCOUNT.PROGRAMMING D21 000270 01/01/82 2.00
AD3110 GENERAL AD SYSTEMS D21 000070 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 01/01/82 1.00

*** GRAND TOTAL (4 ITEMS) 11.00
398 fSpectrum Writer User’s Guide

Using the WHERE Parm
As far as the final report goes, using the WHERE parm yields identical results to using the
INCLUDEIF statement. Feel free to use whichever method you're most comfortable with. The
example in Figure 65 (page 398) uses a WHERE parm in the INPUT statement.

Performance Note: Which one of these methods is more efficient? There is no
"right" answer for all cases. It depends on various factors, including the percentage
of records that are included in the report. For long–running jobs, where performance
is an important consideration, you may want to try running the job each way and
choose the method that works best in your particular case.

You can also use a combination of the WHERE parm and the INCLUDEIF statement. If you
do, DB2 will pass to Spectrum Writer all rows that meet the WHERE conditions. Of those
rows, Spectrum Writer will then include in the report only the ones that meet the INCLUDEIF
statement conditions.

See "WHERE Parm Syntax" (page 405) for further details about the syntax allowed in the
WHERE parm.

Using the WHERE ParmUsing the ORDERBY Parm

Another optional parm in the INPUT statement is the ORDERBY parm. (Note that this parm
must be spelled with no imbedded space.)

The ORDERBY parm in Spectrum Writer serves the same function as the ORDER BY clause
in a DB2 "SELECT" statement. It tells DB2 what order to pass the rows to Spectrum Writer
in. If your INPUT statement contains an ORDERBY parm, Spectrum Writer will include it as
an ORDER BY clause in the SELECT statement that it builds for DB2. (If your INPUT statement
does not have a ORDERBY parm, the SELECT statement will not have an ORDER BY clause.
Then DB2 will pass Spectrum Writer the rows in an "arbitrary" order.)

Use this parm if you want DB2 to pass its rows to Spectrum Writer in a certain order. You
may wish to use this parm rather than using a SORT statement. When no SORT statement is
used, Spectrum Writer outputs the data in the same order that DB2 passes it to Spectrum
Writer in.

The example in Figure 65 (page 398) uses an ORDERBY parm in the INPUT statement.

Within the ORDERBY parm, you may list one or more DB2 fields, along with the optional
keywords ASC and DESC (for "ascending" and "descending.") Here are two examples of
INPUT statements that use the ORDERBY parm:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 ORDERBY(DEPTNO, PROJNAME)

The above example would cause DB2 to return the rows from the project table to Spectrum
Writer in department number order, with "ties" being further sorted in project name order.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')
 ORDERBY(PROJNAME DESC)

The above statement would cause the rows from the project table to be returned to
Spectrum Writer in descending project name order. As you can see, you are allowed to use
Chapter 7. Working with Databases 399

Using the ORDERBY Parm
both the WHERE and ORDERBY parms, if you wish. Their order in the INPUT statement is not
important.

Note: If you want one or more control breaks in your report, you should use the
SORT statement (rather than the ORDERBY parm). That is because Spectrum Writer
only allows control breaks on fields that are in a SORT statement.

Note: You can use both an ORDERBY parm and a SORT statement, though this would
rarely be useful. DB2 would pass the rows from the DB2 table to Spectrum Writer in
the order specified in the ORDERBY parm. Spectrum Writer would then sort the final
report according to the SORT statement.

Using the ORDERBY ParmUsing Multiple DB2 Tables

Sometimes the DB2 table in your INPUT statement will not contain all the data you need for
a report or a PC file. In that case, you can use one or more READ statements to obtain data
from additional DB2 tables.

Let's begin by reviewing how the READ statement works with VSAM files. The file named
in the INPUT statement is called the "primary input file." Spectrum Writer always reads this
primary input file sequentially. Then, each time a record is read from the primary file,
Spectrum Writer reads one additional record from each VSAM file named in a READ
statement. The READKEY parm (in the READ statement) tells Spectrum Writer what key to
use when performing the read. The key is usually a field from the primary input file.

You can also use READ statements with DB2 tables. Each READ statement will cause one row
of data to be read from a DB2 table (or multiple rows if the MULTI parm is used). Instead of
using a READKEY parm, use the WHERE parm to identify which row(s) you want to read.
(Please refer to "Using the WHERE Parm" on page 397. The WHERE parm’s syntax is
discussed in "WHERE Parm Syntax" on page 405.)

Let's start with the DB2 report on page 394 to illustrate the use of the READ statement. That
report shows data from the "project" DB2 table. One of the items in the project table is called
RESPEMP. This is the employee number of the project's "responsible employee." Now
suppose we want to include the employee's actual name in our report. The employee name
is not kept in the project table. But it is kept in a different DB2 table –– the employee table.

We can use the following statements to get data from both the project and the employee
tables for use in our report.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

Notice that the READ statement, like the INPUT statement, begins with a Spectrum Writer
file name. It also has the DB2NAME parm. And, unlike the INPUT statement, the WHERE parm
is required in a READ statement.
400 fSpectrum Writer User’s Guide

Using Multiple DB2 Tables
Here's how Spectrum Writer will process the above statements. The primary input to the
report is the project DB2 table. So, Spectrum Writer will retrieve all rows from the DB2
project table. For each row from the project table, Spectrum Writer will now also fetch a
single row from the employee table. The row from the employee table will be the row
whose EMPNO field equals the RESPEMP field from the project table.

As a result of these two statements, you now have access to every DB2 field in both the
project and the employee DB2 tables. You can use those DB2 fields in your COLUMNS
statement, SORT statement, COMPUTE statements, and so on. This simple way of linking
multiple DB2 table is one of Spectrum Writer's most powerful features. All it takes is a
single READ statement.

The report in Figure 66 (page 402) illustrates this example. Our report now includes
LASTNAME, which is a column from the employee DB2 table. This report shows the last
name of the employee responsible for each project.

You can also use the ORDERBY parm in the READ statement. As mentioned, by default
Spectrum Writer fetches only a single row from a READ file (for each row retrieved from
the INPUT file). It is possible that the WHERE clause will not uniquely identify a single row
in the READ file. In that case, you can use the ORDERBY parm to determine which row DB2
will return first to Spectrum Writer. For example, if there were more than one employee
with the same employee number in the employee table, you might specify:

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 ORDERBY(LASTNAME)

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a certain employee number, DB2
would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm is
specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. When processing READ statements, Spectrum Writer always uses the first
row returned by DB2.

Note: For simplicity's sake, in this discussion we implied that Spectrum Writer
always reads a row from each READ file. In some cases, Spectrum Writer may be
able to detect that data from an auxiliary input table will not actually be needed in
the run and, to improve performance, will not perform the read.

The complete READ statement syntax is shown on page 578.

One-to-Many Table Matching
If you want to use all of the rows that meet the WHERE parm conditions, add the MULTI parm
to your READ statement. When the READ statement has the MULTI parm, Spectrum Writer
creates and processes "logical input records" by matching the primary input file row with
each qualifying row from the auxiliary input file. For more information on how the MULTI
parm works, see "How to Perform "One–to–Many" Reads" on page 232.
Chapter 7. Working with Databases 401

Using Multiple DB2 Tables
Figure 66. A report that uses data from two different DB2 tables

These Control Statements:

OPTION: DB2SUBSYS('DB2T')

INPUT: PROJECT DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 LASTNAME
 PRSTDATE
 PRSTAFF

Produce this Report:

 LISTING OF PROJECT DB2 TABLE

PROJNO PROJNAME DEPTNO RESPEMP LASTNAME PRSTDATE PRSTAFF

AD3100 ADMIN SERVICES D01 000010 HAAS 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 000070 PULASKI 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 JEFFERSON 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 SMITH 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 000270 PEREZ 01/01/82 2.00
IF1000 QUERY SERVICES C01 000030 KWAN 01/01/82 2.00
IF2000 USER EDUCATION C01 000030 KWAN 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 000010 HAAS 01/01/82 12.00
MA2110 W L PROGRAMMING D11 000060 STERN 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 000220 LUTZ 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 000150 ADAMSON 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 000160 PIANKA 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 000050 GEYER 01/01/82 6.00
OP1010 OPERATION E11 000090 HENDERSON 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 000050 GEYER 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 000100 SPENSER 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 000320 MEHTA 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 000330 LEE 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 000340 GOUNOT 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 000020 THOMPSON 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50
402 fSpectrum Writer User’s Guide

Using Data from Three DB2 Tables

In the previous example, we showed how to use a READ statement to obtain data from a
second DB2 table. But you're not limited to using only two DB2 tables at a time. Spectrum
Writer allows you to use up to 15 different DB2 tables in a single run.

In this section, we'll show another example of using multiple DB2 tables in a single run.
This time, we'll use two READ statements. That will give us access to the data from three
DB2 tables altogether.

Let's pick up with the report we just produced in Figure 66 (page 402). That report
contains data from the project DB2 table. It also shows the "responsible employee's" last
name, which comes from the employee DB2 table. Now suppose we want to show the
department name for each project (not just the department number). Another DB2 table,
called the department table, contains the names of each department. We'll read a row from
that table in order to get the department name.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

READ: DEPARTMENT
 DB2NAME('DSN8230.DEPT')
 WHERE(DEPARTMENT.DEPTNO = PROJECT.DEPTNO)

Notice the READ statement on the previous page. In its WHERE parm we had to use record
name prefixes to uniquely identify the DEPTNO fields. If we had written DEPTNO by itself,
it would have resulted in an "ambiguous field name" error. That's because a field named
DEPTNO exists in the project table and in the department table. We prefixed each
occurrence of DEPTNO with a record name to eliminate the ambiguity. The WHERE parm
correctly identifies the row that we want to read from the department file. It is the row
whose own DEPTNO field equals the DEPTNO field from the project table. (The use of record
names is discussed further in "WHERE Parm Syntax" on page 405.)

The report in Figure 67 uses the three statements above.
Chapter 7. Working with Databases 403

Using Data from Three DB2 Tables
Figure 67. A report that uses data from three different DB2 tables

These Control Statements:

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

READ: DEPARTMENT DB2NAME('DSN8230.DEPT')
 WHERE(DEPARTMENT.DEPTNO = PROJECT.DEPTNO)

TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPARTMENT.DEPTNO
 DEPTNAME
 RESPEMP
 LASTNAME
 PRSTDATE
 PRSTAFF

Produce this Report:

 LISTING OF PROJECT DB2 TABLE

 DEPARTMENT
PROJNO PROJNAME DEPTNO DEPTNAME RESPEMP LASTNAME PRSTDATE PRSTAFF

AD3100 ADMIN SERVICES D01 DEVELOPMENT CENTER 000010 HAAS 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 ADMINISTRATION SYSTEMS 000070 PULASKI 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 ADMINISTRATION SYSTEMS 000230 JEFFERSON 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 ADMINISTRATION SYSTEMS 000250 SMITH 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 ADMINISTRATION SYSTEMS 000270 PEREZ 01/01/82 2.00
IF1000 QUERY SERVICES C01 INFORMATION CENTER 000030 KWAN 01/01/82 2.00
IF2000 USER EDUCATION C01 INFORMATION CENTER 000030 KWAN 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 DEVELOPMENT CENTER 000010 H AAS 01/01/82 2.00
MA2110 W L PROGRAMMING D11 MANUFACTURING SYSTEMS 000060 STERN 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 MANUFACTURING SYSTEMS 000220 LUTZ 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 MANUFACTURING SYSTEMS 000150 ADAMSON 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 MANUFACTURING SYSTEMS 000160 PIANKA 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 SUPPORT SERVICES 000050 GEYER 01/01/82 6.00
OP1010 OPERATION E11 OPERATIONS 000090 HENDERSON 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 SUPPORT SERVICE 000050 GEYER 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000100 SPENSER 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000320 MEHTA 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 SOFTWARE SUPPORT 000330 LEE 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 SOFTWARE SUPPORT 000340 GOUNOT 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 PLANNING 000020 THOMPSON 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50
404 fSpectrum Writer User’s Guide

WHERE Parm Syntax

The syntax allowed within the WHERE parm is similar to, but not identical to, the DB2 syntax
for a WHERE clause (in the DB2 "SELECT" statement). This section discusses the differences
from the DB2 syntax.

The main differences in syntax concern:

! Record Name Prefixes: Spectrum Writer allows you to prefix any field name in
the WHERE parm with a Spectrum Writer record name (to eliminate possible
ambiguity)

! Date and Time Literals: you may use either Spectrum Writer's own date and
time literals, or DB2's date and time literals

In a DB2 WHERE clause, each operand in a comparison can be any of the following:

! the name of a DB2 column in the table

! the name of a "host variable" (in DB2 terminology)

! a literal value

Spectrum Writer also supports all 3 kinds of operands in the WHERE parm. Here is a short
discussion of each type of operand.

DB2 columns
Your comparisons can refer to any DB2 column in the "current" DB2 table. (That is, the DB2
table named in the DB2NAME parm of the same statement.) For example:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(DEPTNO = 'D21')

In the WHERE parm above, DEPTNO is the name of a DB2 column within the DSN8230.PROJ
table. This WHERE parm would select all rows from the project table where the DEPTNO
field is equal to the literal value 'D21'.

In this example, the Spectrum Writer WHERE parm syntax is identical to the DB2 WHERE
clause's syntax. But a problem can arise if the DB2 column name is not unique. This
happens when an earlier input file contains a field by the same name. It can also happen if
you create a COMPUTE field with the same name as a DB2 column.

Let's assume that our primary input file also has a field named DEPTNO in it. In that case,
the WHERE parm above would result in an "ambiguous field name" error. Spectrum Writer
wouldn't know whether you were referring to the DEPTNO field in the primary input file, or
the DEPTNO field in the current (PROJECT) DB2 table.

To avoid such ambiguity, Spectrum Writer allows you to prefix any field name within the
WHERE parm with a record name. (For more information on record names, see "How to
Name the Input File Records" on page 228. Briefly, each input record has a record name.
This record name can be specified explicitly with the RECNAME parm of the INPUT and READ
statements. If no RECNAME is specified, the record name is the same as the file name.) To
Chapter 7. Working with Databases 405

WHERE Parm Syntax
tell Spectrum Writer that we mean the DEPTNO field from the "current" DB2 table, we would
write:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PROJECT.DEPTNO = 'D21')

In the above statement, we used the record name of the "current" table (PROJECT) to prefix
the DB2 field name. Now Spectrum Writer knows that the DEPTNO operand refers to the DB2
column within the project table itself, and not to the DEPTNO field from the primary input
file.

Note: Don't confuse Spectrum Writer's record name prefix with a DB2 qualifier. DB2
qualifiers are not necessary and are not allowed within Spectrum Writer's WHERE
parm.

Note: Some COMPUTE fields are not associated with any input record, and therefore
cannot be prefixed with a record name. If you have problems with ambiguous field
names due to such a COMPUTE field, the solution may be to choose a different name
for your COMPUTE field.

Host Variables
When a field name in a WHERE parm refers to a field that is not in the current DB2 table, that
field must be passed to DB2 as a "host variable." Spectrum Writer takes care of this for you
automatically. It substitutes a "host variable marker" in the WHERE clause that is passed to
DB2. Consider the following statements:

COMPUTE: TEST–DEPT = TEST–LETTER + '21'
READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(DEPTNO = TEST–DEPT)

In this example, we have created a COMPUTE field named TEST–DEPT. In the WHERE parm,
DEPTNO is compared to this COMPUTE field. In this case, Spectrum Writer would recognize
that TEST–DEPT is not a field within the project DB2 table. So, it substitutes a host variable
marker for TEST–DEPT before passing the WHERE clause to DB2. Doing this provides DB2
access to Spectrum Writer's internal value for the COMPUTE field (TEST–DEPT).

Once again, if a host variable name is not unique, you may prefix it with a record name to
make it unique.

There is an example of a host variable in the report in Figure 67 (page 404). Notice the
READ statement for the employee DB2 table. It looks like this:

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP)
 WHERE(EMPNO = RESPEMP)

EMPNO is a field within the current (employee) table. But Spectrum Writer treats RESPEMP
as a host variable, since it is not a field within the employee table. (RESPEMP is a field from
an earlier DB2 table–– the project table.)

Note: Do not use a colon (:) to indicate a "host variable" within the WHERE parm
(as you would when writing SQL code). As explained above, Spectrum Writer
examines each field name in your WHERE parm and determines whether it is the
name of a DB2 column within the current table or not. Spectrum Writer automatically
takes care of passing host variables to DB2 for you.
406 fSpectrum Writer User’s Guide

WHERE Parm Syntax
Literals
Your WHERE parm expression can contain any valid DB2 literal. In addition, you are
allowed to use Spectrum Writer's own literal formats. For example, if you wanted to, you
could use a date literal in DB2's ISO date format, like this:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE = '1993–01–31')

Or, you could use a Spectrum Writer date literal, like this:
READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE = 1/31/1993)

Either format will yield the same result. When you use DB2 format literals, Spectrum
Writer's passes them in the WHERE clause to DB2 unchanged. When you use a Spectrum
Writer literal, Spectrum Writer passes it as a "host variable" to DB2.

Note that for character and numeric literals, the formats are the same for DB2 and for
Spectrum Writer. So your choice in choosing literals applies only to date and time literals.

Note: Floating point literals are not allowed.

For simplicity, the examples in this discussion have shown only a single test in the WHERE
parm. However, you are allowed to specify as many tests as you like in your WHERE parm.
For example:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE <= 1/31/1993 AND (DEPTNO = 'D21' OR DEPTNO = 'E11'))

WHERE Parm SyntaxCustomizing Your DB2 Fields

As mentioned earlier, no FILE or FIELD statements are needed to define the fields in a DB2
input file. Spectrum Writer recognizes the actual DB2 column names that are defined for
your DB2 table.

Since FIELD statements are not supported for DB2 fields, how do you permanently define
such things as:

! the column headings to use for a field

! the display format to use for a field

! whether or not a numeric field should be totalled in reports

You can use COMPUTE statements to perform such customization. Use a COMPUTE
statement that simply assigns the value of a DB2 field to the COMPUTE field. The COMPUTE
statement syntax supports column headings, display formats and the ACCUM/NOACCUM
parms (which determine whether a field is totalled or not).

For example, let's pretend that our project DB2 table contains a column named PROJTEL,
which is a telephone number stored in DB2's "integer" format. By default Spectrum Writer
would treat it as a regular numeric field, which means it would be formatted with commas,
Chapter 7. Working with Databases 407

Customizing Your DB2 Fields
it would be totalled, etc. Of course, for a particular run you could change these defaults
directly in your COLUMNS statement, like this:

COLUMNS: PROJTEL(PIC'(999) 999–9999', NOACCUM)

In the above statement we specified an override display format (a "picture"), to make the
numeric value look like a telephone number. And we specified NOACCUM to prevent the
column from being totalled at the end of the report.

But if you will be using a field in many different reports, it would be easier to specify the
display format and the NOACCUM parm just once and then forget about them. Do that by
using a COMPUTE statement, like this:

COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM) = PROJTEL

Now, whenever the field TELEPHONE is used in a report, it will be formatted appropriately,
and will not be totalled. You can use the same method to define column headings for a DB2
field:

COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM, 'TEL#') = PROJTEL

Now TELEPHONE will have TEL# as its default column heading in reports and PC files.

Customizing Your DB2 FieldsSaving DB2 File Definitions

The previous section explained how to use COMPUTE statements to customize your DB2
fields. A convenient way to handle these COMPUTE fields is to store them in your Spectrum
Writer Copy Library. (See "Keeping Your File Definitions in a Copy Library" on page 360
for detailed information on using the copy library.)

Briefly, here's what to do. Create a member in the copy library for the DB2 file you want to
define. In that member, put a FILE statement that specifies the desired filename and its DB2
name. Then add one COMPUTE statement for each DB2 field that you wish to customize. You
might also want to include COMPUTE statement for any commonly used computations
involving the DB2 fields. Do not put any FIELD statements in this member. FIELD statements
are not allowed for DB2 files.

For example, for the project DB2 table you might create a member named PROJECT in the
copy library. It might contain these statements:

FILE: PROJECT DB2NAME('DSN8230.PROJ')
COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM, 'TEL#') = PROJTEL
COMPUTE: NUMBER('PROJECT NUMBER') = PROJNO
COMPUTE: NAME('PROJECT NAME') = PROJNAME
COMPUTE: SHORT–PROJ–NAME = #SUBSTR(PROJNAME,1,5)
COMPUTE: YEARLY–STAFF(PIC'ZZZ9') = PRSTAFF * 52

Now we could request reports or PC files from the project DB2 table as easily as this:
INPUT: PROJECT
COLUMNS: NUMBER SHORT–PROJ–NAME TELEPHONE PRSTAFF YEARLY–STAFF

Upon seeing the INPUT statement for PROJECT, Spectrum Writer would process the FILE and
COMPUTE statements from the PROJECT member in the copy library. Since the FILE
statement contains the DB2NAME parm for PROJECT, the INPUT statement doesn't need it.
408 fSpectrum Writer User’s Guide

Saving DB2 File Definitions
The COLUMNS (and any other) statements can now refer to either the actual DB2 field name,
or the COMPUTE fields that we defined. Using the COMPUTE field names results in the
column headings and display formats that were specified for those fields.

This method makes DB2 files look and work just the same as non–DB2 files from your
end–users point of view. A programmer can do the small amount of setup required. Then
end–users can use DB2 data in Spectrum Writer without necessarily even knowing it comes
from a DB2 table.

Saving DB2 File DefinitionsDB2 Setup

Before you use Spectrum Writer with DB2 data for the first time, some simple DB2 setup is
required. (You will also need to perform this setup each time you install a new release
level of Spectrum Writer.) In most shops, this DB2 setup is performed by a Database
Administrator. The setup consists of these two steps:

! a new DB2 "plan" must be created and "bound." This plan identifies Spectrum
Writer to your DB2 system.

! authority to execute this plan must then be "granted" to your users.

Note: If Spectrum Writer will be used on multiple DB2 subsystems, these steps
should be performed on each of those subsystems.

1. Creating the DB2 Plan
The first step is to create a new DB2 plan. The plan name should be "SPECTnnn",
where nnn is the release level of Spectrum Writer. For example, the plan name for
release 3.0.0 of Spectrum Writer is SPECT300. That is the plan name that Spectrum
Writer assumes you will use.

Note: It is possible to use a different plan name if that is necessary for some
reason. But you will then have to tell Spectrum Writer the name of your plan in
every job you run. That is done with the DB2PLAN option:

OPTION: DB2PLAN('OURNAME')

If you use "SPECTnnn" as your plan name, you will not need to use the above
statement.

After creating the SPECTnnn plan, you must "bind" two Spectrum Writer "DBRM"
modules into that plan. You can perform the bind with ISPF, or any other way your
shops prefers.

Note: The DBRM modules were included with your original installation files.

2. Granting DB2 Execute Authority
After you have created and bound the DB2 plan, you must grant "execute authority"
for that plan. Generally you will grant execute authority for this plan to PUBLIC. That
allows anyone in your shop to execute Spectrum Writer. But it does not mean that
every user can now access every DB2 table in the shop! Each user's access will still
be limited to those DB2 tables that they have been granted access to. Granting them
execute authority on "SPECTnnn" simply allows them to execute the Spectrum Writer
program with its DB2 Option.
Chapter 7. Working with Databases 409

DB2 Setup
Here's how a user's access is determined. Each Spectrum Writer job has a DB2
"authorization ID" that is (or is related to) the jobname used for the run. If a
Spectrum Writer job tries to access a DB2 table which is not permitted for that
jobname, DB2 will return an error message to Spectrum Writer. Spectrum Writer will
not be able to access that particular table, and will print an error message to that
effect. If the jobname does have authority to read the DB2 table, Spectrum Writer
will then access the DB2 data and complete the run normally.

DB2 SetupDB2 Restrictions

DB2 has certain restrictions which Spectrum Writer must observe. In particular, you should
keep the following restriction in mind:

! DB2 allows a maximum precision of 15 digits in numeric operands. Any decimal
digits also count toward this maximum of 15 digits. (Spectrum Writer allows a
precision of 31 digits.) This means, for example, that any Spectrum Writer
COMPUTE field that you refer to in a WHERE clause must never have a value
smaller than –999999999999999 or greater than +999999999999999. And, if the
field contains decimal digits, the allowed range of values is reduced even further.
410 fSpectrum Writer User’s Guide

Spectrum Writer User’s GuideChapter 8. Operating System Considerations

Chapter Table of Contents

Chapter 8. Operating System Considerations . 411

OS/390 Operating System Considerations . 412
Execution JCL for Reports — OS/390 . 412
DD statements used by Spectrum Writer . 414
Execution JCL for PC and Mainframe Files — OS/390 . 415
Spectrum Writer PROC — OS/390 . 417
Output File Options –– OS/390 . 417
Considerations for Runs with Multiple Outputs — OS/390 . 419
Setting Up File Definitions — OS/390 . 420
Copy Library DD — OS/390 . 423
Input File DDs — OS/390 . 423
Specifying Shop–Wide Options –– OS/390 . 424
Completion Codes –– OS/390 . 425

VSE Operating System Considerations . 425
Execution JCL for Reports — VSE . 427
Execution JCL for PC and Mainframe Files — VSE . 429
Output File Options –– VSE . 431
Input File DLBL/TLBLs –– VSE . 432
The Control Statement Listing — VSE . 433
The EXEC Statement’s SIZE Parm –– VSE . 433
Specifying Sort Work Files — VSE . 434
Considerations for Runs with Multiple Outputs — VSE . 435
Setting Up File Definitions — VSE . 437
Completion Codes –– VSE . 439
Chapter 8. Operating System Considerations 411

Chapter 8. Operating System Considerations

This chapter discusses various topics that are related to the specific operating system under
which Spectrum Writer is executed. It is intended primarily for programmers who are
setting up the job control language (JCL) for Spectrum Writer jobs.

The following operating systems are discussed:

! OS/390 (below)

! VSE (page 425)

OS/390 Operating System Considerations

The following sections discuss operating environment considerations for executing
Spectrum Writer MVS. Spectrum Writer MVS runs under the MVS/SP, MVS/XA, MVS/ESA,
OS/390 and z/OS operating systems. The following topics are presented:

! sample execution JCL for custom reports (page 412)

! sample execution JCL for output files, including PC files and mainframe files
(page 415)

! a sample Spectrum Writer PROC (page 417)

! specifying the access method and LRECL to use for Spectrum Writer’s output
records (page 417)

! special considerations for runs that produce more than one report or output file
(page 419)

! setting up file definitions in a Copy Library (page 420)

! the Copy Library DD statement (page 423)

! the input file DD statements (page 423)

! the DD statement available for start–up options (page 424)

! the jobstep completion codes (page 425)

Execution JCL for Reports — OS/390

This section explains:

! the JCL needed to produce Spectrum Writer reports

Chapter 2, "How to Request a Report" explained how to use Spectrum Writer’s control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 68 shows sample JCL for producing a Spectrum Writer report.
412 Spectrum Writer User’s Guide

Execution JCL for Reports — OS/390
Figure 68. Sample Spectrum WriterSpectrum Writer JCL for reports - OS/390

Remarks:
• the Spectrum Writer control statements in SPECTWTR.COPYLIB(SALES) would automatically be

processed by Spectrum Writer during this run. Appendix F, "Files Used in Examples"
(page 648) shows the statements in that member.

• the SALEFILE DD is necessary since SALES–FILE is used as an input in the report. The FILE statement
for SALES–FILE specifies SALEFILE as the DDNAME to use.

This JCL:

//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE SPECTRUM WRITER REPORT
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=SPECTWTR.COPYLIB,DISP=SHR COPY LIBRARY
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SWLIST DD SYSOUT=* CONTROL LISTING
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
//

Produces this Report:

TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
Chapter 8. Operating System Considerations 413

Execution JCL for Reports — OS/390
The JCL to produce reports from a particular input file only needs to be set up once. Once
it’s written, you can use the same JCL to produce as many different reports from that file as
you like. Only the Spectrum Writer control statements (SYSIN) will be different in each run.

Execution JCL for Reports — OS/390DD statements used by Spectrum Writer

Here is a description of the DD statements used by Spectrum Writer.

DD Statements Used by Spectrum Writer

DDNAME REQUIRED USED FOR

SYSIN Yes Control statements describing the desired report or
PC file

SWLIST Yes
Spectrum Writer writes the control statement
listing, error messages, and end–of–job statistics
here.

SWOUTPUT Yes Spectrum Writer writes the actual report or output
file here.

SWOUT002
SWOUT003
...

No
Spectrum Writer writes the second, third, etc.
report or output file to these DD statements.

SWCOPY No Points to the Spectrum Writer Copy Library

SWOPTION No

Used for installation–wide options. Points to a
dataset containing Spectrum Writer control
statements which should be processed before the
control statements in SYSIN.

SYSOUT Yes Sort program statistics. (Not required if a sort will
not be performed during the run.)

SORTWK01
SORTWK02
SORTWK03 ...

Yes
Sort work files. (Not required if a sort will not be
performed during the run, or if these files are
dynamically allocated at your shop.)

SRT2WK01
SRT2WK02
SRT2WK03 ...
SRT3WK01
SRT3WK02
SRT3WK03 ...
...

SR10WK01
SR10WK02
SR10WK03 ...

No Sort work files to use when sorting the second,
third, tenth, etc. report or output file in a run.
414 Spectrum Writer User’s Guide

DD statements used by Spectrum Writer
DD statements used by Spectrum WriterExecution JCL for PC and Mainframe Files — OS/390

This section explains:

! the JCL needed to produce Spectrum Writer output files

Chapter 3, "How to Request a PC File" explained how to use Spectrum Writer’s control
statements to request PC files. Chapter 4, "Beyond the Basics" included a section on
creating mainframe output files (page 280).

The only JCL difference when creating PC (and mainframe) files is in the SWOUTPUT DD.
Rather than routing the output to SYSOUT, you will normally want to write the output
records to a dataset. That way the dataset can be downloaded to a PC or used by another
mainframe program.

Figure 69 shows sample JCL for writing a PC file to disk.

You may specify any LRECL (and valid BLKSIZE) that you want in the SWOUTPUT DD. Pick
a record length that will be big enough to hold all of the fields that you want to write to the
output file.

Since output files do not need the "carriage control character" found in report output lines,
you will specify a RECFM of F or FB (not FBA).

For more information on available options for the output file, see "Output File Options ––
OS/390" (page 417).

STEPLIB Yes

The load library where the SPECTWTR load module
(and any exit program modules) are located. If DB2
tables will be used, this should also point to the
library where the DB2 run–time modules (DSNTIAR,
for example) are located. (Not required if these
modules are located in a default steplib library.)

XXXXXXXX Yes

One DD for each input file that will be used during
the run. The DDNAME to use is specified in the
DDNAME parm of the FILE statement that defines the
file.

DD Statements Used by Spectrum Writer

DDNAME REQUIRED USED FOR
Chapter 8. Operating System Considerations 415

Execution JCL for PC and Mainframe Files — OS/390
Figure 69. Sample Spectrum Writer JCL for PC and Mainframe files — OS/390

Remarks:
• only the SWOUTPUT DD statement is different from the JCL used to produce a report (page 413)

This JCL:

//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE SPECTRUM WRITER PC FILE
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=SPECTWTR.COPYLIB,DISP=SHR COPY LIBRARY
//SWOUTPUT DD DSN=MY.PC.FILE,DISP=(NEW,CATLG), PC OUTPUT FILE
// UNIT=SYSDA,SPACE=(CYL,1),
// DCB=(RECFM=FB,LRECL=250,BLKSIZE=2500)
//SWLIST DD SYSOUT=* CONTROL LISTING
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
OPTIONS: PC
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
//

Produces this Output File:

" ","EMPL","SALES","SALES"," "," "," "
"REGION","NAME","DATE","TIME","CUSTOMER","AMOUNT","TAX"
" "," "," "," "," "," "," "
"SOUTH","JOHNSON ","03/12/95","10:25:00","ACE ELECTRICAL ", 101.38, 6.09
"WEST ","BAKER ","03/26/95","12:09:09","JACKS CAFE ", 137.00, 8.22
"EAST ","MORRISON ","03/29/95","15:30:22","STAR MARKET ", 44.35, 2.66
"EAST ","MORRISON ","03/30/95","19:05:41","A1 PHOTOGRAPHY ", 29.65, 1.78
"EAST ","SIMPSON ","04/01/95","08:17:57","EUROPEAN DELI ", 14.99, 0.90
"NORTH","JOHNSON ","04/01/95","17:02:47","VILLA HOTEL ", 234.45, 14.07
"NORTH","JOHNSON ","04/05/95","14:33:10","MARYS ANTIQUES ", 9.98, 0.60
"WEST ","BAKER ","04/12/95","14:31:12","JACKS CAFE ", 135.75, 8.15
"WEST ","THOMAS ","04/14/95","15:41:38","YOGURT CITY ", 9.98, 0.60
"NORTH","JONES ","04/15/95","07:58:32","EZ GROCERY ", 10.25, 0.62
"NORTH","JONES ","04/15/95","08:01:59","TOY TOWN ", 121.76, 7.31
"NORTH","JONES ","04/15/95","13:52:41","TOY TOWN ", 10.25, 0.62
"SOUTH","JOHNSON ","04/16/95","11:48:33","ACME BUILDING ", 500.00, 30.00
"EAST ","SIMPSON ","04/30/95","15:30:21","J & S LUMBER ", 23.87, 1.43
416 Spectrum Writer User’s Guide

Spectrum Writer PROC — OS/390

You may wish to create a PROC for Spectrum Writer. That makes it much easier to set up
new Spectrum Writer jobstreams. A PROC also makes it easier for non–technical users to
run Spectrum Writer jobs. Here is a an example of how such a PROC might look:

//SPECTWTR PROC COPYLIB=’NULLFILE’
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE SPECTRUM WRITER REPORT
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=&©LIB.,DISP=SHR COPY LIBRARY
//SWLIST DD SYSOUT=* CONTROL LISTING
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
// PEND

Once the above PROC is created, you could now request a report with just the following
simple JCL:

//SPECTWTR JOB ’REQUESTOR’
//STEP EXEC SPECTWTR,COPYLIB=’SPECTWTR.COPYLIB’
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER
//

Output File Options –– OS/390

This section explains:

! the default access method Spectrum Writer uses to write its output records, and
how to override it

! the output records’ default record length (LRECL), and how to override it

By default, Spectrum Writer writes its output (whether a report or an output file) to the
SWOUTPUT DD using QSAM I/O. This is appropriate for writing to SYSOUTs (printer output)
as well as for writing output files to standard disk and tape datasets.

If you prefer, you can write your output to an existing ESDS VSAM file. One reason to do
that is to make the output file available to CICS transactions (which can only access VSAM
files.) To write your report or output file to a VSAM dataset, specify the following option in
your control statements:

OPTIONS: OUTTYPE(VSAM)

Most standard line printers can print only 132 characters of data per line. However, many
laser printers support "forms" that allow you to print longer print lines. And when creating
PC or mainframe files as output, you may want records that are hundreds — or even
thousands — of bytes long in order to hold all the desired data.

Spectrum Writer supports output records up to approximately 16K bytes long. Here is how
Spectrum Writer determines what record length (LRECL) to use in for the output of a
particular run.
Chapter 8. Operating System Considerations 417

Output File Options –– OS/390
LRECL for QSAM Output Files
When writing QSAM output (Spectrum Writer’s default) the LRECL used is:

1. the LRECL specified in the DCB parm of the SWOUTPUT DD in the JCL, if any, or
2. the LRECL specified in a file’s label, when writing to an existing dataset, or
3. the OUTLRECL value (from an OPTIONS statement), if any, or
4. 133

In other words, if you are printing a report (SWOUTPUT is routed to SYSOUT) and you do not
specify a LRECL either in the JCL or the control statements, Spectrum Writer creates
133–byte records. This allows for a standard 132–byte print line, plus a 1–byte "carriage
control character." In such runs, if you specify more fields in the COLUMNS statement than
will fit in 132 bytes, Spectrum Writer will print a message telling you that it is truncating
one or more fields.

If you want a report that is wider than 133 bytes, you can specify your own LRECL. Do this
in either the JCL or in the Spectrum Writer control statements. To specify the LRECL in the
JCL, just use the DCB=LRECL=nnnnn parm, like this:

//SWOUTPUT DD SYSOUT=*,DCB=LRECL=201

The above DD statement tells Spectrum Writer to allow up to 200 characters in the report
(again reserving one byte for the carriage control character). Spectrum Writer would only
truncate columns that extended beyond column 200. (Of course, in order to print such a
report your printer must also support 201–byte print lines.)

To specify the LRECL in the control statements, use a statement like this:
OPTIONS: OUTLRECL(201)

The above example accomplishes the same thing as specifying 201 in the LRECL parm in
the JCL. If you specify this option, you do not need to specify the DCB=LRECL parm in your
JCL.

Note: To print wide reports on your laser printer, the laser printer may require some
"setup" information. This will tell the printer, for example, to use a condensed font
so that more characters can fit on the page. You may be able to use the PRTSETUP
parm of the OPTIONS statement to send this setup string to your printer. Here is an
example of using the PRTSETUP option (the actual setup string will be different for
each shop):

OPTIONS: PRTSETUP(’+$$$DJDE$ JDE=40,FORMAT=L66200,DATA=(0,200),END;’)

When creating QSAM output files, Spectrum Writer again defaults to 133 byte records (if it
has no other LRECL information). In the case of output files, all 133 bytes are available for
data, since no carriage control character is written for output files.)

However, if you write your file to an existing dataset, Spectrum Writer will automatically
determine the LRECL of that dataset and let you create records up to that size (before
printing truncation warning messages).
418 Spectrum Writer User’s Guide

Output File Options –– OS/390
When writing to a new dataset, you can specify the desired LRECL in either the DCB=LRECL
parm of the JCL, or with the OUTLRECL option in your control statements. For example, to
create a 300–byte PC file, you might use this JCL statement:

//SWOUTPUT DD DSN=EXCEL.FILE,DISP=(NEW,CATLG),
// DCB=(LRECL=300,BLKSIZE=3000,RECFM=FB),
// SPACE=(CYL,5),UNIT=SYSDA

In the above example, Spectrum Writer would only truncate fields that extended beyond
column 300.

LRECL for VSAM Output Files
For VSAM output files, the LRECL used is:

1. the OUTLRECL value from an OPTIONS statement (if it is valid for the VSAM file’s
definition), if any, or

2. 133 (if it is valid for the VSAM file’s definition), or
3. the maximum RECORDSIZE value from the VSAM file’s definition

VSAM files are assigned an average record length and a maximum record length when they
are first defined. As long as your OUTLRECL value is no longer than the maximum record
length defined for the VSAM file, Spectrum Writer will use that LRECL as the size of its
output records. If no OUTLRECL option is specified, Spectrum Writer again defaults to
writing 133–byte records. However, if the VSAM dataset was defined with a maximum
record size less than 133, then Spectrum Writer defaults to writing records the size of the
maximum record size defined for the file.

Output File Options –– OS/390Considerations for Runs with Multiple Outputs — OS/390

When producing multiple outputs in a single run, there are some additional JCL consider-
ations. Specifically you will need to:

! add a DD statement for each additional output

! possibly add sort work file DD statements for the additional outputs

! possibly take measures to increase the available storage

DD Statements for Additional Output Files
When requesting multiple reports, the execution JCL must have one DD statement for each
report produced. Following are the default names of the DD statements that Spectrum
Writer writes to:

! SWOUTPUT (for the first report)
! SWOUT002 (for the second report)
! SWOUT003 (for the third report), and so on

Add the appropriate DD statement(s) to your JCL, depending on how many reports you will
be creating.

Note: If desired, you can override the DD name used by Spectrum Writer for an
output. You can also specify, for each output, the type of file to write (QSAM or
VSAM) and — for new datasets — the LRECL to use. Specify your overrides with the
Chapter 8. Operating System Considerations 419

Considerations for Runs with Multiple Outputs — OS/390
OUTDDN, OUTTYPE and/or OUTLRECL options (in an OPTIONS statement). The
overrides will apply only to the report that is currently being defined.

DD Statements for Additional Sort Work Files
When producing multiple outputs, you may need to add DD statements to your JCL for
additional sort work files. Spectrum Writer starts a separate Sort subtask for each (sorted)
report in a run. When a sort cannot be performed entirely in memory, the Sort program
must use temporary sort work files. These sort work files may not be shared — each sort
must have its own separate work files. At some shops, sort work files are dynamically
allocated by the Sort program. If your shop uses such dynamic allocation, you do not need
to add any additional DDs to your JCL. Otherwise, you should add new sort work DD
statements for each additional report. The sort work file DDs must be named as follows:

! SORTWK01, SORTWK02, SORTWK03, and so on (for the first report)
! SRT2WK01, SRT2WK02, SRT2WK03, and so on (for the second report)
! SRT3WK01, SRT3WK02, SRT3WK03, and so on (for the third report)

...

! SR10WK01, SR10WK02, SR10WK03, and so on (for the tenth report)
! SR11WK01, SR11WK02, SR11WK03, and so on (for the eleventh report)
! and so on

Note: If you have a conflict using these DDNAMEs, you can use the SORTDD option
(in an OPTIONS statement) to specify a different 4-byte prefix to use (see page 574).

Storage Considerations with Multiple Outputs
Each additional report in a run requires additional storage. Mostly this storage is needed
for the Sort program. If your job fails due to lack of storage, consider the following:

! increase the value of the REGION= parm in your JCL’s JOB or EXEC statement.

! reduce the amount of storage used by each Sort. By default, Spectrum Writer
allows 256K of storage for each Sort. You can change this default with the
SORTSIZE option (in an OPTIONS statement):

OPTION: SORTSIZE(128)

The above statement causes the Sort program (for the current report) to use just
128K of storage. Note that the SORTSIZE option applies only to the output
currently being defined. Thus to reduce the amount of storage used in all sorts,
you should add a SORTSIZE parm (in an OPTIONS statement) to the control
statements for each report.

Considerations for Runs with Multiple Outputs — OS/390Setting Up File Definitions — OS/390

Before running Spectrum Writer, some one–time setup is required. This setup consists of
creating a Spectrum Writer Copy Library PDS, and then storing descriptions of your
company’s files in it. This is necessary before Spectrum Writer can produce reports or PC
files from your company’s data. (See "Using the Spectrum Writer Copy Library" on
page 363 for a discussion of how the copy library is used.)
420 Spectrum Writer User’s Guide

Setting Up File Definitions — OS/390
The following steps are needed to set up your Spectrum Writer Copy Library:

Step 1.
Allocate a new PDS to be used as your Spectrum Writer Copy Library. The purpose of this
PDS is to store definition statements about the files in your shop. The PDS’s LRECL should
be 80 bytes. The blocksize may be any multiple of 80. The amount of space required will
depend on how many files you expect to define to Spectrum Writer. (A Spectrum Writer
file definition requires approximately the same amount of space as a Cobol record layout
for the same file.) If you have no idea what size to allocate, try allocating 20 tracks, with
20 directory blocks.

If you prefer, you can use an existing 80–byte PDS (such as a Cobol copy library, etc.)
However, it is recommended that a new PDS be created to serve exclusively as the
Spectrum Writer Copy Library.

Step 2.
Create a new member in the copy library for the first file that you want to define to
Spectrum Writer. For example, if you want to define your company’s payroll file, you
might create a new member named PAYROLL. Within this member, put a FILE statement
defining the payroll file. For example, if the payroll file is a simple sequential file, you
might enter the following:

FILE: PAYROLL DDNAME(PAYROLL) LRECL(1500)

The above statement defines a sequential file that will be referred to as "PAYROLL" in
Spectrum Writer control statements. The DDNAME associated with this file will also be
PAYROLL. Be sure to specify an LRECL value that’s as big as the biggest record in your file.
In our PAYROLL example, we specified 1500 as the largest record length. For more
information on the FILE statement, see "How to Define a File" (page 328.)

Next, put one FIELD statement for each field in the payroll file. (For more information on
the FIELD statement, see "How to Define a Field" on page 333.) For example, if the first
two fields in the payroll file are a 10–byte last name and a 15–byte first name, you would
enter the following:

FIELD: LAST–NAME LENGTH(10)
FIELD: FIRST–NAME LENGTH(15)

It isn’t required that you define all of the fields in the file to start with. If the file contains
fields that you don’t care about using with Spectrum Writer, you do not need to define
those fields. If you skip over some fields, just use the COLUMN parm in the next FIELD
statement to tell Spectrum Writer what column that field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by any number of FIELD statements. (Appendix F, "Files Used in Examples" on
page 648 shows some examples of copy library members.) Save this copy library member
when you are done.

Note: If you have a Cobol or Assembler record layout for the file you are defining,
you can use Spectrum Writer to convert that layout into FIELD statements for you.
Or, you can even produce a report directly from the record layout, without using
FIELD statements at all. Both of these options are described in "Using Cobol and
Assembler Record Layouts" (page 369). To begin with, though, we suggest you
define one or two small files manually (as described above) to get a clear idea of
Chapter 8. Operating System Considerations 421

Setting Up File Definitions — OS/390
how Spectrum Writer works. That will make it easier for you to later see how
Spectrum Writer’s Cobol and Assembler interpreter fits into the picture.

Step 3.
Put an alias entry for your file in the SWALIAS member, if necessary. This step is not
required as long as you chose an 8–byte (or smaller) file name in Step 2, and used that same
name as the member name in your PDS. That is just what we did in our PAYROLL example
in Step 2 above. We used "PAYROLL" both for the file name (in the FILE statement) and for
the member name in the copy library. So no alias entry would be needed in this example.

Here’s the purpose of alias entries. Whenever Spectrum Writer processes an INPUT (or
READ) statement, it tries to automatically copy the input file’s definition statements from
the copy library. To do that, it must determine which member of the copy library contains
the definition statements for the file named in the INPUT statement. An alias entry relates
the file name in the INPUT statement (which can be up to 70 characters long) to the 8–byte
member name where that file’s definition is stored. When the two names are the same, no
alias is needed. But when you use longer file names, you’ll need to create an alias entry.
Put the entry in a special member named SWALIAS in your copy library. The alias entry has
this format:

FILENAME = MEMBER

For example, let’s say we wanted to call our payroll file HEADQUARTERS–PAYROLL. That
name is too big to use as the member name in the copy library. So, you would pick a shorter
member name to keep the file definition statements in — say HQPAYROL. Then just add an
alias entry like this to the SWALIAS member:

HEADQUARTERS–PAYROLL = HQPAYROL

The above line tells Spectrum Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.
"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Spectrum Writer
control statements (such as the INPUT statement). It’s also the name you will use in the FILE
statement when defining the file. "HQPAYROL" will only be used internally by Spectrum
Writer as the member name for reading the definition statements from the copy library.
Appendix F, "Files Used in Examples" (page 648) also shows an example of the SWALIAS
member in a copy library.

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Spectrum Writer.

Step 5.
In your execution JCL, make sure the SWCOPY DD points to this copy library that you just
set up. It contains the file definition statements and the SWALIAS member.

Your Spectrum Writer Copy Library is now ready. You can now request all the custom PC
files and reports you want from the files that you defined.
422 Spectrum Writer User’s Guide

Chapter 8. Operating System Considerations 423

Copy Library DD — OS/390

We saw in the previous section how a copy library is used to store the definition statements
for your company’s files.

Use the SWCOPY DD in your execution JCL to point to the PDS that Spectrum Writer should
use as the copy library during the run. Of course, you may want different runs to use
different copy libraries. (Perhaps different departments in your company will want to
maintain and use their own copy libraries.) Just point the SWCOPY DD to the appropriate
PDS in each run.

You can also use the copy library to store any other frequently used set of control
statements. Use the COPY statement to include statements from copy library members in
your report requests.

For example, you might store a number of commonly used COMPUTE statements in the copy
library. Or, if you frequently run reports that use multiple input files, you could store the
INPUT statement, any COMPUTE statements needed to create the read keys, and the READ
statements all as one member of the copy library. That way the end–users would not need
to remember how to link all of the input files. They could just begin their report request
with a COPY statement that does all of that for them.

Copy Library DD — OS/390Input File DDs — OS/390

This section explains:

! how to write the DD statements for the input files

In order for Spectrum Writer to produce a report (or output file), it must "open" and "read"
from the input file specified in the INPUT control statement. If the report uses auxiliary input
files (specified in READ statements), Spectrum Writer must also open and read from these
files.

Make sure that the JCL used to run a Spectrum Writer report contains one DD statement for
each input file used in the report.

How does Spectrum Writer know which DD to use when reading these files? The file named
in an INPUT or READ statement must have been previously defined to Spectrum Writer with
a FILE statement. The DDNAME parm in the FILE statement tells what DD to use when reading
the file. (The FILE statement is normally kept in the Spectrum Writer Copy Library.)

An override DDNAME parm can also be specified directly in the INPUT or READ statement.
When this happens, Spectrum Writer uses the override DDNAME, rather than the one from
the FILE statement.

Random reads to VSAM files can be relatively slow. VSAM maintains two types of buffers
— data and index — while processing input files. When a required data record or index
record is already in one of VSAM’s buffers, VSAM can use the buffer copy instead of having
to perform actual disk I/O, thus improving performance. If your report will be reading a
large number of records from a VSAM input file, you may want to increase the number of
buffers that VSAM maintains. This will increase the likelihood that VSAM will find a needed

Input File DDs — OS/390
record already in one of its buffers. You can increase the number of data buffers (BUFND)
and/or index buffers (BUFNI) in either of two ways:

1. in the execution JCL, use the AMP=(’AMORG,BUFNI=nn,BUFND=nn’) parm in the
DD statement, or

2. in the INPUT or READ statement, use the BUFNI(nn) and BUFND(nn) parms.
For IBM’s recommended BUFNI and BUFND values, see page 658.

CICS Users Note: One of VSAM’s weaknesses is in its ability to maintain file
integrity for a VSAM file that is being accessed from multiple regions. For example,
if CICS has a VSAM file open for update at the same time that Spectrum Writer is
reading that file, there is a possibility that Spectrum Writer will not see all of the
records that are "in the file". The reason for this is that when updates are made to a
VSAM file under CICS, CICS may not immediately write those updates out to the
physical file; instead, it may maintain the updated records within its buffers to be
written at a later time (sometimes days later if activity for a file is very slow). Since
Spectrum Writer is running in another region, it does not have access to the updates
within CICS’s buffers–– only to the records that have actually been written to the
VSAM file. Thus, VSAM may not pass to Spectrum Writer all of the records that an
online CICS user would "see" in the same file. The safest way to avoid this problem
is to issue a CEMT CLOSE to the VSAM file (from CICS) before running any batch job
(including Spectrum Writer) that will read that file.

Input File DDs — OS/390Specifying Shop–Wide Options –– OS/390

There may be some options that your shop will want to use in every report. For example,
you may want to always print 80 lines per page (rather than Spectrum Writer’s default of
60). That is specified with an OPTIONS statement:

OPTIONS: PAGELEN(80)

Or, many international users may prefer to always see dates formatted in DD–MM–YY
format. They might want this statement in all of their runs:

OPTIONS: FORMAT(DD–MM–YY)

Or, if your shop prints to a laser printer that can skip to new sheets of paper, you may want
to specify a PRTSHEET parm. (This parm allows control breaks to skip to a new sheet of
paper, rather than merely a new side of the page.) For example:

OPTIONS: PRTSHEET(’+$$$DJDE$ SIDE=NUFRONT,END;’)

You could type these statements at the beginning of every report requested at your shop.
But there is an easier way. Store these (and any other similar statements) in a data set.
(Most shops use a member of the Spectrum Writer Copy Library for this purpose, but you
can also use a flat file.) Then, use the SWOPTION DD to point to this data set. For example:

//SWOPTION DD DSN=SPECTWTR.COPYLIB(SWOPTION),DISP=SHR

When a SWOPTION DD statement is present in the JCL, Spectrum Writer processes the
statements contained in that data set before processing the SYSIN statements.

The use of the SWOPTION DD is entirely optional. You are not required to have such a DD.
424 Spectrum Writer User’s Guide

Completion Codes –– OS/390

Upon completion, Spectrum Writer exits back to the operating system with one of the
following completion codes:

Note: The ONIOERROR parm (available in the INPUT, READ and OPTIONS statements)
can be used to increase the severity of an I/O error during a run. For more
information, see under the appropriate statement name in Chapter 10, "Control
Statement Syntax".

Note: you can use the EMPTYCC option (page 562) to specify a special completion
code to use for runs that are "empty" (that is, no records passed the inclusion tests).
Or use the NOTEMPTYCC option (page 568) to special a special completion code to
use for runs that do include one or more record.

VSE Operating System Considerations

The following sections discuss the JCL needed to execute Spectrum Writer VSE. Spectrum
Writer VSE runs under DOS/VSE, VSE/SP and VSE/ESA. The following topics are presented:

! sample execution JCL for custom reports (page 427)

! sample execution JCL for output files, including PC files and mainframe files
(page 429)

! specifying the type and record size of the output file (page 431)

! special considerations for runs that produce more than one report or output file
(page 435)

! setting up file definitions in a Copy Library (page 437)

! the DLBL/TLBL statements required for input files (page 432)

! routing the control statement listing (page 433)

SPECTRUM WRITER OS/390 COMPLETION CODES

COMPLETION
CODE MEANING

0
No errors or warning messages issued. Spectrum Writer produced
its output normally. (Some informatory messages may have been
printed.)

4
Only warning messages were issued. Spectrum Writer produced
its output as well as it could.

8
Error messages were issued. No output (or only a partial output)
was produced.

16
Security error. Spectrum Writer has expired or some other error
was detected in the authorization codes. No output was produced.
Chapter 8. Operating System Considerations 425

VSE Operating System Considerations
! specifying the SIZE parm in the EXEC JCL statement (page 433)

! using sort work files (page 434)

! the jobstep completion codes (page 439)
426 Spectrum Writer User’s Guide

Execution JCL for Reports — VSE

This section explains:

! the JCL needed to produce Spectrum Writer reports

Chapter 2, "How to Request a Report" explained how to use Spectrum Writer’s control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 70 shows sample JCL for producing a Spectrum Writer report.

The JCL to produce reports from a particular input file only needs to be set up once. Once
the JCL has been prepared, you can use it to produce as many different reports from that file
as you like. Only the Spectrum Writer control statements (SYSIPT) will be different in each
run.

Here is a list of the logical unit assignments used by Spectrum Writer:

Note: To ensure that your report output is completely separate from the control
listing messages and statistics, be sure to assign SYS010 and SYS011 to different
virtual printers.

SPECTRUM WRITER VSE LOGICAL UNIT ASSIGNMENTS

LOGICAL
UNIT DESCRIPTION

SYSIPT the Spectrum Writer control statements are read from SYSIPT

SYS010
a "control listing" is written to this logical unit. It includes a listing
of your Spectrum Writer control statements, any warning or error
messages, and the end–of–run statistics.

SYS011
the report (or output file) produced by the run. This assignment
can be changed with the OUTATTR option (page 431).

SYS012
SYS013
...

the second, third, etc. report or output file produced in the run.
These assignments can be changed with the OUTATTR option
(page 431).
Chapter 8. Operating System Considerations 427

Execution JCL for Reports — VSE
Figure 70. Sample Spectrum Writer JCL for reports — VSE

Remarks:
• the Spectrum Writer control statements in member SALES.SPECTWTR of LIB.SPECTWTR would

automatically be processed by Spectrum Writer during this run. Appendix F, "Files Used in
Examples" (page 648) shows the statements in that member.

• the SALEFIL DLBL is necessary since SALES–FILE is used as an input in the report. The FILE statement
for SALES–FILE specifies SALEFIL as the DLBL to use.

This JCL:

// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// ASSGN SYS011,006 REPORT OUTPUT
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE' INPUT FILE
// EXTENT SYS015,,,,6764,1000
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
OPTION: SUBLIB('LIB.SPECTWTR')
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
/*
/&

Produces this Report:
TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
428 Spectrum Writer User’s Guide

Execution JCL for PC and Mainframe Files — VSE

This section explains:

! the JCL needed to produce Spectrum Writer output files

Chapter 3, "How to Request a PC File" explained how to use Spectrum Writer’s control
statements to request PC files. Chapter 4, "Beyond the Basics" included a section on
creating mainframe output files (page 280).

The only JCL difference when creating PC (or mainframe) files concerns where the output
will be written. By default, Spectrum Writer writes output file records to the "printer" at
SYS011 (just as it writes report lines).

If you want to download PC files from the POWER queue, this default may be just fine for
you. In that case, use the same JCL for PC files as for reports (page 428).

However, you may prefer to write output files to actual datasets, rather than the POWER
queue. That way the dataset can be downloaded to a PC, or used by another mainframe job.

Figure 71 shows sample JCL for creating a PC file and writing it to a disk file. In this
example, we used the OUTATTR parm to tell Spectrum Writer to write to a disk file rather
than to a printer. We also added an appropriate DLBL statement for the output file to the JCL.

The OUTATTR option can also be used to specify the desired record size of your output file.
You can also use it to write your output file to a VSAM file or a tape. The OUTATTR parm is
discussed in more detail on page 431.
Chapter 8. Operating System Considerations 429

Execution JCL for PC and Mainframe Files — VSE
Figure 71. Sample Spectrum Writer JCL for PC and Mainframe files — VSE

This JCL:

// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE' INPUT FILE
// EXTENT SYS015,,,,6764,1000
// DLBL SWOUT,'PC.FILE' OUTPUT FILE
// EXTENT SYS015,,,,5288,100
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
OPTION: SUBLIB('LIB.SPECTWTR')
 PC
 OUTATTR(DASD,'SWOUT',250,2500)
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
/*
/&

Produces this Output File:

" ","EMPL","SALES","SALES"," "," "," "
"REGION","NAME","DATE","TIME","CUSTOMER","AMOUNT","TAX"
" "," "," "," "," "," "," "
"SOUTH","JOHNSON ","03/12/95","10:25:00","ACE ELECTRICAL ", 101.38, 6.09
"WEST ","BAKER ","03/26/95","12:09:09","JACKS CAFE ", 137.00, 8.22
"EAST ","MORRISON ","03/29/95","15:30:22","STAR MARKET ", 44.35, 2.66
"EAST ","MORRISON ","03/30/95","19:05:41","A1 PHOTOGRAPHY ", 29.65, 1.78
"EAST ","SIMPSON ","04/01/95","08:17:57","EUROPEAN DELI ", 14.99, 0.90
"NORTH","JOHNSON ","04/01/95","17:02:47","VILLA HOTEL ", 234.45, 14.07
"NORTH","JOHNSON ","04/05/95","14:33:10","MARYS ANTIQUES ", 9.98, 0.60
"WEST ","BAKER ","04/12/95","14:31:12","JACKS CAFE ", 135.75, 8.15
"WEST ","THOMAS ","04/14/95","15:41:38","YOGURT CITY ", 9.98, 0.60
"NORTH","JONES ","04/15/95","07:58:32","EZ GROCERY ", 10.25, 0.62
"NORTH","JONES ","04/15/95","08:01:59","TOY TOWN ", 121.76, 7.31
"NORTH","JONES ","04/15/95","13:52:41","TOY TOWN ", 10.25, 0.62
"SOUTH","JOHNSON ","04/16/95","11:48:33","ACME BUILDING ", 500.00, 30.00
"EAST ","SIMPSON ","04/30/95","15:30:21","J & S LUMBER ", 23.87, 1.43
430 Spectrum Writer User’s Guide

Output File Options –– VSE

This section explains:

! the default access method Spectrum Writer uses to write its output records, and
how to override it

! the output record’s default record size, and how to override it

! how to use the OUTATTR parm (of the OPTIONS statement)

The OUTATTR ("Output Attributes") option lets you give Spectrum Writer explicit
information about how and where to write its output. If no OUTATTR option is specified,
Spectrum Writer makes these default assumptions:

! the output is going to a printer–type device. (Of course, in most cases the
"printer" will actually be a POWER spool file.)

! the "printer" is at logical unit SYS011

! each record will be 133 bytes long (including a 1–byte carriage control character)

If you are creating reports, this default should work just fine for you. Your JCL will simply
assign SYS011 to SYSLST or some other "printer" device.

Still, if you like you could use OUTATTR to specify a different SYSnnn or a different record
size. For example:

OPTIONS: OUTATTR(PRT,SYS007,120)

The above statement tells Spectrum Writer to write the output file to a "printer" device at
SYS007. The records should be 120 bytes long.

Note: For report output, the first byte in each record is a "carriage control
character." So in the example above, only 119 bytes would be available for the
report data itself. For PC or mainframe file output (or when using the NOCC option)
no control character is written. In that case, the entire length of the record is
available for data.

When creating PC or mainframe files, you may prefer to write them to disk or tape, rather
than to the POWER queue. And you may want a record size bigger (or smaller) than 133
bytes. To change the defaults, just use Spectrum Writer’s OUTATTR option. This option lets
you specify:

! the type of device to write to (choose from a printer, a DASD file (that is, a SAM
file on disk), a VSAM file, or a tape file).

! the logical unit to write to. (Used with printer and tape files only.)

! the length of each output record. You can choose any record size you like (up to
approximately 16K). Specify a record size that is big enough to hold all the data
you plan to write.

Figure 71 (page 430) shows sample JCL for writing a PC file to a SAM file on disk. In that
example, the following OUTATTR parm is used:

OPTIONS: OUTATTR(DASD,’SWOUT’,250,2500)
Chapter 8. Operating System Considerations 431

Output File Options –– VSE
The DASD parm in the above statement tells Spectrum Writer to write its output to a SAM
disk file. The file is defined in the JCL by a DLBL statement named SWOUT. The records will
be 250 bytes long, and the block size will be 2500.

Note: When writing to a disk or tape file, you can omit the ASSGN statement for
SYS011 in your JCL.

You may use any record size (and valid block size) in the OUTATTR parm that you want.
Pick a record size that will be big enough to hold all of the data you will be writing to the
output file. If you do not specify a record size, Spectrum Writer assumes a default record
size of 133 bytes.

You can also use the OUTATTR option to have Spectrum Writer write its output to a VSAM
file. One reason to do this is so that CICS can access the output. You may want to use CICS
to download the data to a PC. Here is an example of writing to a VSAM file:

OPTIONS: OUTATTR(VSAM,’OUTVSAM’,450)

The above statement tells Spectrum Writer to write the output file to a VSAM file. (The VSAM
file must have been defined ahead of time, and it must be defined as an ESDS file.) The DLBL
for the VSAM file in the JCL will be named OUTVSAM. The records will be 450 bytes long.
Note that block sizes are not used for VSAM files.

Finally, here is an example of writing Spectrum Writer’s output to a tape file:
OPTIONS: OUTATTR(TAPE,’OUTFILE’,SYS009,200,12000)

The above statement tells Spectrum Writer to write the output file to a tape mounted on
logical unit SYS009. The TLBL for the output file in the JCL will be named OUTFILE. The
records will be 200 bytes long, and the block size will be 12000.

Note: The complete syntax of the OUTATTR option is shown on page 555.

Output File Options –– VSEInput File DLBL/TLBLs –– VSE

This section explains:

! how to write the DLBL or TLBL JCL statements for your job’s input files

In order for Spectrum Writer to produce a report (or output file), it must "open" and "read"
from the input file specified in the INPUT statement. If the run uses auxiliary input files
(specified in READ statements), Spectrum Writer must also open and read from those files.

How does Spectrum Writer know which DLBL or TLBL name to use when reading these
files? The file named in an INPUT or READ statement must have been previously defined to
Spectrum Writer with a FILE statement. The ATTR parm in the FILE statement specifies
which DLBL (or TLBL) Spectrum Writer should use when reading the file. The ATTR parm
also tells Spectrum Writer other important information about the file, such as its record size
and block size.

Note: The FILE statement is normally kept in the Spectrum Writer Copy Library.

Note: The syntax of the FILE statement is shown on page 531.
432 Spectrum Writer User’s Guide

Input File DLBL/TLBLs –– VSE
An override ATTR parm can also be specified directly in the INPUT or READ statement. When
this happens, Spectrum Writer uses the override DLBL (or TLBL) name, rather than the one
from the FILE statement.

Make sure that your Spectrum Writer JCL contains one DLBL (or TLBL) statement for each
input file needed to produce your report or output file. (An EXTENT JCL statement may also
be needed for each DLBL statement.)

Random reads to VSAM files can be relatively slow. VSAM maintains two types of buffers —
data and index — while processing input files. When a required data record or index record
is already in one of VSAM’s buffers, VSAM can use the buffer copy instead of having to
perform actual disk I/O, thus improving performance. If your report will be reading a large
number of records from a VSAM input file, you may want to increase the number of buffers
that VSAM maintains. This may increase the likelihood that VSAM will find a needed record
already in one of its buffers. You can increase the number of data buffers (BUFND) and/or
index buffers (BUFNI) in either of two ways:

1. in the execution JCL, or
2. in the INPUT or READ statement, using the BUFNI(nn) and BUFND(nn) parms.
For IBM’s recommended BUFNI and BUFND values, see page 658.

CICS Users Note: One of VSAM’s weaknesses is in its ability to maintain file
integrity for a VSAM file that is being accessed from multiple partitions. For example,
if CICS has a VSAM file open for update at the same time that Spectrum Writer is
reading that file, there is a possibility that Spectrum Writer will not see all of the
records that are "in the file". The reason for this is that when updates are made to a
VSAM file under CICS, CICS may not immediately write those updates out to the
physical file; instead, it may maintain the updated records within its buffers to be
written at a later time (sometimes days later if activity for a file is very slow). Since
Spectrum Writer is running in another partition, it does not have access to the
updates within CICS’s buffers–– only to the records that have actually been written
to the VSAM file. Thus, VSAM may not pass to Spectrum Writer all of the records that
an online CICS user would "see" in the same file. The safest way to avoid this
problem is to issue a CEMT CLOSE to the VSAM file (from CICS) before running any

Input File DLBL/TLBLs –– VSEThe Control Statement Listing — VSE

The control statement listing (which lists your control statements and any diagnostic
messages, as well as end–of–run statistics) is always written to the printer–type device at
SYS010. The record size is always 133 bytes, including a 1–byte carriage control character.

You should "assign" SYS010 to a different printer device than the one that SYS011 (the actual
report) is assigned to. This prevents your control listing from being intermixed with your
report output.

The EXEC Statement’s SIZE Parm –– VSE

Spectrum Writer makes extensive use of the GETVIS portion of its partition. Therefore, you
should provide a larger than normal GETVIS area by using the SIZE parm in your EXEC
statement.
Chapter 8. Operating System Considerations 433

The EXEC Statement’s SIZE Parm –– VSE
Spectrum Writer uses the GETVIS portion of the partition for these things:

! its own control blocks, used to process your request

! VSAM’s control blocks

! any User Exits (written by your shop to perform custom processing) are also
loaded into GETVIS storage.

The program area of the partition is used for the following:

! the Spectrum Writer phase itself (about 250K)

! the Librarian program (if you will be using Spectrum Writer’s copy library
feature)

! the Sort program (if you request that your report or output file be sorted)

The Librarian and Sort programs are used at different times, so they can use the same area
in memory. Generally, reserving 300K for the Sort and/or Librarian programs is sufficient.

Therefore, we recommend using the following EXEC statement in your JCL:
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)

Of course, special considerations may cause you to want to experiment with the SIZE parm
in your applications.

The EXEC Statement’s SIZE Parm –– VSESpecifying Sort Work Files — VSE

Most Spectrum Writer jobs will involve a sort. This is required in order to put your report
or output file into the order specified by the SORT control statement. Spectrum Writer calls
your shop’s standard sort program to perform the sort. By default, the sort program is told
to perform the sort entirely in memory. For large reports or output files, it may not be
possible to perform the sort in memory–– external sort work files will be needed.

In that case, you should do two things:

1. Provide one or more SORTWKn DLBL/EXTENT statements in your JCL. For
example, you could add JCL statements similar to the following in order to
provide the sort program with 2 work files:

// DLBL SORTWK1
// EXTENT SYS016,,,,4124,1000
// DLBL SORTWK2
// EXTENT SYS016,,,,3098,1000

2. Use the SORTWORKNUM option to tell Spectrum Writer how many sort work files
are available for the sort program to use. For example if you added the two
DLBL/EXTENT statements above, you would specify:

OPTIONS: SORTWORKNUM(2)
434 Spectrum Writer User’s Guide

Considerations for Runs with Multiple Outputs — VSE

When producing multiple outputs in a single run, some there are additional JCL
considerations. Specifically you will need to:

! provide a logical unit or DLBL for each additional output

! possibly add DLBL statements for sort work files for the additional outputs

! possibly take measures to increase the available storage

Additional Output Attributes
By default, Spectrum Writer writes all reports to printer-type logical units. Following are
the default logical units that Spectrum Writer writes to:

! SYS011 (for the first report)
! SYS012 (for the second report)
! SYS013 (for the third report), and so on

If you wish to write a report to a different logical unit, or to a SAM or VSAM file, use the
OUTATTR option (in an OPTIONS statement).

The OUTATTR option describes the output attributes for the report currently being defined.
For example, to write three reports to DLBLs named BYREG, BYCUST and BYAMT, you could
use these control statements:

INPUT: SALES-FILE
OPTION: OUTATTR(SAM,'BYREG',100,1000)
TITLE: 'SALES BY REGION'
COLUMNS: REGION CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION

NEWOUT:
OPTION: OUTATTR(SAM,'BYCUST,150,1500)
TITLE: 'SALES BY CUSTOMER'
COLUMNS: CUSTOMER REGION AMOUNT TAX EMPL-NAME
SORT: CUSTOMER
BREAK: CUSTOMER

NEWOUT:
OPTION: OUTATTR(SAM,'BYAMT',80,800)
TITLE: 'SALES SORTED BY DESCENDING AMOUNT'
COLUMNS: AMOUNT CUSTOMER
SORT: AMOUNT(D)

Additional Sort Work File DLBL Statements
When producing multiple outputs, you may need to add DLBL (and EXTENT) statements to
your JCL for additional sort work files. Spectrum Writer starts a separate Sort subtask for
each (sorted) report in a run. When a sort cannot be performed entirely in memory, the Sort
program must use temporary sort work files. These sort work files may not be shared —
each sort must have its own separate work files. At some shops, sort work files are
dynamically allocated by the Sort program. If your shop uses such dynamic allocation, you
may not need to add any additional DLBLs to your JCL. Otherwise, you should add new sort
Chapter 8. Operating System Considerations 435

Considerations for Runs with Multiple Outputs — VSE
work DLBL statements for each additional report. The sort work file DLBLs must be named
as followed:

! SORTWK1, SORTWK2, SORTWK3, ... (for the first report)
! SRT2WK1, SRT2WK2, SRT2WK3, ... (for the second report)
! SRT3WK1, SRT3WK2, SRT3WK3, ... (for the third report)

...

! SR10WK1, SR10WK2, SR10WK3, ... (for the tenth report)
! SR11WK1, SR11WK2, SR11WK3, ... (for the eleventh report)
! and so on

Note: If you have a conflict using these DLBLs, you can use the SORTDD option (in
an OPTIONS statement) to specify other 4-byte prefixes to use (see page 574).

Note: Many Sort programs assume, by default, that a single sort work file is
available in the execution JCL. To explicitly tell the Sort program how many sort
work files are provided for in the JCL, use the SORTWORKNUM option (in a Spectrum
Writer OPTIONS statement). Spectrum Writer will then pass this information to the
Sort program. For example:

OPTION: SORTWORKNUM(3)

The above statement tells Spectrum Writer that three sort work files are defined in
the JCL for the report being defined. Note that the SORTWORKNUM option applies
only to the report currently being defined. Thus, if applicable, you should include a
SORTWORKNUM option among the control statements for each report.

Note: Even in shops where the sort work files are dynamically allocated, the
SORTWORKNUM option may still be required in order to trigger the dynamic
allocation.

Storage Considerations with Multiple Outputs
Each additional report in a run requires additional storage. Mostly this storage is used by
the Sort program. If your job fails due to lack of storage, consider the following:

! increase the amount of reserved storage using the EXEC statement’s SIZE parm.
The storage used by the Sort program comes from this part of the partition. Thus,
if your run produces three reports, each one using the default 256K for its sort,
then 768K will be required just for the Sort programs. Round this up for other
users of storage:
// EXEC SPECTWTR,SIZE=(SPECTWTR,900K)

! reduce the amount of storage used by each Sort, By default, Spectrum Writer
allows 256K for each Sort. You can change this default with the SORTSIZE option
(in an OPTIONS statement):

OPTION: SORTSIZE(128)

The above statement causes the Sort program (for the current report) to use only
128K of storage. Note that the SORTSIZE option applies only to the output
currently being defined. Thus to reduce the amount of storage used in all sorts,
436 Spectrum Writer User’s Guide

Considerations for Runs with Multiple Outputs — VSE
you should add a SORTSIZE parm (in an OPTIONS statement) to the control
statements for each report.

! try running the job in a larger partition

Considerations for Runs with Multiple Outputs — VSESetting Up File Definitions — VSE

This section explains:

! how to set up a Librarian sublibrary to serve as the Spectrum Writer Copy
Library

! how to use the SUBLIB option to tell Spectrum Writer the name of the copy
library

Before running Spectrum Writer, some one–time setup is required. This setup involves
storing descriptions of your company’s files in the Spectrum Writer Copy Library. This is
necessary before Spectrum Writer can produce reports or PC files from your company’s
data. (See "Using the Spectrum Writer Copy Library" on page 363 for a discussion of how
the copy library is used.)

The following steps are needed to set up your Spectrum Writer Copy Library:

Step 1.
Pick a Librarian sublibrary to use as your Spectrum Writer Copy Library. We recommend
that you create a new sublibrary to be used exclusively for this purpose. However, you can
use any Librarian sublibrary as your Spectrum Writer Copy Library.

Some shops may want to use multiple copy libraries with Spectrum Writer. (Perhaps one
for each department in the company.) It is fine to do that. You will tell Spectrum Writer via
a control statement the name of the copy library to use in each run.

Step 2.
Create a member in the copy library for the first file that you want to define to Spectrum
Writer. The member name can be anything that you like. The member type should be
SPECTWTR. For example, to define your company’s payroll file, you might create a new
member named PAYROLL.SPECTWTR.

This member should contain a FILE statement defining certain attributes of the file. For
example, you might have the following:

FILE: PAYROLL ATTR(DASD,’PAY’,80,4000)

The above statement defines a DASD SAM file that will be referred to as "PAYROLL" in
Spectrum Writer control statements. The DLBL name associated with this file will be PAY.
The records are 80 bytes long, and the blocks are 4000 bytes long. (For more information
on writing FILE statements, see page 331.)

Next, the member should contain one FIELD statement for each field in the payroll file. (For
more information on writing FIELD statements, see page 333.) For example, if the first 2
Chapter 8. Operating System Considerations 437

Setting Up File Definitions — VSE
fields in the payroll file were a 15–byte last name and a 10–byte first name, you might enter
the following:

FIELD: LAST–NAME LENGTH(15)
FIELD: FIRST–NAME LENGTH(10)

You do not need to define all of the fields in the file to start with. If the file contains fields
that you don’t care about using with Spectrum Writer, you do not need to define those
fields. If you skip over some fields, just use the COLUMN parm in the next FIELD statement
to tell Spectrum Writer what column that field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by any number of FIELD statements. (Appendix F, "Files Used in Examples" on
page 648 shows examples of copy library members and their file definition statements.)

Note: If you have a Cobol or Assembler record layout for the file you are defining,
you can use Spectrum Writer to convert that layout into FIELD statements for you.
Or, you can even produce a report directly from the record layout, without using
FIELD statements at all. Both of these options are described in "Using Cobol and
Assembler Record Layouts" (page 369). To begin with, though, we suggest you
define one or two small files manually (as described above) to get a clear idea of
how Spectrum Writer works. That will make it easier for you to later see how
Spectrum Writer’s Cobol and Assembler interpreter fits into the picture.

Step 3.
Put an alias entry for your file in the SWALIAS.SPECTWTR member, if necessary. This step
is not required as long as you chose an 8–byte (or smaller) file name in Step 2 and used
that same name as the member name in your copy library. That’s just what we did in our
PAYROLL example in Step 2 above. We used "PAYROLL" both for the file name (in the FILE
statement) and as the member name in the copy library. So no alias entry would be needed
in that example.

Here’s the purpose of alias entries. Whenever Spectrum Writer processes an INPUT (or
READ) statement, it tries to automatically copy the input file’s definition statements from
the copy library. To do that, it must determine which member of the copy library contains
the definition statements for the file named in the INPUT statement. An alias entry relates
the file name in the INPUT statement (which can be up to 70 characters long) to the 8–byte
member name where that file’s definition is stored. When the two names are the same, no
alias is needed. But when you use longer file names, you’ll need to create an alias entry.
Put the entry in a special member named SWALIAS.SPECTWTR in your copy library. The
alias entry has this format:

FILENAME = MEMBER

For example, let’s say we wanted to call our payroll file HEADQUARTERS–PAYROLL. That
name is too big to use as the member name in the copy library. So, you would pick a shorter
member name to keep the file definition statements in — say HQPAYROL. Then just add an
alias entry like this to the SWALIAS.SPECTWTR member:

HEADQUARTERS–PAYROLL = HQPAYROL

The above line tells Spectrum Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.SPECTWTR.
"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Spectrum Writer
control statements (such as the INPUT statement). It’s also the name you will use in the FILE
438 Spectrum Writer User’s Guide

Setting Up File Definitions — VSE
statement when defining the file. "HQPAYROL" will only be used internally by Spectrum
Writer as the member name for reading the definition statements from the copy library.
Appendix F, "Files Used in Examples" (page 648) shows an example of a SWALIAS
member in a copy library.

Note that only the member name (not the member type) is specified in an alias entry All
copy library members should have a member type of SPECTWTR. (See the MEMTYPE option
on page 566 for information on changing the default member type.)

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Spectrum Writer.

Step 5.
In your Spectrum Writer control statements, always begin with an OPTIONS: SUBLIB
statement. This will tell Spectrum Writer the name of this copy library that you just set up.
For example, if you named your copy library LIB.SPECTWTR, you would use the following
statement:

OPTIONS: SUBLIB(’LIB.SPECTWTR’)

Your Spectrum Writer Copy Library is now ready. You can now request all the custom
reports and output files that you want from the files that you have defined.

Setting Up File Definitions — VSECompletion Codes –– VSE

Upon completion, Spectrum Writer exits back to the operating system with one of the
following completion codes:

Note: The ONIOERROR parm (available in the INPUT, READ and OPTIONS statements)
can be used to increase the severity of an I/O error during a run. For more
information, see under the appropriate statement name in Chapter 10, "Control
Statement Syntax".

SPECTRUM WRITER VSE COMPLETION CODES

COMPLETION
CODE MEANING

0
No errors or warning messages issued. Spectrum Writer
produced its output normally. (Some informatory messages may
have been printed.)

4
Only warning messages were issued. Spectrum Writer produced
its output as well as it could.

8
Error messages were issued. No output (or only a partial output)
was produced.

16
Security error. Spectrum Writer has expired or some other error
was detected in the authorization codes. No output was
produced.
Chapter 8. Operating System Considerations 439

Completion Codes –– VSE
Note: you can use the EMPTYCC option (page 562) to specify a special completion
code to use for runs that are "empty" (that is, no records passed the inclusion tests).
Or use the NOTEMPTYCC option (page 568) to special a special completion code to
use for runs that do include one or more record.
440 Spectrum Writer User’s Guide

Spectrum Writer Reference ManualPart 2.
Reference Manual

Chapter 9. General Syntax Rules

Chapter Table of Contents

Chapter 9. General Syntax Rules . 441

Control Statements . 443
What Is a Control Statement? . 443
How to Write Control Statements . 443
How to Continue a Control Statement Onto Multiple Lines . 444
The Order of Control Statements . 444
How to Put Comments in Your Control Statements . 445
How to Put Page Breaks in the Control Listing . 446

Names of Files, Fields, and Records . 446
Rules for Assigning Names . 446
How to Make Field Names Unique . 447

How to Write Literals . 448
The Five Types of Data . 448
Character Literals . 448
Numeric Literals . 449
Date Literals . 449
Time Literals . 450
Bit Literals . 450
When Do You Need Quotes Around a Number? . 450

PICTURE Display Formats . 451
Examples of PICTUREs . 452
Showing Scaled Numbers with PICTUREs . 453
How PICTUREs Work . 455
Time PICTUREs . 458

Conditional Expressions . 459
How to Specify a Relation Condition . 460
Comparing Character Operands of Different Lengths . 462
Comparing Fields of Different Data Types . 463
Conditions Involving Explicit Literals . 464
How to Specify a Bit Field Condition . 465
How to Specify Multiple Conditions . 465
Conditional Expressions That Use AND . 465
Conditional Expressions That Use OR . 466
Conditional Expressions That Use Both AND and OR . 467
How to Shorten Long Expressions . 468
How to Negate Conditions . 469
Chapter 9. General Syntax Rules 441

Examples of Conditional Expressions . 470
Computational Expressions . 472

Operands in Computational Expressions . 473
Operators in Computational Expressions . 473
Order of Operations . 474
Examples of Computational Expressions . 474
442 Spectrum Writer Reference Manual

Chapter 9. General Syntax Rules

This chapter describes:

! the general syntax rules that apply to all control statements.

Control Statements

What Is a Control Statement?

Control statements are the means by which you describe a desired report or PC file to
Spectrum Writer. Each control statement describes some aspect of the desired report or PC
file. You can request a report with as few as two control statements. Or, you might use
dozens of statements to request a very complicated report. A PC file can be requested with
as few as three control statements.

How to Write Control Statements

You will probably type your control statements into a dataset using an editor. Each line in
your dataset will be 80 columns long. Each dataset line does not necessarily correspond to
one control statement. A single control statement may be typed onto multiple lines.

As mentioned, the lines in your dataset will each be 80 columns long. However, Spectrum
Writer only looks at the first 72 columns of each line. (This is because some editors store
information of their own in the last 8 columns of each line.) Be sure not to type any part of
a control statement past column 72, because Spectrum Writer will ignore that part.

Every control statement begins with a statement name. The statement name must begin in
the very first column of a line, and must be immediately followed by a colon. Here are
examples of how several common control statements begin:

INPUT:
TITLE:
COLUMNS:

What follows the statement name depends on the particular statement. The complete
syntax for each control statement is found in Chapter 10, "Control Statement Syntax."

After the statement name, the rest of each control statement is "free format." That means
that you are not required to put the field names or keywords in any specific column–– you
can type them wherever you like in the line (up to column 72). You may use as many blanks
around the words in your statement as you like (to make the statement easier to read). You
may also use commas to separate words if you like. In general, Spectrum Writer treats
Chapter 9. General Syntax Rules 443

How to Write Control Statements
commas like blanks. The following four control statements are all equivalent, even though
they are spaced differently:

COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES
COLUMNS: LAST–NAME, FIRST–NAME, TOTAL–SALES
COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES
COLUMNS: LAST–NAME
 FIRST–NAME TOTAL–SALES

Notice that the last example above used two lines for the COLUMNS statement. You may use
as many lines as you want for a single control statement.

How to Write Control StatementsHow to Continue a Control Statement Onto Multiple Lines

Sometimes a control statement will contain so much information that it will have to be split
onto multiple lines. Other times, you may want to spread a control statement onto multiple
lines just to make it easier to read (and perhaps easier to modify later).

The only rule about "continuation lines" is that they must begin with a blank in the first
column. That is how Spectrum Writer can tell whether a line is a continuation of the
preceding statement, or the beginning of a new statement. Lines with a non–blank in
column 1 are new statements. Lines with a blank in column 1 are continuations of the
preceding statement.

Where should you split a statement onto a separate line? Generally, you can end a line
anywhere that a space is allowed in the statement, and then continue on the next line. This
means that you cannot split a statement in the middle of a field name or a keyword. Split a
statement between such words, where spaces would be allowed.

You may, however, split a statement in the middle of a character literal. This is necessary,
for instance, if you have a very long literal for a TITLE statement. To continue a character
literal onto a new line, simply type the literal right up through column 72 of the first line,
and then resume typing in column 2 of the next line. (Remember that column 1 of the
second line must be left blank, since it is a continuation line.) If a third line is required, do
the same thing: type through column 72 of the second line and resume in column 2 of the
third line, and so on.

Here is an example of a TITLE statement that has a long literal text split across two lines.
(The scale shows the column numbers of the lines).

1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
TITLE: ’LIST OF CUSTOMERS FOR THE NEW, ADVANCED, MINIATURIZED, SOLID STA
 TE, ZERO WAIT STATE PAPER CLIP’

How to Continue a Control Statement Onto Multiple LinesThe Order of Control Statements

There is no rigid order required for the control statements. The general rule is that any file
name or field name referred to in a control statement must already have been defined (in a
preceding control statement). For example, a COLUMNS statement that names a computed
field cannot appear before the COMPUTE statement that defines that field.
444 Spectrum Writer Reference Manual

The Order of Control Statements
Although there is no requirement as to specific control statement order, the following
suggested order is a logical way to organize most requests:

1. Start with any OPTIONS statements needed. Some options must appear before any
other control statements, so it’s a good idea to group all OPTIONS statements
together at the beginning of your request.

2. Put the INPUT statement next. Spectrum Writer must know the input file name
early, so that it will know which field names to allow in subsequent statements.

3. If your request will use READ statements, they should appear next. Again, this lets
Spectrum Writer know what additional field names are available for use in
subsequent statements. If your READ statement uses a computed field as it key,
place the necessary COMPUTE statement(s) just ahead of the READ statement.

4. Next comes any COMPUTE statements needed to define additional fields you will
be using in your request.

5. The TITLE, COLUMNS, SORT, and FOOTNOTE statements may now follow in any
order. BREAK statements, if used, must follow the SORT statement.

The following sample request follows the above guidelines:
OPTIONS: SUMMARY
INPUT: SALES–FILE
COMPUTE: SPECIAL–KEY = "9" +#SUBSTR(EMPL–NUM,2,2)
READ: EMPL–FILE READKEY(SPECIAL–KEY)
COMPUTE: DISCOUNT = AMOUNT * 0.05
TITLE: ’SALES REPORT’
COLUMNS: SALES–DATE CUSTOMER AMOUNT DISCOUNT LAST–NAME
SORT: CUSTOMER
BREAK: CUSTOMER TOTAL(’CUSTOMER TOTAL’) SPACE(PAGE)

The Order of Control StatementsHow to Put Comments in Your Control Statements

Often it is helpful to include comments among your control statements. Comments are
ignored by Spectrum Writer but provide good documentation to other people looking at
your control statements. There are two ways to include comments in your control
statements.

1. use an entire comment line, by putting an asterisk (*) in column 1 of the line
2. or, embed comments in other control statements, by surrounding your comment

with the symbols /* and */
Any line that begins with an asterisk (*) in column 1 is considered a comment line. The
entire line will be ignored by Spectrum Writer. Comment lines may appear anywhere
among the control statements.

Here is an example of how to use comment lines:
**
* *
* THIS REPORT PRODUCES AN EMPLOYEE DIRECTORY *
* *
**
INPUT: EMPL–FILE
COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES

You may also embed comments within control statements. Use a slash and asterisk pair (/*)
to indicate the beginning of your comment and use an asterisk and slash pair (*/) to indicate
Chapter 9. General Syntax Rules 445

How to Put Comments in Your Control Statements
the end of your comment. Everything between these symbols will be ignored by Spectrum
Writer. You are allowed to begin and end your comment on different lines.

Here are some examples of imbedded comments:
INPUT: EMPL–FILE /* THIS IS THE EMPLOYEE MASTER FILE */
COLUMNS: LAST–NAME FIRST–NAME /* LAST YEARS SALES */ TOTAL–SALES
SORT: TOTAL–SALES(DESC) /* SORT LARGEST SALE FIRST */
 LAST–NAME /* THEN SORT BY LAST NAME */

Warning: Do not begin or end an imbedded comment in a comment line (one
beginning with an asterisk in column 1). Comment lines are completely ignored,
including any /* or */ symbols within them.

Also, do not use columns 1 and 2 of any line for the /* or the */ symbols. Column 1
is reserved for statement names and asterisks only.

How to Put Comments in Your Control StatementsHow to Put Page Breaks in the Control Listing

There is one special comment line that you can use to control the paging of the control
listing report. A comment line beginning with the word "*PAGE" will cause the control
listing to skip to a new page. This is useful when you are listing many control statements
and would like to separate them into logical groups. Here is an example of using the
"*PAGE" comment line:

COPY: MSTRDEF LIST(YES)
*PAGE
INPUT: MASTER–FILE
COLUMNS: NAME DATE ADDRESS

In the control listing, the INPUT and COLUMNS statements would appear on a new page,
separate from the statements copied by the COPY statement.

Names of Files, Fields, and Records

Rules for Assigning Names

You may make up your own names for the files, fields, and records you will be working
with. (These names are assigned in the FILE, FIELD, COMPUTE, INPUT, and READ statements.)
The only requirements for the names you assign are:

! each character in the name must be one of the following
• an alphabetic character
• a numeric character
• a dash (–)
• an underscore character (_)
• an ampersand (@)
• a dollar sign ($)
• a pound sign (#)
446 Spectrum Writer Reference Manual

Rules for Assigning Names
! the first character of the name may not be a numeric character or a dash (–)

! the total length of the name must fit on a single line. Names may not be split
across lines.

Note: We recommend that you do not name your fields beginning with the
pound sign (#). This is to avoid confusion with Spectrum Writer’s built–in fields
and functions, which all begin with a pound sign. For example, Spectrum
Writer’s built–in field that contains the current system date is named #TODAY.

Some examples of valid names are:
EMPL–NUM
HIRE–DATE
X
PRIMARY–SUBSCRIBERS–SOCIAL–SECURITY–NUMBER
SALARY
A12345–67890
EMPLOYEE_NAME
SUBSCRIPTION#

Rules for Assigning NamesHow to Make Field Names Unique

When you are producing reports that use multiple files as input, it is possible that a field
with the same name may exist in more than one input file. For example, you may be using
both the EMPL–FILE and the SALES–FILE as inputs to a report. There happens to be a field
named EMPL–NUM in both of these files.

When this situation occurs, you can indicate which of the two fields you mean by using a
record name to "qualify" the field name. (By default, a file’s record name is the same as
the file name.) A qualified name consists of a record name, followed by a period, followed
by a field name (with no spaces in between). For example, to list the EMPL–NUM field from
the EMPL–FILE, you would use this statement:

COLUMNS: EMPL–FILE.EMPL–NUM

And, to list to the EMPL–NUM field from the SALES–FILE, you would use this statement:
COLUMNS: SALES–FILE.EMPL–NUM

If you just used EMPL–NUM by itself in the COLUMNS statements above, you would get an
error message indicating that the field name was not unique.

Record names are also discussed in "How to Name the Input File Records" (page 228).

Note: We mentioned earlier that a field name may not be split across multiple lines.
If a field name is qualified, the prefix, the period, and the field name itself must all
fit on a single line. For this reason, it is better not to make your field names
extremely long.
Chapter 9. General Syntax Rules 447

How to Write Literals

A "literal" is a constant value. In other words, its value does not depend on the contents of
any input record. Literals are used in many of Spectrum Writer’s control statements.

There are five types of literals, corresponding to the five types of data recognized by
Spectrum Writer. Before going into the syntax of literals, let’s review the five types of data.

How to Write LiteralsThe Five Types of Data

All data processed by Spectrum Writer falls into one of five general data types. This applies
to data contained in fields as well as to literal values. The five types of data are:

! character
! numeric
! date
! time
! bit

Spectrum Writer knows what kind of data exists in a particular field from the TYPE parm
specified in its FIELD statement. Spectrum Writer knows what kind of data a literal value
contains from its format (discussed below). It is important to know an item’s data type for
the following reasons:

! in a conditional expression, you may only compare two items if they are of the
same type.

! in a computational expression, all operands must be of the same type (with one
exception discussed later). Also, the operations allowed will depend on the data
type of the operands.

! in print expressions, any display format parms must be appropriate for the data
type of the field involved.

The Five Types of DataCharacter Literals

Character literals are always enclosed in either single quotation marks (apostrophes) or
double quotation marks (’ or "). You can use whichever character you like. Whichever of
these characters you choose, be sure to begin and end the literal with the same character. If
you need to include that same character (the single or double quotation mark) within the
literal, you may do so by entering two of the characters together. Character literals may be
up to 256 characters long. (See page 444 for instructions on writing literals that don’t fit on
a single line.) Here are some examples of character literals used in TITLE statements:

TITLE: ’END OF YEAR REPORT’
TITLE: "LAST QUARTER’S EARNINGS"
TITLE: ’MANAGER’’S STATUS REPORT’

Another way to specify character literals is to use their hexadecimal representation. This
is useful when you wish to enter a special character which has no associated key on the
448 Spectrum Writer Reference Manual

Character Literals
keyboard, such as certain graphics characters, or the LOW–VALUE and HIGH–VALUE literals
used in Cobol. A hexadecimal literal begins with an "X", immediately followed by the
hexadecimal value enclosed in quotation marks. (Again, you can use either single or
double quotation marks.) Remember that only the digits 0 through 9, and the letters A
though F are allowed in hexadecimal literals. Here are some examples of hexadecimal
literals used in various control statements:

OPTIONS: COLSEP(X’05’)
COMPUTE: LOW–VALUES = X’00000000’
TITLE: X"4040C1"
INCLUDEIF: EMPL–NUM = X’FFFFFF’

Since each byte contains 2 hex digits, your hexadecimal literals should normally contain
an even number of hex digits. Spectrum Writer pads hexadecimal literals that do not
contain an even number of digits by adding a trailing hex "0".

Character LiteralsNumeric Literals

Numeric literals should not be enclosed in quotation marks. A numeric literal may contain
only the numeric digits 0 though 9, a decimal point, and a sign character (+ or –). If a sign
character is used, it must be the first character in the literal. Commas are not allowed in
numeric literals. A numeric literal may contain a maximum of 31 digits. Here are some
examples of numeric literals used in various control statements:

COMPUTE: INTEREST = .125
COMPUTE: FACTOR = –1
INCLUDEIF: AVERAGE > 1.5234
INCLUDEIF: TOTAL–SALES < 100000

Date Literals

Date literals also should not be enclosed in quotation marks. Specify date literals in either
MM/DD/YYYY or MM/DD/YY format. We recommend using MM/DD/YYYY literals to reduce the
possibility of erroneous results. Leading zeros in the month and day are optional. If you do
use MM/DD/YY literals, the 2–digit years are assumed to fall between 1950 and 2049. That
is because the default CENTURY option value is 50 (page 559). However, you may specify
your own CENTURY option if you prefer a different century cutoff year.

Date literals must specify a date between January 1, 1900 and December 31, 2099
(inclusive). Here are some examples of date literals used in various control statements:

COMPUTE: START–DATE = 12/31/1989
COMPUTE: END–DATE = 7/4/98
INCLUDEIF: HIRE–DATE < 2/15/04
INCLUDEIF: HIRE–DATE < 04/15/1999
INCLUDEIF: HIRE–DATE < 1/1/2001

Note: Date literals must always be written using slashes (/) as the delimiter. The
DATEDELIM option, if used, applies only to how dates are formatted in the output —
it does not affect the way date literals must be written.
Chapter 9. General Syntax Rules 449

Date Literals
Note: If you prefer, you can choose to write all date literals in DD/MM/YYYY (or
DD/MM/YY) format. Just place the DDMMYYLIT option (in an OPTIONS statement) at the
beginning of your control statements. For example:

OPTIONS: DDMMYYLIT
INCLUDEIF: HIRE–DATE < 15/4/1999
COMPUTE: START–DATE = 31/12/89

Date LiteralsTime Literals

Time literals also should not be enclosed in quotation marks. Specify time literals in either
HH:MM:SS or HH:MM format. A leading zero in the hour portion of the time is optional. Time
literals in HH:MM:SS format may also contain decimal parts of seconds–– HH:MM:SS.SSS.
Time literals must specify a time between 00:00:00 and 23:59:59. Here are some examples
of time literals used in various control statements:

COMPUTE: START–TIME = 8:30
COMPUTE: END–TIME = 17:00:00
INCLUDEIF: SALES–TIME >= 12:00 AND <= 12:00:05
INCLUDEIF: TIME–ON–PHONE < 00:00:01.5

Note: Time literals must always be written using colons (:) as the delimiter. The
TIMEDELIM option, if used, applies only to how times are formatted in the output—
it does not affect the way time literals must be written.

Bit Literals

There are no true bit literals in Spectrum Writer. However, there are two built–in functions
which perform the same role. Literals are generally used in two ways:

! within a comparison, in a conditional expression

! as an operand in a computational expression

Within conditional expressions, no comparisons are allowed with bit fields. A bit field
name is a condition all by itself. Therefore, no bit literal is required for comparisons. (For
more information on this, see "Conditional Expressions" on page 459.)

Within the COMPUTE statement, you may use the built–in functions #ON and #OFF as the
equivalent of bit literals. Since these are functions (which simply return the constant values
ON or OFF), they are not technically literals. Here is a sample control statement that uses
these built–in functions:

COMPUTE: NEW–EMPLOYEE = WHEN(HIRE–DATE > 1/1/1990) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

Bit LiteralsWhen Do You Need Quotes Around a Number?

In most cases, matching data types comes naturally. Most people wouldn’t try to compare
a date field (like HIRE–DATE) with a character field (like LAST–NAME).

But, there is one area where mistakes in mixing data types are commonly made. That is
when it comes to distinguishing between character fields that contain numeric characters,
450 Spectrum Writer Reference Manual

When Do You Need Quotes Around a Number?
and true numeric fields. For example, consider the EMPL–NUM field in the EMPL–FILE
(defined in Appendix F, "Files Used in Examples" on page 648). Since this field contains
an employee number, it is easy to think of it as a numeric field. But in reality it is defined
as a character field. (It just happens to contain only "numeric" characters.) This means that
when a comparison is made to it, a character literal must be used–– not a numeric literal.
For example, the following statement is valid:

INCLUDEIF: EMPL–NUM = ’037’

The above statement would select all records for employee number 037. The character
literal ’037’ (in quotes) is compatible with the character field EMPL–NUM. However,
consider the following statement:

INCLUDE: EMPL–NUM = 037

The above statement is in error! It is attempting to compare a character field
(EMPL–NUM) with the numeric literal 037 (without quotes).

A similar error might be made when trying to display EMPL–NUM in the report. Consider the
following statement:

COLUMNS: EMPL–NUM(PIC’ZZ9’)

The above statement is also invalid! It attempts to use a numeric display format (a
PICTURE) to format a character field.

Of course, since the EMPL–NUM field in the records always contains a numeric character,
we could have defined EMPL–NUM as a numeric field (by using TYPE(NUM) in the FIELD
statement). Then, we could have used numeric literals and numeric display formats with
the field. Had we defined EMPL–NUM as a numeric field, we would also want to specify the
NOACCUM parm, to prevent the EMPL–NUM column from being totalled in reports.

So, when do you need quotation marks around numbers? Whenever the number is being
used as a character literal, rather than a numeric literal.

Note: To determine if a particular field has been defined as a character or a numeric
field, add the SHOWFLDS(YES) parm to your INPUT (or READ) statement. This parm
causes a listing of all of the fields defined for the file to appear in your control
statement listing. The data type of each field (character or numeric) also appears in
this listing.

Note: For more discussion on character versus numeric fields, see "Should You
Define a Field as Character or Numeric?" on page 339.

When Do You Need Quotes Around a Number?PICTURE Display Formats

A PICTURE is a special display format that describes how a numeric value should be
displayed in a report. The PICTURE display format consists of the word PICTURE (or an
abbreviation, such as PIC) immediately followed by text enclosed in either apostrophes or
Chapter 9. General Syntax Rules 451

PICTURE Display Formats
quotation marks. (Do not put a space before the apostrophe or quotation mark.) For
example:

PICTURE’text’
PIC’text’

The characters making up the text give a "picture" of how the formatted result should look.
The PICTURE specifies such thing as:

! the size of the formatted output (that is, how many characters it will occupy in a
print line)

! whether leading zeros should be displayed or suppressed

! whether commas (or some other character) will be used to separate the
thousands, the millions, etc.

! whether a floating dollar sign should appear in the result

! where the minus sign should appear, for negative numbers

! where (and whether) a plus sign should be displayed for positive numbers

! how many decimal digits should print

! any literal characters that should be included in the formatted result

! whether automatic scaling of the number is wanted (so that the number is shown
"in thousands," "in millions," etc.)

PICTURE Display FormatsExamples of PICTUREs

Spectrum Writer’s PICTUREs are very similar to COBOL’s PICTURE clause, in case you are
familiar with that. If you haven’t worked with PICTUREs before, the best way to learn about
them is probably to look at some examples. The following examples show the format
produced by various PICTUREs. Pick a result that is similar to what you want, and use that
PICTURE as a guide. Adjust the number of digit symbols in your PICTURE according to the
size of the numbers that you will be printing.

In the table below, a sample positive value (1,234.56) and a sample negative value
(-98,765.4) are used to demonstrate each PICTURE.

EXAMPLES OF PICTURES

PICTURE
FORMATTED

POSITIVE VALUE
 FORMATTED

NEGATIVE VALUE

PIC’999999999’ 000001235 ****S****

PIC’999999.9’ 001234.6 ****S***

PIC’999999.99’ 001234.56 ****S****

PIC’999999V99’ 00123456 ****S***

PIC’ZZZZZ9.99’ 1234.56 –98765.40

PIC’ZZZZZ9V99’ 123456 –9876540

PIC’ZZZ,ZZ9.99’ 1,234.56 –98,765.40
452 Spectrum Writer Reference Manual

Examples of PICTUREs
Note: The first several examples above resulted in size error indicators (***S***) for
the negative value. That is because the PICTURE did not have a place where the minus
sign could be displayed. Since leading zero suppression was not used, there were no
leading blanks in which to place a minus sign. If your numbers will include negative
values, do not use all 9’s in your PICTURE. Add at least one leading Z or – to the
PICTURE.

Below are two additional examples that illustrate special purpose PICTUREs. Notice that
when literal text is used heavily, you should normally use "9" as your digit symbol. If you
want to display a literal character before the first numeric digit (as in the telephone number
example below), you must use "9" for all of your digit symbols
.

PICTUREs can be used anywhere that a numeric display format is allowed. Following are a
few examples of how PICTUREs can be used in various control statements:

COLUMNS: EMPL–NAME TOTAL–SALES(PIC’ZZZ,ZZZ,ZZ9.99–’)
TITLE: ’TELEPHONE DIRECTORY ––’ TELEPHONE(PIC’(999) 999–9999’)
BREAK: REGION FOOTING(’TOTAL SALES FOR REGION:’
 TOTAL–SALES(TOTAL,PIC’$$$,$$$,$$9’))

Examples of PICTUREsShowing Scaled Numbers with PICTUREs

You can also use a PICTURE to automatically scale the number being formatted. That is, to
round the number to thousands, millions, etc. as necessary to make it fit within the
PICTURE. The appropriate abbreviation (K, M, G, etc.) indicates what scale the number is
shown in.

PIC’–––,––9.99’ 1,234.56 –98,765.40

PIC’+++,++9.99’ +1,234.56 –98,765.40

PIC’ZZZ,ZZ9.99–’ 1,234.56 98,765.40–

PIC’ZZZ,ZZ9.99+’ 1,234.56+ 98,765.40–

PIC’$$,$$$,$$9.99’ $1,234.56 –$98,765.40

PIC’ZZZ.ZZ9V,99’ 1.234,56 –98.765,40

PIC’ZZZ ZZ9V,99’ 1 234,56 –98 765,40

PIC’ZZZ.ZZ9V,99 DM’ 1.234,56 DM –98.765,40 DM

PIC’ZZZZZ9.99%’ 1234.56% –98765.40%

ADDITIONAL PICTURE EXAMPLES

PICTURE UNFORMATTED VALUE FORMATTED VALUE

PIC’(999) 999–9999’ 1234567890 (123) 456–7890

PIC’999–99–9999’ 123456789 123–45–6789

EXAMPLES OF PICTURES (CONTINUED)

PICTURE
FORMATTED

POSITIVE VALUE
 FORMATTED

NEGATIVE VALUE
Chapter 9. General Syntax Rules 453

Showing Scaled Numbers with PICTUREs
Scaled PICTUREs allow you to use less space in a report line while still showing
approximate values for very large numbers. Look at these two columns of data:

 SALES SALES

 26 26

 48,712 49 K

5,862,131,092 5,862 M

The first column, while showing the exact value of each number, uses up 13 bytes of the
report line (even more if you have to allow room for Grand Totals). The second column
shows scaled values for the same numbers and only uses 7 bytes. (And the Grand Total
would also fit in 7 bytes.)

Note: In order to use the "@" or "?" scaling symbols to request scaling in a PICTURE,
you must have specified the SCALEPIC option in an (earlier) OPTION statement.
Otherwise, those symbols are simply treated as literal text in the PICTURE.

Here is the COLUMNS statement used to format the above columns:

Example: OPTION: SCALEPIC
COLUMNS: SALES(13) SALES(PIC’Z,ZZ9 @’)

The "@" in the PICTURE indicates that base-10 scaling (division by factors of 1000) is
wanted for that column. (Base-10 scaling is normally used with business and financial
data.) The "@" symbol also indicates just where to place the scale abbreviation (K, M, G,
etc.).

Scaled PICTUREs can also include decimal digits, if you like:

Example: OPTION: SCALEPIC
COLUMNS: FILESIZE(13) FILESIZE(PIC’ZZ9.9 @’)

The above statements result in the following columns.

 SALES SALES

 26 26.0

 48,712 48.7 K

5,862,131,092 5.9 M

You can also request base-2 scaling (division by factors of 1024, or 2 to the 10th power).
This type of scaling is often used with data related to computer systems. To specify base-
2 scaling, use the "?" scaling symbol instead of "@". If you also add a literal "B" to the
PICTURE, you will end up with the abbreviations KB, MB, GB, etc. in the column.

Example: OPTION: SCALEPIC
COLUMNS: SALES(13) SALES(PIC’Z,ZZ9 ?B’)

The above statements result in the following columns.

 FILESIZE FILESIZE

 26 26 B

 48,712 48 KB

5,862,131,092 5,591 MB

Note: If the field you are scaling can contain negative values, be sure to begin the
PICTURE with a minus sign, a space or an "extra" Z. If you fail to this, you won’t get
454 Spectrum Writer Reference Manual

Showing Scaled Numbers with PICTUREs
a size error (***S***) as with regular PICTUREs. But the negative number will have to
be scaled down to a potentially misleading degree. Sometimes all the way down to 0.

Take, for example, this PICTURE which has no extra byte for a minus sign: PIC’ZZ9@’.
The number 100,000,000 would format normally as "100M". But the number
–100,000,000 appears, surprisingly (at first glance), as " 0G". Spectrum Writer can’t
show "–100M" in the 4-byte PICTURE. So it has to scale the number down further to
–0.1 billion. Rounding that to a whole number (to match the PICTURE) gives 0
billion. That does fit in the PICTURE (" 0G") but is not very useful and could be
misleading. Using the correct PIC’–ZZ9@’ would give the results you expect for both
positive and negative numbers: " 100M" and "–100M".

Note: In most cases, you will want at least 3 digit positions in scaled PICTUREs.
Otherwise, you can have a similar problem to the one described above (of having
your number rounded down to meaninglessness) -- even when all values shown will
be positive. Take for example, the following PICTURE with only 2 digits positions:
PIC’Z9@’. The positive number 100,000,000 can only be shown as " 0G" in this small
PICTURE.

Note: Spectrum Writer sometimes adds additional leading digit positions to
user’s PICTUREs (whether scaled or not). It does that when a long column heading or
a column width parm makes a column wider than the width of the PICTURE itself.
Usually, the ability to show extra digits is desirable. If, however, you don’t want any
extra leading digits added to your scaled PICTURE, left-pad your PICTURE with
blanks to make it the same size as the column.

For example, if you want to see exactly PIC’Z,ZZ9@’ in a column that will be 10 bytes
long (because of a long column heading), change the PICTURE to PIC’ Z,ZZ9@’.

Showing Scaled Numbers with PICTUREsHow PICTUREs Work

This section explains in more detail exactly how PICTUREs are processed.

When a numeric value is being formatted according to a PICTURE, the following process
takes place. The PICTURE is evaluated one character at a time, from left to right. Each
character in the PICTURE is either:

! a symbol that represents one potential digit of the numeric value

! a literal character that, under certain conditions, will be moved into the result

The character 9 in a PICTURE always represents a digit from the numeric value. It will be
replaced by the appropriate digit of the number, even if that digit is a leading zero.

If you want to suppress leading zeros in your result, use one of the following characters to
represent leading digits in your PICTURE: Z, $, + or –. When one of these characters appears
in the PICTURE before the first 9, that character becomes the leading zero suppression
symbol for the PICTURE. Each occurrence of that symbol will be replaced by the
appropriate digit of the number as long as that digit is not a leading zero. If the digit is a
leading zero, then a blank will appear in that position of the result.

Use the $ character for the leading digits in your PICTURE if you want a floating dollar sign
to be placed just before the first significant digit in the result.
Chapter 9. General Syntax Rules 455

How PICTUREs Work
Use the + character for the leading digits in your PICTURE if you want a floating sign to
be placed just before the first significant digit in the result. A plus sign is used for positive
numbers; a minus sign is used for negative numbers; no sign is used if the number is zero.

Use the – character for the leading digits in your PICTURE if you want a floating minus
sign to be placed just before the first significant digit in the result (for negative values).
Positive and zero values will have no sign character.

When the letter Z is used for the leading digits in your PICTURE, and no trailing sign
symbol appears in the PICTURE, a floating minus sign is placed before the first significant
digit in the result (for negative values).

Use a + character as the last byte in your PICTURE if you want a trailing sign (either plus
or minus) to be placed in that position of the result.

Use a – character as the last byte in your PICTURE if you only want a trailing minus sign
to be placed in that position of the result (for negative values).

The letter V has a special meaning within a PICTURE. It shows where an "understood
decimal point" is located. A PICTURE may contain only one V symbol. The V symbol does
not take up a byte in the formatted output. (Thus, the result of PIC’99V9’ would be just 3
bytes long, not 4.) If a V is present in the PICTURE, all decimal points (.) in the PICTURE are
treated as literals and are not used in determining where the decimal digits appear in the
result.

The decimal point (.) is treated specially within a PICTURE. If the PICTURE contains a V
symbol, all decimal points within the PICTURE are just treated as literals. (Thus, the two
decimal points in PIC’ZZZ.ZZZ.ZZ9V9’ are treated as regular literals.) If no V symbol appears
within the PICTURE, a single decimal point is allowed within the PICTURE. It shows where
an "explicit decimal point" is to be located in the result.

The at sign (@) and question mark (?) are used in scaled pictures (page 453) to show
where to put the abbreviation for the scale used (K, M, G, etc.). However, these characters
only have this special meaning when the SCALEPIC option (page 573) is in effect.

All other characters are treated as literals. Literals are moved into the result just as they
appear in the PICTURE, with one exception. Any literal that appears before the last zero
suppression symbol in a PICTURE is blanked out if zero suppression is still in effect at that
point. Such literals are only moved to the result if one or more non–zero digits have already
been moved to the result. (Thus, the comma literals in PIC’ZZZ,ZZZ,ZZ9.99’ are blanked out
until after the first digit appears in the result.) Also, trailing literals are always moved to
the result (even if no non-zero digits were moved.) Trailing literals are those that appear
after all of the numeric positions in a PICTURE. They are usually currency indicators
(PIC’ZZ9.99 USD’) or percentage signs (PIC’ZZ9.9%’).

Note: In PICTUREs with no zero suppression symbols (such as PIC’(999) 999–9999’),
all literals are moved to the result.

The following table summarizes the meaning of each character that can appear in a
PICTURE.

Note: A PICTURE may contain symbols representing no more than 31 digits.
However, the entire PICTURE text (including literal characters) can be larger than 31
characters.
456 Spectrum Writer Reference Manual

How PICTUREs Work
.

MEANING OF SYMBOLS WITHIN A PICTURE

SYMBOL MEANING

9 Replace this character with a digit from the numeric value, even if that
digit is a leading zero.

Z

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative
numbers (unless the PICTURE contains an explicit trailing plus or minus
sign).

$

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a dollar sign. For negative
numbers, a minus sign will appear just before the floating dollar sign
(unless the PICTURE contains an explicit trailing plus or minus sign).

–

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative
numbers.

+

When used as the leading zero suppression symbol.(1) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain: a plus sign for positive numbers;
a minus sign for negative numbers; a blank if the number is zero.

–
Minus sign, as the last character in a picture. Specifies that a minus sign
should appear in that position if the number is negative. Otherwise, a
blank will appear in that position.

+

Plus sign, as the last character in a picture. Specifies that: a plus sign
should appear in that position if the number is positive; a minus sign
should appear in that position if the number is negative; a blank should
appear in that position if the number is zero.

V

Understood decimal point. This character indicates where the
understood decimal point exists within a picture. However, no actual
decimal point will appear there. This PICTURE symbol does not affect the
size of the formatted result. When this symbol is used, any decimal
points (.) in the PICTURE are treated as literals.

.

When used as an explicit decimal point. When a PICTURE does not
contain a V, this becomes the explicit decimal point. It is displayed as is,
unless "leading zero suppression" is still in effect. In that case, a blank
will appear in its place.
Chapter 9. General Syntax Rules 457

How PICTUREs Work
How PICTUREs WorkTime PICTUREs

There is also a picture–type display format available for time fields. It is called a TPICTURE
("time picture"). It can also be abbreviated as TPIC and TP. TPICTUREs work similarly to the
regular numeric PICTURE. They are a handy way to indicate the number of digits to reserve
for the hours portion of very large time values, as well as the number of decimal digits to
display. For example, consider the following statement:

COLUMNS: TIME–ON–PHONE(TPIC’ZZZ9:99:99.9’)

The above statement uses a TPIC to specify how the TIME–ON–PHONE field should be
displayed. It reserves 4 digits for the hours portion of the time value, and specifies leading
zero suppression up until the last hour digit. The TPIC also specifies that 1 decimal digit is
wanted in the formatted result. (The main reason for wanting to display more than 2 hour
digits is when time intervals are being added up and the Grand Total value may be large.)

When formatting times using TPICs, Spectrum Writer treats the time value as a numeric
value of the form ...HHHHMMSS.SSSS... That is, the numeric value has 2 digits of seconds, 2
digits of minutes, and an indefinite number of digits for hours. It also contains an indefinite
number of decimal digits. The number of digit symbols in the TPIC (characters Z and 9) will
determine how many hours digits and decimal digits (if any) are to be displayed.

@

Only if an earlier SCALEPIC option was processed. Indicates that the
numeric value should be scaled as necessary to fit within the PICTURE.
Base-10 scaling (division by factors of 1000) is desired. The "@" symbol
also indicates where to put the scale abbreviation (K, M, G, etc.).

?

Only if an earlier SCALEPIC option was processed. Indicates that the
numeric value should be scaled as necessary to fit within the PICTURE.
Base-2 scaling (division by factors of 1024) is desired. The "?" symbol
also indicates where to put the scale abbreviation (K, M, G, etc.).

other

Any characters other than those listed above are considered literal
characters within a picture. These characters will appear in the
formatted result just as they are, unless "leading zero suppression" is
still in effect. In that case, blanks will appear in their place. Trailing
literals (any literal after the last digit position) are always formatted into
the result.

Notes:
(1) the first Z, $, + or – character that appears in a picture becomes the "zero

suppression symbol" for that picture. Once the zero suppression symbol has been
determined for a picture, the other three characters in that set are just treated as
literals.

MEANING OF SYMBOLS WITHIN A PICTURE (CONTINUED)

SYMBOL MEANING
458 Spectrum Writer Reference Manual

Conditional Expressions

This section explains:

! how to write conditional expressions

Conditional expressions specify one or more conditions. Upon evaluation, a conditional
expression will either be true or false. Conditional expressions are used in:

! the INCLUDEIF statement (to specify which records to include in the report)

! the WHEN parm of some COMPUTE statements (to specify when to assign a
particular value to a field)

Topics covered in the following sections are:

! how to specify relation type conditions

! how to specify bit field type conditions

! how to specify multiple conditions, by using the keywords AND and OR

! how to shorten long conditional expressions

! how to negate conditions, using the NOT keyword

Note: Most of the examples used in this section involve fields from the sample
EMPL-FILE, described in Appendix F, "Files Used in Examples" (page 648).

In general, a conditional expressions consists of any number of conditions, separated by
the keywords AND and OR. You may also use parentheses around groups of conditions to
indicate the order in which they should be evaluated. Parentheses may be "nested" to any
level. Also, you may precede any condition, or parenthesized group of conditions, with the
word keyword NOT, to "negate" the result.

An individual condition can take one of the following two forms:

! a relation condition

! a bit field condition
Chapter 9. General Syntax Rules 459

Conditional Expressions
Conditional ExpressionsHow to Specify a Relation Condition

A relation condition compares the value of two operands, to see if a certain relationship
exists between them. Here is an example of a relation condition:

TOTAL–SALES > 9000

The above condition is true if the value of the TOTAL–SALES field is greater than 9000.

A relation condition consists of two operands separated by a relation operator:
operand1 operator operand2

Each operand can be either a field or a literal value. The operands can be any of the
following types of data (but both operands must be of the same type):

! character
! numeric
! date
! time

Note: Bit operands are not allowed in relation conditions. A bit operand is a
condition all by itself (see page 465).

CONDITIONAL EXPRESSION SYNTAX

condition [AND/OR condition] [AND/OR condition] ...

Notes:
• in addition, any number of paired parentheses may be used to specify the order of

evaluation.
• any condition, or group of conditions in parentheses, may be preceded by the word

NOT

Standard Symbol
Spelling Allowed

AND &
OR |
NOT ¬
460 Spectrum Writer Reference Manual

How to Specify a Relation Condition
The relation operator may be any of the following:

A relation condition is evaluated by comparing the values of the two operands. If the
operands have the relation specified by the relation operator, then the condition is true. If
the operands do not have the relation specified by the relation operator, then the condition
is false.

Here is another example of a relation condition:
SALES–QTR1 > SALES–QTR2

This condition is evaluated by comparing the contents of the SALES–QTR1 field with the
contents of the SALES–QTR1 field. If SALES–QTR1 "is greater than" SALES–QTR2 the
condition is true. Otherwise, the condition is false. For example, if the SALES–QTR1 field
contained 4000, and the SALES–QTR2 field contained 3000, then the condition above would
be true, because 4000 is greater than 3000. However, if the SALES–QTR1 field contained
4000 and the SALES–QTR2 field contained 6000, then the condition would be false, because
4000 is not greater than 6000.

Here is an INCLUDEIF statement that uses the condition shown above:
INCLUDEIF: SALES–QTR1 > SALES–QTR2

The above statement specifies that only records where the SALES–QTR1 field is greater than
the SALES–QTR2 field should be included in the report.

Remember that the operands being compared in a relation condition must be of the same
general type of data. That is, numeric operands may only be compared to other numeric
operands. Character operands may only be compared to other character operands. Date
operands may only be compared to other date operands. And time operands may only be
compared to other time operands. (For more information on this, see "Comparing Fields of
Different Data Types" on page 463.)

RELATION OPERATORS ALLOWED IN CONDITIONAL EXPRESSIONS

RELATION
OPERATOR MEANING

= "is equal to"

> "is greater than"

< "is less than"

>= "is greater than or equal to"

<= "is less than or equal to"

¬= or <> "is not equal to"

¬< "is not less than"

¬> "is not greater than"

: "contains" (for character operands only)

¬: "does not contain" (for character operands only)
Chapter 9. General Syntax Rules 461

How to Specify a Relation Condition
Here is an example of a relation condition that involves date operands:
HIRE–DATE <= 1/1/1996

The above statement contains a relation condition involving a date field (HIRE–DATE) and
a date literal (1/1/96). The condition is true if the HIRE–DATE field "is less than or equal to"
January 1, 1996. The condition is false if the HIRE–DATE field contains any date after
January 1, 1996.

Here is an example of a relation condition that involves time operands:
SALES–TIME > 17:15:48

The above statement contains a relation condition involving a time field (SALES–TIME) and
a time literal (17:15:48). The condition is true if the SALES–TIME field "is greater than"
17:15:48 (5:15:48 PM). The condition is false if the SALES–TIME field contains a time less
than or equal to 17:58:48.

Here is an example of a relation condition involving character data:
LAST–NAME = ’SMITH’

The above condition is true if the LAST–NAME field is equal to "SMITH".

The list of relation operators on page 461 includes two special operators that can only be
used with character type operands. These are the contains (:) and the does not contain (¬:)
operators. Operand1 is said to "contain" operand2 if all of the characters in operand2
appear together somewhere within operand1. Here is an example of a condition that uses
the "contains" operator:

CUSTOMER : ’INC’

The above condition is true if, somewhere within the contents of the CUSTOMER field, the
letters "INC" appear together. For example, the condition would be true if the CUSTOMER
field in a record contained any of the following values:

• ACME INC
• ABC STORES, INCORPORATED
• BUILDERS INC. OF AMERICA

The same condition would not be true when the CUSTOMER field contained any of the
following values:

• XYZ CORPORATION
• JOHN BROWN STORES, LTD.
• JONES & ASSOCIATES

Note: When using the "contains" and "not contains" relation operators, operand1
should be at least as large as operand2. Otherwise, operand2 could not possibly be
contained within operand1.

How to Specify a Relation ConditionComparing Character Operands of Different Lengths

Consider the following conditional expression:
LAST–NAME = ’SMITH’
462 Spectrum Writer Reference Manual

Comparing Character Operands of Different Lengths
In this example a 15–byte character field (LAST–NAME) is compared with a character literal
that is only 5 characters long (’SMITH’). When character operands of different lengths are
compared, Spectrum Writer first adds enough trailing blanks to the shorter operand to
make it the same size as the larger operand. Then the two operands, now of equal length,
can be compared byte by byte. Thus, in the example above, Spectrum Writer is actually
comparing the LAST–NAME field with a 15–byte character literal, as if the following had
been written:

LAST–NAME = ’SMITH ’

(This addition of trailing blanks does not actually modify the value of either of the
operands. The blanks are only added to a temporary copy of the operand.)

Comparing Character Operands of Different LengthsComparing Fields of Different Data Types

As mentioned, the operands being compared in a relation condition must be of the same
general type of data. That is, numeric operands may only be compared to other numeric
operands. Character operands may only be compared to other character operands. Date
operands may only be compared with other date operands. And time operands may only be
compared with other time operands.

However, this does not mean that the fields being compared must have been defined with
the identical TYPE parm in their FIELD statement. (The TYPE parm is discussed on page 529.)
For example, a PACKED field may be compared to a BINARY field, since both PACKED and
BINARY are numeric data types. And a MMDDYY type date field may be compared with a
P–YYDDD (packed Julian) date field, or with any other kind of date field. Spectrum Writer
automatically handles any data type conversion that is necessary.

Even if you find the need to compare operands of different general data types, you may still
be able to do that. This can be accomplished by converting one of the operands to a data
type compatible with the other operand. The following built–in functions are used to
convert an operand from one data type to another. (Built–in functions are described in
Appendix D, "Built-In Functions" on page 628)

For example, even though EMPL–NUM is a character field, we can compare it to a numeric
literal by first converting it to a numeric value:

COMPUTE: NUMERIC-EMPL-NUM = #MAKENUM(EMPL–NUM)
INCLUDEIF: NUMERIC-EMPL-NUM > 100

DATA CONVERSION BUILT-IN FUNCTIONS

BUILT-IN
FUNCTION PURPOSE

#MAKENUM Converts a character, date or time operand to a numeric value.

#MAKEDATE Converts a character or numeric operand to a date value.

#MAKETIME Converts a character or numeric operand to a time value.

#FORMAT Converts a date, time or numeric operand to a character value.
Chapter 9. General Syntax Rules 463

Comparing Fields of Different Data Types
As another example, even though TIME–ON–PHONE is a time field, we can compare it to a
numeric literal by first converting it to a numeric value (representing the number of
seconds in the time value):

COMPUTE: NUMERIC-PHONE-TIME = #MAKENUM(TIME–ON–PHONE)
INCLUDEIF: NUMERIC-PHONE-TIME > 60

The above example converts TIME–ON–PHONE from a HH:MM:SS time value to a numeric
value equal to the number of seconds in the time value. It then compares this number of
seconds with the numeric literal 60.

Comparing Fields of Different Data TypesConditions Involving Explicit Literals

Normally, when comparing a field with a literal you do not need to know exactly how that
field is stored in the input record. Spectrum Writer automatically performs any conversion
necessary to make both the field and the literal compatible before comparing them.

As an example, assume that SALARY is a field stored in an input record as a 5–byte packed
number. Normally, we would just compare this field to a numeric literal, like this:

INCLUDEIF: SALARY = 2345.99

When writing the above statement we did not need to know how SALARY was stored in the
record. We use a normal numeric literal and let Spectrum Writer take care of the details
necessary to make the comparison. The above statement would work whether SALARY was
stored in packed, binary, display numeric or any other numeric format.

However, conditions that involve an explicit hexadecimal literal (one prefixed with an X)
are handled differently. In these cases, no conversion is performed. The field’s raw data —
just as it is found in the input record — is compared with the literal. This means that when
using explicit literals, you must know exactly how a field is stored in the record. You must
know how many bytes the field occupies, as well its exact data type.

Consider the following condition that compares SALARY to an explicit hexadecimal literal:
INCLUDEIF: SALARY = X’000234599C’

This statement is equivalent to the previous statement that used a normal numeric literal.
Since SALARY is stored in the input records as a 5–byte packed number, the explicit literal
in the above condition also has to be 5 bytes long (10 hexadecimal digits). And the literal
also has to be in valid packed format, with a "sign" in the second nibble of the last byte.

One common reason for writing conditions with explicit literals is to compare fields that
may have invalid data. For example, assume that the input file has some records in it with
hex zeros ("low values") in the SALARY field. We want to identify and list those records so
that they can be corrected. Since hex zeros is not a valid packed value, there is no way to
test for this condition using a normal numeric literal. Instead we have to compare the
SALARY field to an explicit hexadecimal literal, like this:

INCLUDEIF: SALARY = X’0000000000’

As a similar example, assume that we know that some HIRE–DATE fields (in our sample
EMPL–FILE) contain spaces rather than a valid character YYMMDD date. The only way to test
464 Spectrum Writer Reference Manual

Conditions Involving Explicit Literals
for this is to use an explicit literal. You could use either a character or hexadecimal explicit
literal:

INCLUDEIF: HIRE–DATE = ’ ’
INCLUDEIF: HIRE–DATE = X’404040404040’

The above statements compare the 6–byte HIRE–DATE field to 6 spaces (hexadecimal 40).

Conditions Involving Explicit LiteralsHow to Specify a Bit Field Condition

The relation condition (described in the preceding sections) is the most common type of
condition. The other type of condition is a bit field condition. A bit field condition consists
of nothing more than the name of a bit type field:

fieldname

The condition is considered true if the bit field has a value of "on." The condition is false
if the bit field has a value of "off".

Here is an example of a bit field condition:
FULL–TIME

The above condition is true when the FULL–TIME bit field is "on" (contains a binary 1). The
condition is false when the FULL–TIME field is "off" (contains a binary 0).

Here is an INCLUDEIF statement which uses the above bit field condition:
INCLUDEIF: FULL–TIME

The above statement specifies that only records whose FULL–TIME bit field is "on" should
be included in the report.

How to Specify a Bit Field ConditionHow to Specify Multiple Conditions

All of the conditional expressions shown so far have contained only a single condition
(either a relation condition or a bit field condition). Such expressions are called simple
conditional expressions.

Spectrum Writer, however, allows you to have an unlimited number of conditions in a
conditional expression. A conditional expression containing more than one condition is
called a complex conditional expression. Complex conditional expressions consist of two
or more conditions separated with the words AND or OR. Parentheses may also be used
around groups of conditions to specify the order in which to evaluate the individual
conditions.

The following sections explain how to write complex conditional expressions.

Conditional Expressions That Use AND

If all of the conditions in a complex expression are separated by the word AND, then the
expression is true only if all of the conditions are true.
Chapter 9. General Syntax Rules 465

Conditional Expressions That Use AND
For example, consider the following expression which has two conditions separated by the
word AND:

SALES–QTR1 > 3000 AND HIRE–DATE < 1/1/1997

The above conditional expression is true if both of the two conditions are true. That is, the
expression is true if the SALES–QTR1 value is greater than 3000 and the HIRE–DATE field is
less than January 1, 1997.

You may mix relation conditions and bit field conditions in the same conditional
expression, as in the following example:

SALES–QTR1 > 5000 AND FULL–TIME

For the above conditional expression to be true, the SALES–QTR1 field must be greater than
5000 (a relation condition), and the FULL–TIME bit field must be "on" (a bit field condition).

A conditional expression can have as many conditions as you like. The following example
has three conditions, all separated with the word AND:

LAST–NAME = ’SMITH’ AND HIRE–DATE > 1/1/1980 AND SALES–QTR1 > 10000

The above condition would be true if the LAST–NAME field is equal to "SMITH" and the HIRE-
DATE field is greater than January 1, 1980 and the SALES–QTR1 field is greater than 10000.

Note: You may use the ampersand symbol (&) in place of the word AND in
conditional expressions. For example, the conditional expression shown above
could also be written like this:

LAST–NAME = ’SMITH’ & HIRE–DATE > 1/1/1980 & SALES–QTR1 > 10000

Conditional Expressions That Use ANDConditional Expressions That Use OR

If all of the conditions in a complex expression are separated by the word OR, then the
expression is true as long as at least one of the conditions is true.

Consider a conditional expression using the same two conditions as shown in an earlier
example, but separated this time with the word OR instead of AND.

SALES–QTR1 > 3000 OR HIRE–DATE < 1/1/1997

The conditional expression is now true if either the SALES–QTR1 field is greater than 3000,
or if the HIRE–DATE field is less than January 1, 1997.

You may mix relation conditions and bit field conditions in the same conditional
expression, as in the following example:

SALES–QTR1 > 5000 OR FULL–TIME

For the above conditional expression to be true, either the SALES–QTR1 field must be greater
than 5000 (a relation condition), or the FULL–TIME bit field must be "on" (a bit field
condition).
466 Spectrum Writer Reference Manual

Conditional Expressions That Use OR
A conditional expression can have as many conditions as you like. The following example
has three conditions, all separated with the word OR:

LAST–NAME = ’SMITH’ OR LAST–NAME = ’JONES’ OR SALES–QTR1 > 10000

The above condition would be true if the LAST–NAME field was equal to either "SMITH" or
"JONES", or if the SALES–QTR1 field was greater than 10000.

Note: You may use the vertical bar (|) in place of the word OR in conditional
expressions. For example, the conditional expression shown above could also be
written like this:

LAST–NAME = ’SMITH’ LAST–NAME = ’JONES’ SALES–QTR1 > 10000

Conditional Expressions That Use ORConditional Expressions That Use Both AND and OR

You may use both the word AND and the word OR in a single conditional expression. When
this is done, parentheses are normally used to indicate the order in which the conditions
should be evaluated. For example:

(LAST–NAME = ’JONES’ OR LAST–NAME = ’SMITH’) AND SALES–QTR1 > 5000

In the above expression, parentheses are used around the two conditions that are separated
by the word OR. That indicates that these conditions should be evaluated first. If the LAST-
NAME is equal to either "JONES" or "SMITH", then the parenthesized expression is true.
Otherwise it is false. For the entire conditional expression to be true, this parenthesized
result must be true; and the remaining condition (SALES–QTR1 > 5000) must be true. In other
words, the parentheses cause the entire expression to be true if: the LAST–NAME is either
"JONES" or "SMITH", and the SALES–QTR1 value is greater than 5000.

Now, consider what would happen if the parentheses are used around the AND conditions,
like this:

LAST–NAME = ’JONES’ OR (LAST–NAME = ’SMITH’ AND SALES–QTR1 > 5000)

Again, the conditions enclosed in parentheses are evaluated first. In this case, the
parenthesized expression is true only if LAST–NAME equals "SMITH" and SALES–QTR1 is
greater than 5000. The entire expression is then true, if either the LAST–NAME equals
"JONES", or if this parenthesized result is true. In other words, the above expressions is true
if: the LAST–NAME equals "JONES", or if both of the following are true: the LAST–NAME
equals "SMITH" and the SALES–QTR1 value is greater than 5000.

Note: If both the words AND and OR are used in an expression, and parentheses are
not used to specify evaluation order, the conditions connected by AND will be
evaluated before those connected by OR. However, it is always best to use
parentheses in such expressions, so that there is no question or confusion about the
order of evaluation.
Chapter 9. General Syntax Rules 467

How to Shorten Long Expressions

When one operand is being compared to more than one value in a conditional expression,
you may write that expression in a shorter form. For example, consider the following:

LAST–NAME = ’JONES’ OR LAST–NAME = ’SMITH’ OR LAST–NAME = ’BROWN’

The expression above is true if the LAST–NAME field is equal to any of the three character
literals (’JONES’, ’SMITH’, or ’BROWN’). Since all three relation conditions have the same
first operand, you are allowed to omit that operand after specifying it the first time. You
could specify the same conditional expression this way:

LAST–NAME = ’JONES’ OR = ’SMITH’ OR = ’BROWN’

Here are the rules for shortening expressions. You remember that the format of a relation
condition is:

operand1 operator operand2

Rule: When two or more consecutive conditions have the same operand1, you may
omit that operand after the first condition. Thus, whenever operand1 is not specified
in a condition, the most recently specified operand1 will be used.

The conditional expression shown earlier contains three conditions, each separated with
the word OR. Those three conditions are:

! LAST–NAME = ’JONES’
! = ’SMITH’
! = ’BROWN’

The first condition is written out fully, containing two operands and a relation operator.

The second condition contains no operand1. It just has an operator and operand2.
Therefore, the most recently specified operand1 (LAST–NAME, from the previous condition)
will be used as operand1 in the second condition.

The same thing applies to the third condition, which also lacks an operand1.

We can actually simplify the conditional expression even further. Since the second and
third conditions also use the same relation operator as the first condition (namely, "="),
we can omit that operator from those conditions as well:

LAST–NAME = ’JONES’ OR ’SMITH’ OR ’BROWN’

Rule: When two or more consecutive conditions have the same operand1 and the
same relation operator, you may omit those items after the first condition. Thus,
whenever neither operand1 nor a relation operator is specified in a condition, the
most recently specified operand1 and the most recently specified relation operator
will be used.

Here is an example that combines the two forms of simplification:
SALES–QTR1 = 1000 OR 2000 OR < 500

The above conditional expression contains three relation conditions, separated with the
word OR. The three conditions are:

! SALES–QTR1 = 1000
468 Spectrum Writer Reference Manual

How to Shorten Long Expressions
! 2000
! < 500

The first condition is written out fully, containing two operands and a relation operator.
The second condition does not contain an operand1 nor a relation operator, so SALES–QTR1
and "=" are assumed (from the previous condition). The third condition does not contain an
operand1, but does contain a relation operator ("<"). So only operand1 (SALES–QTR1) is
assumed. The above conditional expression is the same, then, as the following one:

SALES–QTR1 = 1000 OR SALES–QTR1 = 2000 OR SALES–QTR1 < 500

Here is one more example of a shortened conditional expression:
LAST–NAME ¬= ’SMITH’ AND ’JONES’ AND ’BROWN’

The above conditional expression is true if the LAST–NAME field is not equal to "SMITH" and
is not equal to "JONES" and is not equal to "BROWN". In other words, the expression is true
if the LAST–NAME contains anything other than those three names. The above statement is
processed as if it were written like this:

LAST–NAME ¬= "SMITH" AND LAST–NAME ¬= "JONES" AND LAST–NAME ¬= "BROWN"

How to Shorten Long ExpressionsHow to Negate Conditions

This section explains:

! how to use the word NOT (or ¬ symbol) in conditional expressions

You may precede any condition with the word NOT to negate the result of its evaluation.

For example, consider the following relation condition:
SALES–QTR1 > 2000

The above condition would be true if SALES–QTR1 contained 8000, since 8000 is greater
than 2000. However, we could negate that condition like this:

NOT SALES–QTR1 > 2000

Now, the conditional expression would be false when SALES–QTR1 contained 8000. That is
because the condition SALES–QTR1 > 2000 which is true, is negated by the preceding NOT.

You may also negate a bit field condition. For example:
NOT FULL–TIME

The above conditional expression is true when bit field condition is false, that is, when the
FULL–TIME bit field is "off".

You may also negate a group of conditions in parentheses, as in this example:
NOT (SALES–QTR1 > 2000 AND HIRE–DATE < 1/1/1997)

The conditional expression above is now true whenever the complex condition within
parentheses is false.
Chapter 9. General Syntax Rules 469

How to Negate Conditions
Note: You may use the not symbol (¬) in place of the word NOT in conditional
expressions. For example, the preceding conditional expression could also be
written like this:

 ¬ (SALES–QTR1 > 2000 AND HIRE–DATE < 1/1/1997)

How to Negate ConditionsExamples of Conditional Expressions

Case 1. This example compares the contents of two numeric fields.
INCLUDEIF: SALES–QTR2 > SALES–QTR1

The above statement would include all records where the SALES–QTR2 field
was greater than the SALES–QTR1 field.

Case 2. This example compares the contents of a numeric field with a numeric
literal.
INCLUDEIF: TOTAL–SALES < 1000

This example would include all records where the TOTAL–SALES field was less
than 1000.

Case 3. Here is an example of comparing a date field with a date literal.
INCLUDEIF: HIRE–DATE < 6/1/1990

This example would include all records where the HIRE-DATE field was less
than (earlier than) June 1, 1990.

Case 4. Here is an example of comparing a time field with a time literal.
INCLUDEIF: SALES–TIME >= 14:00:00

This example would include all records where the SALES–TIME field was
greater than or equal to 14:00:00 (2 o'clock PM). Since the seconds in this
example are zero, we could also write:
INCLUDEIF: SALES–TIME >= 14:00

Case 5. Here is an example of comparing a character field with a character literal.
INCLUDEIF: LAST-NAME = 'JONES'

This example would include all records where the LAST-NAME field equalled
JONES (that is, the 5 letters JONES, followed by 10 blanks). Notice that
character literals must be enclosed in either quotes or apostrophes. Numeric,
date and time literals are not enclosed in quotes or apostrophes.
When character operands of different lengths are compared, Spectrum Writer
temporarily pads the shorter operand with right–hand blanks before making
the comparison.
470 Spectrum Writer Reference Manual

Examples of Conditional Expressions
Case 6. This example scans a character field to see if a certain text is contained
anywhere within the field.
INCLUDEIF: CUSTOMER : 'CORP'

This example would select all records where the letters "CORP" appeared
together anywhere within the CUSTOMER field. Records with customer names
such as "ABC CORP", "CORPORATION OF AMERICA", and "ACME,
INCORPORATED" would be selected using this example.

Case 7. This example bases the decision to include records on more than one
comparison.
INCLUDEIF: SEX = 'F' AND
 HIRE-DATE >= 1/1/1986 AND <= 12/31/1986

This example would select all records where the SEX field contained "F", and
the HIRE-DATE field was greater than or equal to January 1, 1986 and was less
than or equal to December 31, 1986. In other words, the records included
would be for all female employees hired sometime in 1986.

Case 8. Here is another example of multiple comparisons.
INCLUDEIF: PRODUCT–CODE = '801' OR '802' OR >= '900'

This example would select all records where the PRODUCT–CODE field
contained any of the following:

• 801
• 802
• any value greater than or equal to 900

Case 9. Here is another example that uses multiple comparisons.
INCLUDEIF: REGION = 'NORTH' AND
 (LAST-NAME = 'JONES' OR 'SMITH' OR 'BROWN')

This example would select all records where the REGION field was equal to
"NORTH", and the LAST-NAME field was any one of the following:

• JONES
• SMITH
• BROWN

Case 10. This example checks whether a bit field is ON or OFF. The following
statement will include only those records where the PART-TIME bit field is ON.
INCLUDEIF: PART-TIME

And the following statement would select all records where the PART-TIME bit
field is OFF.
INCLUDEIF: NOT PART–TIME
Chapter 9. General Syntax Rules 471

Examples of Conditional Expressions
Case 11. Here is an example of comparing the contents of a field to a literal
hexadecimal value.
INCLUDEIF: DATE1 = X'000000' OR SALARY = X'FFFFFFFF'

When comparing a field to a hexadecimal literal, no data conversion is
performed on the field at all. The comparison will be made against the data
just as it exists in the input record. When a hexadecimal comparison is made
to a field whose value is the result of a user data exit, the comparison will be
made against the result passed to Spectrum Writer by the data exit.
Hexadecimal comparisons are not allowed to "computed" fields (since they
do not exist in a real input record).
As with regular character literals, when a hexadecimal literal is compared
with a field of a different length, Spectrum Writer pads the shorter operand
with right–hand blanks (not hex zeros) before making the comparison. This
blank padding is done regardless of the data type of the field.

Examples of Conditional ExpressionsComputational Expressions

This section explains:

! how to write computational expressions

Computational expressions are used to specify a value. They are used in the COMPUTE
statement to specify the value to assign to "compute" fields. A computational expression
might be nothing more than a single field name (or literal). Or, it might be dozens of lines
long and involve many mathematical operations. The syntax for a computational
expression follows.

Only the first operand is required. You may specify as many additional operator/operand
pairs as you like. In general, the data type of the first operand (character, numeric, date,
time or bit) determines the data type of the entire expression. All subsequent operands must
be of the same data type. Also, only the operators supported for that data type may be used
in the expression.

Note: There is one exception to the rule that all operands in a computational
expression must be of the same data type. For time computational expressions, the

COMPUTATIONAL EXPRESSION SYNTAX

operand [operator operand] [operator operand] ...

Notes:
• in addition, any number of paired parentheses may be used to specify the order of

operations.
472 Spectrum Writer Reference Manual

Computational Expressions
operands may be either time values or numeric values. Numeric values are treated
as being a number of seconds. Thus, the following COMPUTE statement adds 1
minute (60 seconds) to the time value in SALES–TIME:

COMPUTE: NEW–TIME = SALES–TIME + 60

Computational ExpressionsOperands in Computational Expressions

An operand in a computational expression specifies a data value. An operand can be any
of the following:

! a literal value. (See "How to Write Literals" on page 448.)

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)

! a built–in field (a complete list of built–in fields is found in Appendix C, "Built-
In Fields" on page 624).

! a built–in function’s result (a complete list of built–in functions is found in
Appendix D, "Built-In Functions" on page 628)

Operands in Computational ExpressionsOperators in Computational Expressions

An operator in a computational expression specifies an operation to perform on the
operands. The operators allowed in a particular expression will depend on the data type of
the expression. For character, numeric, and time expressions, the following table shows the
operators that are supported. (No operators are supported for date and bit expressions.)

Note: Be sure to use one or more blanks both before and after the subtraction
operator (–) in computational expressions. This is required because the same symbol
is valid as a character within field names. The following:

ABC–XYZ

would be considered the name of a single field, named ABC–XYZ. However, the
following:

ABC – XYZ

OPERATORS ALLOWED IN COMPUTATIONAL EXPRESSIONS

CHARACTER OPERATORS NUMERIC AND TIME OPERATORS

+ (concatenation)

+ (addition)

– (subtraction)

* (multiplication)

/ (division)
Chapter 9. General Syntax Rules 473

Operators in Computational Expressions
would be considered a subtraction operation, where field XYZ is subtracted from
field ABC. For the other operators (+, * and /), blanks are not required around the
symbol, but are allowed.

Note: The standard numeric operations are also allowed in computational
expressions for time values. When performing these operations, Spectrum Writer
first converts each time value into a numeric value (equal to the total number of
seconds in the time value). The operations are then performed on these numeric
values. The final result is then converted back into a HH:MM:SS[.SSS...] time value.

Note: While no date operators are directly supported, it is still possible to perform
certain manipulation of date fields. Use the #MAKENUM built–in function (page 636)
to convert a date field to a numeric value. You can then add or subtract (days) to this
numeric value. Then, use the #MAKEDATE built–in function (page 640) to convert the
modified numeric value back to a date field. An example of this is shown on
page 475.

Operators in Computational ExpressionsOrder of Operations

Operations within parentheses are performed first. If nested parentheses are encountered,
the most deeply nested operations are performed first. When parentheses are not used, or
for operations at the same level of parentheses, the order of operations is as follows:

! multiplications and divisions are performed first
! additions and subtractions are performed afterwards

Operations of equal priority are performed left to right.

Order of OperationsExamples of Computational Expressions

Case 1. Here is an example of a COMPUTE statement with a character type
computational expression:
COMPUTE: X = 'AAA' + 'BBB'

In the above example, the second operand ("BBB") is concatenated to (or,
"appended to") the first operand "AAA". The new field X would contain the
value "AAABBB".

Case 2. Following is an example of a numeric computational expression:
COMPUTE: YEARLY–SALES =
 SALES–QTR1 + SALES–QTR2 + SALES–QTR3 + SALES–QTR4

The above example computes the yearly sales total by adding the four
quarterly sales fields together.

Case 3. Following is an example of using parentheses within a computational
expression to indicate the order of operation:
COMPUTE: PERCENT–CHANGE(DIVTOTS) =
 ((SALES–QTR2 – SALES–QTR1) * 100) / SALES–QTR1
474 Spectrum Writer Reference Manual

Examples of Computational Expressions
The above example computes the percentage change between the second
quarter sales figure and the first quarter sales figure. The computational
expression first subtracts SALES–QTR1 from SALES–QTR2, since that is the
most deeply embedded operation. That difference is then multiplied by 100.
The resulting product is then divided by SALES–QTR1, giving the percentage
change.

Note: The DIVTOTS parm tells Spectrum Writer not to simply total
the values of this field for the Grand Totals line (or control break
total lines). Totalling percentages often does not give a meaningful
result. Instead, the DIVTOTS parm tells Spectrum Writer to "divide
totals" –– that is, divide the total value of the numerator by the total
value of the denominator when printing total lines. For more
information on the DIVTOTS parm, see "Computing True
Percentages and Ratios at Control Breaks" (page 202).

Case 4. Following is an example of using a numeric built–in function in a
computational expression:
COMPUTE: ABS–PERCENT–CHANGE = #ABS(PERCENT–CHANGE)

The above example uses the numeric built–in function #ABS ("absolute
value"). The percentage change computed in the preceding case might be
either a positive or a negative number. The #ABS function returns the absolute
value (that is, the positive value) of its parm (the PERCENT–CHANGE field, in
this example). The new field (ABS–PERCENT–CHANGE) now contains the
percentage change as a positive value.

Case 5. You may embed computational expressions within most built–in
functions. For example, we could have defined the ABS–PERCENT–CHANGE
field all in one computational expression by using an imbedded expression
within the #ABS function:
COMPUTE: ABS–PERCENT–CHANGE =
 #ABS(((SALES–QTR2 – SALES–QTR1) * 100) / SALES–QTR1)

Case 6. There are no operators supported for date fields. Therefore, computational
expressions for these types of fields consists only of a single operand. For
example:
COMPUTE: START–DATE = 1/1/1995

The above example simply assigns the literal date 1/1/1995 to the new field
START–DATE.

Case 7. The single operand in a date expression may also be a date type field, or a
date type built–in function. For example:
COMPUTE: DUE–DATE = #MAKEDATE(#MAKENUM(SALES–DATE) + 10)

The above example computes the DUE–DATE field by adding 10 days to the
SALES–DATE. It does this by first converting the SALES–DATE field to a
number, then adding 10 to that number, and finally converting this sum back
into a date field.
Chapter 9. General Syntax Rules 475

Examples of Computational Expressions
The above COMPUTE statement could also be separated into three statements,
perhaps making it easier to understand:
COMPUTE: NUM–SALES–DATE = #MAKENUM(SALES–DATE)
COMPUTE: NUM–DUE–DATE = NUM–SALES–DATE + 10
COMPUTE: DUE–DATE = #MAKEDATE(NUM–DUE–DATE)

Case 8. There are no operators supported for bit fields. Bit expressions can consist
only of a single operand. That operand may be either another bit type field,
or a bit type built–in function (such as #ON and #OFF). For example:
COMPUTE: TRUE–BIT = #ON

The above example defines a new bit type field named TRUE–BIT, whose value
is ON.

Examples of Computational Expressions
476 Spectrum Writer Reference Manual

Spectrum Writer Reference ManualChapter 10. Control Statement Syntax

Chapter Table of Contents

Chapter 10. Control Statement Syntax . 477

Syntax Notation . 478
ASM Statement . 479
BREAK Statement. 481
COBOL Statement. 493
COLUMNS Statement. 498
COMPUTE Statement . 506
COPY Statement . 516
FIELD Statement. 521
FILE Statement . 531
FOOTNOTE Statement . 538
INCLUDEIF Statement . 540
INPUT Statement . 542
NEWOUT Statement. 554
OPTIONS Statement . 555
READ Statement . 578
SORT Statement . 595
TITLE Statement . 602
Chapter 10. Control Statement Syntax 477

Chapter 10. Control Statement Syntax

This chapter contains the complete syntax information for each Spectrum Writer control
statement. The statements appear in alphabetical order.

Syntax Notation

In the syntax boxes throughout this chapter, the following conventions are used.

CONVENTIONS USED IN SYNTAX BOXES

STYLE MEANING

lowercase
Items in lower case letters represent values to be supplied by the
user.

uppercase
Items in UPPER CASE letters must be typed exactly as they appear.
(However, valid abbreviations are also accepted.)

brackets Items within [square brackets] are optional.

ellipsis
An ellipsis (...) indicates that the preceding item(s) may be
repeated any number of times.

underline
Underlined items indicate the default value that will be used if no
other value is specified.

slash
Slashes (/) indicate mutually exclusive items. One and only one of
the items separated by slashes may be specified.
478 Spectrum Writer Reference Manual

ASM Statement
ASM

PURPOSE
Specifies that an Assembler language record layout follows. Spectrum Writer processes the
Assembler record layout and creates "internal" FIELD statements corresponding to the
Assembler fields in the record layout. This lets you define the fields in a file by using an
Assembler record layout, rather than writing FIELD statements.

Also use this statement to have Spectrum Writer convert an Assembler record layout into
FIELD statements and write those FIELD statements to an output file.

Beginning immediately after the ASM statement (and any of its continuation lines)
Spectrum Writer treats input lines as Assembler code. The Assembler code is assumed to
end when the next Spectrum Writer control statement prefix is encountered. The only
exception is that Spectrum Writer COPY statements may be imbedded in the Assembler
code and do not end the scope of the ASM statement.

FEATURES
Use the ASM statement to:

! specify that an Assembler record layout follows

! specify whether to print or write out FIELD statements that correspond to the
Assembler record layout

! specify various options that affect the way the Assembler code is processed

LEARNING MORE
The complete syntax of the ASM statement is shown in the following box. A description of
the individual parms is found under the similar COBOL statement on page 493. In addition,
the following parts of the manual relate to the ASM statement:

! the use of Assembler record layouts to define input files is discussed beginning
on page 369
Chapter 10. Control Statement Syntax 479

ASM
SYNTAX

No parms are required. The parms may appear in any order. For a description of the parms,
see under the COBOL statement (page 493) which uses the same parms.

ASM STATEMENT SYNTAX

ASM: [COLUMN[(ALL)]/DISP[(ALL)]
[FILE(filename/*)]
[MAXOCCURS(nnnnn/100)]
[NOSEQ]
[OUTATTR(type,'dlbl/tlbl'[,SYSnnn][,80][,blksize]) (VSE only)]
[OUTDDN(ddname) (OS/390 only)]
[RELOC]
[SHOWFLDS(YES/NO)]
[STARTCOL(nnnnn)/STARTDISP(nnnnn)]

Standard Alternate
Spelling Spellings
COLUMN COL
NO N
YES Y
480 Spectrum Writer Reference Manual

BREAK Statement
BREAK

PURPOSE
Specifies that a control break should occur whenever the value of a certain field changes.
Only sort fields may be used to create control breaks–– that is, a field may be named in a
BREAK statement only if it has also appeared in a preceding SORT statement.

The BREAK statement is also used to customize the Grand Totals.

For summary reports (where no individual detail lines are printed), the BREAK statement
determines how the summary lines will look.

You may have more than one BREAK statement in a report. The use of multiple BREAK
statements is discussed on page 204.

Note: The SORT statement can also be used to request many control breaks. The
SORT statement can specify: which fields to break on; the control break spacing to
use; and, which, if any, of the statistical lines should print at a break. You must use
the BREAK statement, however, if you want to print footing lines, heading lines, or
customized statistical lines at a control break.

FEATURES
Use the BREAK statement to:

! specify control break spacing (whether to skip to a new page or print a number
of blank lines at a control break)

! specify one or more customized footing lines to print at the end of a control
group

! specify whether or not to print a total line at the end of a control group

! specify whether or not to print other statistical lines (such as averages,
maximums, minimums) at the end of a control group

! customize the text used in the total and other statistical lines

! specify one or more customized heading lines to print at the beginning of a
control group, and optionally at the top of all subsequent pages for that control
group

! specify how the Grand Total lines should look

! suppress total lines at control breaks
Chapter 10. Control Statement Syntax 481

BREAK
LEARNING MORE
The complete syntax of the BREAK statement is shown on the following pages. In addition,
the following parts of the manual relate to the BREAK statement:

! a lesson on using the BREAK statement in reports begins on page 65

! a lesson on using the BREAK statement in PC files begins on page 108

! advanced uses of the BREAK statement are discussed beginning on page 177

! using the BREAK statement to produce summary reports is discussed beginning
on page 73

! using the BREAK statement to produce summary PC files is discussed beginning
on page 113

! customizing the Grand Totals with a BREAK statement is discussed beginning on
page 207

SYNTAX

BREAK STATEMENT SYNTAX

BREAK: fieldname/#GRAND
[AVERAGE[(print–expression)]]
[FOOTING(print–expression) ...]
[HEADING(print–expression) ...]
[MAXIMUM[(print–expression)]]
[MINIMUM[(print–expression)]]
[NZAVERAGE[(print–expression)]]
[NZMINIMUM[(print–expression)]]
[REPEAT]
[SPACE(n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1)]
[TOTAL[(print–expression)]/NOTOTAL]

Note: the syntax for the print-expressions is shown on page page 488.

Standard Alternate
Spelling Spellings
AVERAGE AVER, AVG
BREAK BRK
FOOTING FOOT
HEADING HEAD
MAXIMUM MAX
MINIMUM MIN
NOTOTAL NOTOT, NOTOTALS, NOTOTS
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
PAGE PG, P
SPACE SPC
TOTAL TOT, TOTALS, TOTS
482 Spectrum Writer Reference Manual

BREAK
The fieldname is required in a BREAK statement, and must be the first item after the
statement prefix. All other parms are optional and can appear in any order on the BREAK
statement.

fieldname/#GRAND
Identifies the control break field. Whenever the contents of this field changes, a control
break will occur in the report or PC file. This field must have been specified as a sort field
in a preceding sort statement.

You may also specify #GRAND rather than an actual field name. Using #GRAND allows you
to specify control break options for the Grand Totals "control break" (page 207).

Example: BREAK: REGION

The above example specifies that a control break should occur whenever the REGION field
changes value. Since no other parms are specified, default processing will take place at the
break: a line of region totals will print, followed by 2 blank lines.

Example: BREAK: #GRAND AVERAGE

The above statement specifies that an average line is wanted at the Grand Totals "control
break." The average line will print after the Grand Total line at the end of the report.

AVERAGE[(print–expression)]
Specifies that each numeric column's average value should print at the control break, and
optionally can specify how the average line should look. The default is not to print averages
at each break. If you simply specify the AVERAGE parm, a default average line will print at
the control break. It will begin with the following text:

*** AVERAGE VALUE

After the above text, the average values themselves will print, lined up under the numeric
columns of the report. If you would like the average line to begin with some other text,
specify a print expression with the AVERAGE parm. The print expression can contain any
combination of literal text, data from input files, and certain control-group-wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 488. The
use of the AVERAGE parm is discussed on page 186.

Example: BREAK: REGION AVERAGE

The above example causes a default average line to print whenever the REGION field
changes value.

Example: BREAK: REGION AVERAGE('AVERAGES FOR' REGION)

The above example specifies that the average line should begin with the text "AVERAGES
FOR xxxxx" (where xxxxx is the value of the REGION field).

FOOTING(print–expression)
Specifies a print line to print at the end of a control group. The print line may contain any
combination of literal text, data from input files, and certain control-group-wide statistics
for numeric and time fields. You may have as many FOOTING parms as you like. The
footing lines will print in the order in which they appear in this statement. The first footing
line will print immediately after the last regular detail line in the control group and before
the total line, if any. The syntax of the print expression for this parm is shown on page 488.
The use of the FOOTING parm is discussed on page 188.
Chapter 10. Control Statement Syntax 483

BREAK
Example: BREAK: REGION FOOTING('END OF REGION' REGION)

The above example causes a line that reads "END OF REGION xxxxx" to print whenever the
REGION field changes (where xxxxx is the value of the REGION field).

Example: BREAK: REGION NOTOTALS
 FOOTING('TOTAL AMOUNT=' AMOUNT(TOTAL) 'AVERAGE AMOUNT=' AMOUNT(AVERAGE))

The above example prints a single line that shows the AMOUNT field's total value and
average value for the control group. (The standard total line is suppressed with the
NOTOTALS parm.)

HEADING(print–expression)
Specifies a print line to print at the beginning of a control group. The print line may contain
any combination of literal text and data from input files. You may have as many HEADING
parms as you like. The heading lines will print in the order in which they appear in this
statement. The syntax of the print expression for this parm is shown on page 488. The use
of the HEADING parm is discussed on page 200. Specifying the REPEAT parm (in the BREAK
statement) causes all of the HEADING lines to also be repeated at the top of all subsequent
pages for that control group. These heading lines print after the column headings.

Example: BREAK: REGION HEADING('REGION' REGION 'FOLLOWS')

The above example causes a line that reads REGION xxxxx FOLLOWS to print whenever a new
REGION is about to start printing (where xxxxx is the value of the REGION field).

MAXIMUM[(print–expression)]
Specifies that each numeric column's maximum value should print at the control break, and
optionally can specify how the maximum line should look. The default is not to print
maximums at each break. If you simply specify the MAXIMUM parm, a default maximum
line will print at the control break. It will begin with the following text:

*** MAXIMUM VALUE

After the above text, the maximum values themselves will print, lined up under the numeric
columns of the report. If you would like the maximum line to begin with some other text,
specify a print expression with the MAXIMUM parm. The print expression can contain any
combination of literal text, data from input files, and certain control-group-wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 488. The
use of the MAXIMUM parm is discussed on page 186.

Example: BREAK: REGION MAXIMUM

The above example causes a default maximum line to print whenever the REGION field
changes value.

Example: BREAK: REGION MAXIMUM('MAXIMUMS FOR' REGION)

The above example specifies that the maximum line should begin with the text "MAXIMUMS
FOR xxxxx" (where xxxxx is the value of the REGION field).

MINIMUM[(print–expression)]
Specifies that each numeric column's minimum value should print at the control break, and
optionally can specify how the minimum line should look. The default is not to print
484 Spectrum Writer Reference Manual

BREAK
minimums at each break. If you simply specify the MINIMUM parm, a default minimum line
will print at the control break. It will begin with the following text:

*** MINIMUM VALUE

After the above text, the minimum values themselves will print, lined up under the numeric
columns of the report. If you would like the minimum line to begin with some other text,
specify a print expression with the MINIMUM parm. The print expression can contain any
combination of literal text, data from input files, and certain control-group-wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 488. The
use of the MINIMUM parm is discussed on page 186.

Example: BREAK: REGION MINIMUM

The above example causes a default minimum line to print whenever the REGION field
changes value.

Example: BREAK: REGION MINIMUM('MINIMUMS FOR' REGION)

The above example specifies that the minimum line should begin with the text "MINIMUMS
FOR xxxxx" (where xxxxx is the value of the REGION field).

NZAVERAGE[(print–expression)]
Specifies that each numeric column's average value (not considering zero values) should
print at the control break, and optionally can specify how the non–zero average line should
look. (Non–zero averages are useful if missing data — zero values — is throwing off a
column's average.) The default is not to print non–zero averages at each break. If you
simply specify the NZAVERAGE parm, a default non–zero average line will print at the
control break. It will begin with the following text:

*** AVERAGE OF NON–ZERO VALUES

After the above text, the non–zero averages themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero average line to begin with
some other text, specify a print expression with the NZAVERAGE parm. The print expression
can contain any combination of literal text, data from input files, and certain control-group-
wide statistics for numeric and time fields. The syntax of the print expression is shown on
page 488. The use of the NZAVERAGE parm is discussed on page 186.

Example: BREAK: REGION NZAVERAGE

The above example causes a default non–zero average line to print whenever the REGION
field changes value.

Example: BREAK: REGION NZAVERAGE('NON–ZERO AVERAGES FOR' REGION)

The above example specifies that the non–zero average line should begin with the text
"NON–ZERO AVERAGES FOR xxxxx" (where xxxxx is the value of the REGION field).

NZMINIMUM[(print–expression)]
Specifies that each numeric column's minimum value (not considering zero values) should
print at the control break, and optionally can specify how the non–zero minimum line
should look. The default is not to print non–zero minimums at each break. If you simply
Chapter 10. Control Statement Syntax 485

BREAK
specify the NZMINIMUM parm, a default non–zero minimum line will print at the control
break. It will begin with the following text:

*** MINIMUM OF NON–ZERO VALUES

After the above text, the non–zero minimums themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero minimum line to begin with
some other text, specify a print expression with the NZMINIMUM parm. The print expression
can contain any combination of literal text, data from input files, and certain control-group-
wide statistics for numeric and time fields. The syntax of the print expression is shown on
page 488. The use of the NZMINIMUM parm is discussed on page 186.

Example: BREAK: REGION NZMINIMUM

The above example causes a default non–zero minimum line to print whenever the REGION
field changes value.

Example: BREAK: REGION NZMINIMUM('NON–ZERO MINIMUMS FOR' REGION)

The above example specifies that the non–zero minimum line should begin with the text
"NON–ZERO MINIMUMS FOR xxxxx" (where xxxxx is the value of the REGION field).

REPEAT
Specifies that all heading lines (defined in HEADING parms in the BREAK statement) should
be repeated at the top of each new page of a control group (following the titles and column
headings). Otherwise, the heading lines print only once, at the beginning of the control
group.

Example: BREAK: REGION REPEAT
 HEADING('REGION' REGION 'FOLLOWS')
 HEADING('====================')

The above example specifies two heading lines for the REGION control break. In addition
to printing at the beginning of each new control group (which may occur in the middle of
a page), the heading lines will also be repeated at the top of each subsequent page for that
control group.

SPACE(n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1)
Specifies the type of spacing desired at the control break, after any footing lines, total lines
and statistics lines have printed. If no SPACE parm is specified, the default is to print 2 blank
lines. A description of each SPACE option is shown in the following table.

SPACE PARM VALUES

SPACING
OPTION DESCRIPTION

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

PAGE1 Works like PAGE, but also resets the page number to "one".
486 Spectrum Writer Reference Manual

BREAK
Example: BREAK: REGION SPACE(PAGE1)

The above example requests that the report skip to a new page whenever the REGION field
changes value. Page numbering will also start over with page one for each new region.

TOTAL[(print–expression)]/NOTOTAL
Specifies whether or not to print totals at the control break, and optionally can specify how
the total line should look. The default is to print totals at each break. Specifying NOTOTAL
suppresses the total line at a control break.

By default, total lines begin with the following text:
*** TOTALS FOR xxxxxxx (n,nnn ITEMS)

After the above information, the actual total values print, lined up under the numeric
columns of the report. If you would like the total line to begin with some other text, specify
a print expression within the TOTAL parm. The print expression can contain any
combination of literal text, data from input files, and certain control-group-wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 488. The
use of the TOTAL parm is discussed on page 182.

Example: BREAK: REGION NOTOTAL

The above example specifies that a control break should occur whenever the REGION field
changes value. However, no total line should print. (Spectrum Writer will just print two
blank lines and continue to the next region.)

Example: BREAK: REGION TOTAL('TOTALS FOR' REGION)

The above example specifies that a total line should print and begin with the text "TOTALS
FOR xxxxx" (where xxxxx is the value of the REGION field).

NEWSHEET

Skips to a new sheet of paper. In order for this feature to work, you
must also use the OPTIONS statement's PRTSHEET parm to specify a
character string that can be sent to your printer to tell it to skip to a
new sheet of paper. (The PRTSHEET option is described on
page 572.)

NEWSHEET1 Works like NEWSHEET, but also resets the page number to "one".

ODDPAGE

Skips to the next odd numbered page. This parm accomplishes the
same thing as the NEWSHEET parm, but can be used even if you do
not have a character string to send to the printer to force it to skip
to a new sheet. However, for this option to work you must ensure
that the first page of your report prints on the front side of a sheet
of paper. As long as page 1 of your report prints on the front side
of a sheet of paper, all other odd numbered pages will also be on
front sides.

ODDPAGE1 Works like ODDPAGE, but also resets the page number to "one".

SPACE PARM VALUES (CONTINUED)

SPACING
OPTION DESCRIPTION
Chapter 10. Control Statement Syntax 487

BREAK
PRINT EXPRESSION SYNTAX

print–expression
Specifies how to build one print line that will print at the control break. The syntax for a
print expression within a BREAK statement parm is similar to print expressions used in other
statements. There are, however, some additional features that can be used in BREAK
statement print expressions. These include additional built–in fields, and certain control-
group-wide statistical parms to use with numeric and time fields. The complete syntax for
a print expression within a BREAK statement follows. BREAK statement print expressions are
discussed beginning on page 188.

PRINT–EXPRESSION SYNTAX (IN BREAK STATEMENT)

A print–expression consists of one or more items, optionally separated by numeric
spacing factors:
[n] item [n] item [n] item ...

Each item can be either a fieldname or a literal text. Each item can optionally be
followed by a parm list in parentheses:

fieldname[([ASCII]
[BIZ]
[display-format]
[LEFT/CENTER/RIGHT]
[TOTAL/AVERAGE/MAXIMUM/MINIMUM/NZAVERAGE/NZMINIMUM]
[width])]

'literal'[(width)]

(continued on next page)

PRINT–EXPRESSION SYNTAX (IN BREAK STATEMENT) (Continued)

Standard Alternate
Spelling Spellings
AVERAGE AVER, AVG
CENTER CJ
LEFT LJ
MAXIMUM MAX
MINIMUM MIN
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
RIGHT RJ
TOTAL TOT
488 Spectrum Writer Reference Manual

BREAK
fieldname
Specifies that the print line should contain the contents of this field. For all print
expressions that print at the end of a control group, the field's data is taken from the last
record in the control group (unless a statistical parm is specified for the field). For heading
print expressions (which print at the beginning of a control group), the data is taken from
the first record in the control group that follows.

The field must be available to Spectrum Writer at the time the BREAK statement is
processed. That is, the field name must be one of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)

! a built–in field. (See Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields.)

Notice that several of the built–in fields listed in Appendix C are exclusively for use in the
BREAK statement. These fields may be used in any BREAK statement print expression except
within the HEADING parm. (The use of these special fields is discussed on page 198.) The
special built–in fields are:

Example: BREAK: REGION
 FOOTING(#ITEMS 'ITEM' 0 #ITEM–ENDING 'IN REGION' REGION)

The print expression in the above example uses a combination of literals, fieldnames and
built–in fieldnames. It also contains one spacing factor. The resulting footing line would
print when there is only one record in the control group:

1 ITEM IN REGION xxxxx

The same statement causes a footing line like the following to print, when the control group
contains more than one record. Notice that the word "ITEMS" is now plural.

2 ITEMS IN REGION xxxxx

BUILT-IN FIELDS ALLOWED ONLY IN THE BREAK STATEMENT
(NOT ALLOWED IN THE HEADING PARM)

BUILT-IN
FIELD TYPE DESCRIPTION

#ITEMS Numeric Contains the number of items (records) included in
the control group that has just ended.

#ITEM–ENDI
NG Character

Contains either the letter "S", or a blank, depending
on the value of #ITEMS. When #ITEMS equals one,
#ITEM–ENDING is a blank. Otherwise, #ITEM–ENDING
is an "S".

#COUNTER Numeric

Contains the cumulative number of items (records)
that have been processed up through the control
group just ended. This field is like #ITEMS, except
that it is not reset to zero at every control break.
Chapter 10. Control Statement Syntax 489

BREAK
A spacing factor of 0 is used to prevent a blank space from appearing between the literal
text "ITEM" and the contents of the field #ITEM–ENDING. Without the spacing factor, the
footing line would say "2 ITEM S", rather than "2 ITEMS".

'literal'
Specifies that the print line should contain this literal text.

Example: (See the example above under the fieldname parm. The FOOTING parm print
expression in that example uses the literal texts "ITEM" and "IN REGION".)

n
This is a numeric spacing factor. It specifies how many blank spaces to leave between two
items in the print line. A spacing factor of zero is allowed. (It results in two items appearing
in the print line with no blank spaces between them.) If no spacing factor is given, the
default is to leave one blank space between items.

Example: (See the example above under the fieldname parm. A spacing factor of 0 is
used in that example.)

ASCII
Specifies that the final, formatted field should be converted from EBCDIC to ASCII in the
print line. See page 143 for more information on creating ASCII output files.

Note: To specify your own EBCDIC-to-ASCII translation table, use the ASCIITABLE
option in the OPTIONS statement (page 558). Otherwise, Spectrum Writer uses a
default translation table.

Example: COMPUTE: BREAK-LIT = 'TOTALS FOR REGION '
BREAK: REGION NOTOTALS
 FOOTING(BREAK-LIT(ASCII) 0 REGION(ASCII) 0 X’20’ 0 AMOUNT(TOTAL, ASCII))

The above example shows how to print an ASCII line containing a literal text, the contents
of the REGION field, and the total value of the AMOUNT field at a control break. An ASCII
space (X'20') will appear between each field. (To get the first space, we included a trailing
blank in the COMPUTE field literal. We specified the second ASCII space directly in the
FOOTING parm.) Without the zero spacing factors between items, an EBCDIC blank would
have been inserted between items.

BIZ
This "blank if zero" parm specifies that blanks should appear in the print line for the field
if it has a value of zero. This parm is allowed only for numeric, date and time fields. A date
is considered to have a zero value if the month, day and last 2 digits of the year are all zeros
(regardless of the value of the century part of the year).

Example: BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(BIZ))

The above example causes the HIRE–DATE field in the footing line to be left blank whenever
it contains a zero date.
490 Spectrum Writer Reference Manual

BREAK
display–format
Specifies how a field should be formatted in the print line. A complete list of display
formats is found in Appendix B, "Display Formats" (page 617). If this parm is not
specified, Spectrum Writer will use the display format from:

! the FIELD or COMPUTE statement that defined the field

! an OPTIONS statement FORMAT parm

! the default display format shown in the table on page 618

Example: BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(LONG1))

The above example causes the HIRE–DATE field in the footing line to be spelled out in
LONG1 format:

END OF EMPLOYEES HIRED ON MAY 1, 1995

LEFT/CENTER/RIGHT
Specifies how the data should be justified within the space allocated for it in the print line.
If none of these parms is specified, no justification is performed.

Example: BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(LONG1,RIGHT))

The above example also displays the HIRE–DATE field (in LONG1 format) in the footing line.
Dates displayed in LONG1 format are allocated 18 characters in a print line (in order to print
long dates like "SEPTEMBER 31, 1999"). The RIGHT parm causes the contents of the
HIRE–DATE field to be right–justified within its 18–character area in the print line.

END OF EMPLOYEES HIRED ON MAY 1, 1995

TOTAL/AVERAGE/MAXIMUM/MINIMUM/NZAVERAGE/NZMINIMUM
Allowed only for numeric and time fields. Specifies that a statistical value for a field should
appear in the print line, rather than the field's contents from an individual record. (These
statistical parms may not be used in HEADING print expressions.) When none of these parms
is specified, the contents of a field will be taken from the last record in the control group
(for print lines that appear at the end of a control group). If one of these parms is specified,
then the control group total (or average, maximum, etc.) will appear in the print line
instead. The use of these parms is illustrated in the section beginning on page 188.

Example: BREAK: REGION
 FOOTING('LARGEST SALE IN REGION WAS' AMOUNT(MAXIMUM))
 FOOTING('AVERAGE SALE IN REGION WAS' AMOUNT(AVERAGE))

The above example causes two footing lines to print at the end of a control group. The first
footing line will display the control group's maximum AMOUNT value. The second footing
line will show the control group's average AMOUNT value.

width
This numeric parm specifies the number of characters to reserve for an item in the print
line. Use this parm if the default width is too large or too small.

Example: BREAK: REGION
 FOOTING(#ITEMS(11) 'ITEM' 0 #ITEM–ENDING 'IN REGION' REGION)
Chapter 10. Control Statement Syntax 491

BREAK
The above example causes 11 characters to be reserved for printing the number of items
(#ITEMS) in the footing line:

nnn,nnn,nnn ITEMS IN REGION xxxxx
492 Spectrum Writer Reference Manual

COBOL Statement
COBOL

PURPOSE
Specifies that a Cobol record layout follows. Spectrum Writer processes the Cobol record
layout and creates "internal" FIELD statements corresponding to the Cobol fields in the
record layout. This lets you define the fields in a file by using a Cobol record layout, rather
than writing FIELD statements.

Also use this statement to have Spectrum Writer convert a Cobol record layout into FIELD
statements and write those FIELD statements to an output file.

Beginning immediately after the COBOL statement (and any of its continuation lines)
Spectrum Writer treats input lines as Cobol code. The Cobol code is assumed to end when
the next Spectrum Writer control statement prefix is encountered. The only exception is
that Spectrum Writer COPY statements may be imbedded in the Cobol code and do not end
the scope of the COBOL statement.

FEATURES
Use the COBOL statement to:

! specify that a Cobol record layout follows

! specify whether to print or write out FIELD statements that correspond to the
Cobol record layout

! specify various options that affect the way the Cobol code is processed

LEARNING MORE
The complete syntax of the COBOL statement is shown on the following pages. In addition,
the following parts of the manual relate to the COBOL statement:

! the use of Cobol record layouts to define input files is discussed beginning on
page 369
Chapter 10. Control Statement Syntax 493

COBOL
SYNTAX

No parms are required. The parms may appear in any order. Note that the ASM statement
also uses most of these same parms.

COLUMN[(ALL)]/DISP[(ALL)]
Specifies whether the COLUMN parm or the DISP parm should be used in the FIELD
statements that Spectrum Writer creates from the Cobol record layout. (This parm is only
meaningful if you also specify the SHOWFLDS(YES) parm and/or the OUTDDN/OUTATTR
parm.) If neither COLUMN nor DISP is specified, the COLUMN parm will be used whenever
necessary in the FIELD statements created. If ALL is specified with either parm, the COLUMN
or DISP parm will be present in all of the FIELD statements created. If ALL is not specified,
the COLUMN or DISP parm will appear only in those FIELD statements where it is necessary
(that is, in FIELD statements that define fields out of the normal sequence).

The ALL parm may be useful if you're having problems using a new record layout. Specify
DISP(ALL) to see the displacement that Spectrum Writer has assigned to each field. Then
compare these displacements with those printed in the Data Map section of an actual Cobol
compilation of the same record layout. This may help you locate the source of the error.

Example: COBOL: DISP

The above statement specifies that the FIELD statements printed in the control listing or
written to an output file will use DISP parms (rather than COLUMN parms). The DISP parm
will only be present in FIELD statements that define fields out of the normal order.

Example: COBOL: COLUMN(ALL)

The above statement specifies that the COLUMN parm (rather than the DISP parm) should be
used in FIELD statements printed or written out. All FIELD statements will have a COLUMN
parm.

COBOL STATEMENT SYNTAX

COBOL: [COLUMN[(ALL)]/DISP[(ALL)]]
[FILE(filename/*)]
[MAXOCCURS(nnnnn/100)]
[NOSEQ]
[OUTATTR(type,'dlbl/tlbl' [,SYSnnn] [,80] [,blksize]) (VSE only)]
[OUTDDN(ddname) (OS/390 only)]
[RELOC]
[SHOWFLDS(YES/NO)]
[STARTCOL(nnnnn)/STARTDISP(nnnnn)]

Standard Alternate
Spelling Spellings
COLUMN COL
NO N
YES Y
494 Spectrum Writer Reference Manual

COBOL
FILE(filename/*)
Specifies the file to which the fields defined by the record layout belong. An asterisk
indicates the current file (which is the default). The current file is the file named in the most
recent FILE statement.

Example: COBOL: FILE(EMPL–FILE)

The above statement specifies that the fields defined by the Cobol record layout belong to
the EMPL–FILE (rather than the current file).

MAXOCCURS(nnnnn/100)
Specifies the maximum number of occurrences for which individual field definition is
necessary. This applies only to items having an OCCURS clause (in Cobol) or a repetition
factor (in Assembler). By default, up to 100 occurrences of each such item are defined as
individual fields. If your record layout has a field with a large number of occurrences and
you need to be able to reference all of these occurrences individually, specify a
MAXOCCURS parm with a sufficiently large value. However, if you do not need to address
such fields individually, it will save memory and processing time to leave the default in
effect. In extreme cases (with many thousands of occurrences) creating an internal field
definition for each occurrence may require more memory than is available in the region (or
partition) and an "out of memory" abnormal end could occur.

Specifying MAXOCCURS(0) means that all occurrences of each array should be defined
individually.

Note: See the section beginning on page 377 for more information on how the
individual fields in an array are named.

Example: COBOL: MAXOCCURS(2000)

The above statement will cause up to 2000 individual fields to be defined for each array in
the record layout. (With the ASM statement, it will cause up to 2000 individual fields to be
defined for each item defined with a repetition factor.)

NOSEQ
Valid only for the COBOL statement. Specifies that numeric checking of Cobol sequence
numbers should not be performed. Spectrum Writer normally performs this checking to
help detect a Cobol record layout that is not formatted correctly and which may result in
wrong field definitions. Use this parm if the Cobol record layout you use has non–numerics
in columns 1 through 6 and you do not want warning messages to appear in the control
listing.

Note: When NOSEQ is not specified, Spectrum Writer prints warning messages for
the first five sequence number errors encountered.

Example: COBOL: NOSEQ

The above statement specifies that Spectrum Writer should not examine the contents of
columns 1 through 6 of the Cobol record layout.
Chapter 10. Control Statement Syntax 495

COBOL
OUTATTR(type, 'dlbl/tlbl' [,SYSnnn] [,80] [,blksize])
VSE only. Specifies that FIELD statements corresponding to the record layout be written to
the specified output file. The output file must be defined as a fixed length file with 80–byte
records. The blocksize may be any multiple of 80. The OUTATTR parm describes various
attributes of the desired output file. The allowed values within the OUTATTR parm are:

Example: COBOL: OUTATTR(DASD,'FLDOUT')

The above statement specifies that FIELD statements should be written to the disk output
file identified by the FLDOUT DLBL statement in the execution JCL.

OUTDDN(ddname)
OS/390 only. Specifies that FIELD statements corresponding to the record layout should be
written to an output file identified by this DDNAME in the execution JCL. The output file
must be defined as a fixed length file with 80–byte records. The blocksize may be any
multiple of 80.

Example: COBOL: OUTDDN(FLDOUT)

SUBPARMS ALLOWED IN THE OUTATTR PARM

SUBPARM MEANING

type

This parm is required. It tells Spectrum Writer what kind of device
to write the FIELD statements to. It must be one of the following
values:

DASD a SAM file on a DASD device (disk). Use DASD (rather than
VSAM) for VSAM–managed SAM files.

TAPE a SAM file on a magnetic tape

VSAM an ESDS VSAM file

'dlbl/tlbl'

This parm is required. It tells Spectrum Writer what DLBL or TLBL
is used in the JCL for the output file. The 1- to 7-byte name within
apostrophes (or quotation marks) must be the same as the filename
in a DLBL or TLBL statement in the execution JCL.

SYSnnn

This parm is required for TAPE output. It is treated as a comment
for other output types. It identifies the logical unit to write the
output to. The value specified here must also be "assigned" in the
JCL.

80 This parm is optional. It specifies the length of the output records
to be written. If specified, it must be 80, which is also the default.

blksize

This parm is optional. It specifies the block size to use when
writing a DASD or TAPE output file. (This parm is not allowed for
VSAM output types.) This value must be a multiple of 80. If
omitted, single record blocking is used.
496 Spectrum Writer Reference Manual

COBOL
The above statement specifies that FIELD statements should be written to the output file
identified by the FLDOUT DD statement in the execution JCL.

RELOC
Specifies that any FIELD statements that are printed or written out should be "relocatable"
whenever possible. This option may make it easier for you to modify your Spectrum Writer
file definition when a record layout changes. That is, you may be able to insert new FIELD
statements without having to change all of the FIELD statements following the new one.
When RELOC is specified, Spectrum Writer attempts to use fieldnames, rather than
numbers, in the FIELD statements' COLUMN/DISP parm whenever possible.

Example: COBOL: RELOC OUTDDN(FLDOUT)

The above statement specifies that the FIELD statements written to the FLDOUT DD should be
made as relocatable as possible.

SHOWFLDS(YES/NO)
Specifies that FIELD statements corresponding to the record layout should be printed in the
control listing. This is especially useful when working with a new record layout. It allows
you to see the names Spectrum Writer has assigned to each field (including the names of
individual items within arrays, and items that were renamed to make them unique). The
listing also shows the data type of each field (character or numeric).

Example: COBOL: SHOWFLDS(YES)

The above statement specifies that FIELD statements corresponding to the Cobol record
layout should be printed in the control listing.

STARTCOL(nnnnn)/
STARTDISP(nnnnn)

Specifies the column (or displacement) to be used for the first item in the record layout that
follows. If not specified, the first field in the record layout will start in the "current"
location for the file it belongs to. Thus, if there were no earlier FIELD statements for the file,
the first field from the record layout will begin in column 1. If there were some earlier
FIELD statements, the first record layout field will begin immediately after the field defined
in the last FIELD statement for the file.

In Cobol layouts, this starting column/displacement will also be used for the first item in
any subsequent 01 level implicit (or explicit) redefines. In Assembler layouts, this starting
column/displacement will also be used for the first item in any subsequent DSECT.

Example: COBOL: STARTCOL(251)

The above statement specifies that the first field defined by the Cobol record layout begins
in column 251. Any subsequent record layouts starting with a 01 level item will also begin
in column 251.
Chapter 10. Control Statement Syntax 497

COLUMNS Statement
COLUMNS

PURPOSE
This statement determines what columns of data the report or PC file will have. Each field
named in this statement will result in one column of data in the output. These columns will
appear in the same order as the field names appear in the COLUMNS statement.

Also use the COLUMNS statement to specify column headings and other formatting details.

You may have any number of COLUMNS statements per run. Each COLUMNS statement
results in one detail line in the report or PC file. A request with no COLUMNS statement will
have no detail lines in the output.

FEATURES
Use the COLUMNS statement to:

! specify the columns (of data fields or of literal texts) desired in the report or
output file

! specify the column headings to be used in the report or PC file

! specify how many blank spaces should appear between each column in reports

! specify a column's width

! specify how to format the data within a column. (For example, should a numeric
field be displayed with or without commas? Should leading zeros be printed or
not? Should a date field be printed as MM/DD/YY or should the name of the month
be spelled out completely, etc.)

! specify how to justify the data within a column (left, center, or right)

! specify that repeating values should be blanked out

! specify which numeric columns should be totalled at control breaks and at the
Grand Total
498 Spectrum Writer Reference Manual

COLUMNS
LEARNING MORE
The complete syntax of the COLUMNS is shown on the following pages. In addition, the
following parts of the manual relate to the COLUMNS statement:

! a lesson on using the COLUMNS statement in reports begins on page 34

! a lesson on using the COLUMNS statement in PC files begins on page 88

! advanced uses of the COLUMNS statement are discussed beginning on page 125

! the use of multiple COLUMNS statements is discussed beginning on page 151

SYNTAX

The contents of the COLUMNS statement is simply a print expression. It is also valid to have
an empty COLUMNS statement. An empty COLUMNS statement results in a blank detail line
in the report or PC file.

COLUMNS STATEMENT SYNTAX

COLUMNS: print–expression

Note: the syntax for the print-expression is shown on page page 500.

Standard Alternate
Spelling Spellings
COLUMNS COLUMN, COLS, COL
Chapter 10. Control Statement Syntax 499

COLUMNS
PRINT–EXPRESSION SYNTAX (IN COLUMNS STATEMENT)

A print–expression consists of one or more items, optionally separated by numeric spacing
factors:

COLUMNS: [n] item [n] item [n] item ...

Each item can be a fieldname, a record name or a literal text. Each item can optionally be
followed by a parm list in parentheses:

fieldname[([ACCUM/NOACCUM]
[ASCII]
[BIZ]
[display–format]
['heading1|heading2...']
[LEFT/CENTER/RIGHT]
[NOREPEAT/NOREPEATPAGE]
[width])]

record-name/#COMPUTES[(
[exclude-field1 exclude-field2 ...]
[INNER/OUTER]
[BYDEF/BYNAME/BYCOL]
[LIST/NOLIST])]

'literal'[(['heading1|heading2...']
[width])]

Standard Alternate
Spelling Spellings
#COMPUTES #COMPUTE
ACCUM ACC
BYCOL #BYCOL
BYDEF #BYDEF
BYNAME #BYNAME
CENTER CJ
COLUMNS COLUMN, COLS, COL
INNER #INNER
LEFT LJ
LIST #LIST
NOACCUM NOACC
NOLIST #NOLIST
NOREPEAT NOREP
NOREPEATPAGE NOREPPAGE
OUTER #OUTER
RIGHT RJ
500 Spectrum Writer Reference Manual

COLUMNS
Description of Print-Expression Items

fieldname
Names a field that should appear as a column in the report or PC file. The field must be
available to Spectrum Writer at the time the COLUMNS statement is processed. That is, the
field must be one of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement).

! a built–in field. (See Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields.)

Example: COLUMNS: LAST–NAME HIRE–DATE TOTAL–SALES

The above example specifies that the report (or PC file) should contain three columns. The
fields displayed in the columns will be LAST–NAME, HIRE–DATE, and TOTAL–SALES.

record-name/#COMPUTES
Specifying a record-name in the COLUMNS statement causes a column to be added for every
field in that record, as well as for every COMPUTE field that is part of the same file
definition. Specifying the keyword #COMPUTES causes a column to be added for every
COMPUTE field that is not part of any file’s definition. The use of record names in the
COLUMNS statements is discussed on page 158.

Example: OPTION: PC
INPUT: SALES-FILE
COLUMNS: SALES-FILE

The three statements above would reformat the entire contents of the SALES-FILE into a
comma-delimited "PC" file.

'literal'
Specifies that the report should have a column displaying this literal text. (Enclose the text
in either apostrophes or quotation marks.) This feature is especially useful when multiple
COLUMNS statements are used. A literal text at the beginning of each line serves to identify
the data on that line. A column with a literal text (such as dashes) can also be used to print
a "blank" column in a report, to be filled in by hand.

Example: COLUMNS: '1ST QUARTER' SALES–QTR1
COLUMNS: '4TH QUARTER' SALES–QTR4

The above example produces a report with two detail lines per input record. In each line,
the first column will contain literal text, and the second column will contain a sales figure.
The first column in each line identifies which quarter's data is displayed in the second
column. (See page 152 for a similar report example.)

Example: COLUMNS: LAST–NAME TELEPHONE 'NEW TELEPHONE: __________'

The above example produces a report with three columns. The first two contain the
contents of fields (last name and the current telephone number). The third contains the
literal text

NEW TELEPHONE:
Chapter 10. Control Statement Syntax 501

COLUMNS
which provides an area that can be filled in by hand on the hardcopy report. (See page 127
for a similar report example.)

n
This is a numeric spacing factor. It specifies how many blank spaces to leave between two
report columns. (Spacing factors are not used in PC files.) A spacing factor of zero is
allowed if you want no spaces between two columns. If no spacing factor is given, the
default is to leave one blank space between columns. The use of spacing factors is
discussed on page 128.

Example: COLUMNS: LAST–NAME 7 HIRE–DATE

The above example specifies that 7 blank spaces should be left between the LAST–NAME
column and the HIRE–DATE column in the report.

Note: To change the default spacing factor between all columns, use the COLSPACE
parm of the OPTIONS statement (page 560).

Description of Parms

ACCUM/NOACCUM
This parm is valid only for numeric and time fields. It specifies whether a column should
be accumulated or not. Columns that are accumulated will appear in the totals line, as well
as in any other statistics lines that have been requested (such as the average line, the
maximum line, etc.) Columns that are not accumulated will not appear in the totals and
statistics lines.

By default, Spectrum Writer accumulates all numeric fields, with one exception. Numeric
fields that are displayed using a PICTURE which contains special characters are not
accumulated. (Special characters include such things as parentheses, imbedded dashes,
asterisks, etc.) By default, numeric fields displayed with such a PICTURE are not
accumulated and therefore do not appear in the total line and other statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you want to see totals for a
time field. This might be desired for time fields that contain durations, rather than times of
day.

If an ACCUM or NOACCUM parm is specified in the COLUMNS statement, it overrides any such
parm that may have been specified in the FIELD or COMPUTE statement used to define the
field. The use of the ACCUM and NOACCUM parms is discussed on page 148.

Example: COLUMNS: EMPL–NAME AMOUNT(NOACCUM) TIME–ON–PHONE(ACCUM)

The above example specifies that the AMOUNT column in the report should not be
accumulated. Therefore, that column will not appear in the Grand Totals, or in control
break totals. On the other hand, the time field named TIME–ON–PHONE will be accumulated.
Therefore, it will appear in the Grand Totals and in control break totals.

ASCII
Specifies that the final, formatted field should be converted from EBCDIC to ASCII in the
print line. To specify your own EBCDIC-to-ASCII translation table, use the ASCIITABLE option
in the OPTIONS statement (page 558). Otherwise, Spectrum Writer uses a default translation
table. See page 143 for more information on creating ASCII output files.
502 Spectrum Writer Reference Manual

COLUMNS
Example: OPTIONS: COLSEP(X’20’)
COLUMNS: REGION(ASCII) SALES-DATE(ASCII) AMOUNT(ASCII)

The above example causes the REGION, SALES-DATE and AMOUNT fields to be formatted in
ASCII. The COLSEP option specifies that an ASCII blank (X’20’) should be used to separate the
columns (rather than the default EBCDIC blank, which is X’40’).

BIZ
This "blank if zero" parm specifies that a column should be left blank if the field has a value
of zero. This parm is allowed only for numeric, date and time fields. A date is considered
to have a zero value if the month, day and last 2 digits of the year are all zeros (regardless
of the value of the century part of the year).

Example: COLUMNS: REGION SALES–DATE(BIZ) SALES-TIME(BIZ) AMOUNT(BIZ)

The above example specifies that the SALES-DATE, SALES-TIME and AMOUNT columns
should be left blank when their respective fields contain zero values.

BYDEF/BYNAME/BYCOL
Used with a record name to specify the order in which the columns for that record’s fields
should appear. The default is BYDEF, which means the order in which the fields were
defined. You can specify BYNAME to put the columns in alphabetical order. Or specify
BYCOL to put them in starting column order (that is, the order in which they occur in the
input record).

Example: COLUMNS: SALES-FILE(BYCOL)

display–format
Specifies how the contents of a field should be formatted in a report. A complete list of
display formats is found in Appendix B, "Display Formats" (page 617).

If you do not specify a display format in the COLUMNS statement, Spectrum Writer chooses
a default display format. This will be:

! the display format (if any) specified when the field was defined (in a FIELD or
COMPUTE statement)

! the display format (if any) specified in a previous OPTIONS statement's FORMAT
parm (see page 562). Use the FORMAT option if you want to change the default
way that all dates, times or numbers in your report are formatted.

! the default display format shown in the table on page 618.

PC Note: Display formats should not normally be used when creating PC files.
Spectrum Writer chooses the display format needed to create an import file for the
PC program specified in the OPTIONS statement. After importing your PC file into a
PC spreadsheet, you can use the PC program's features to change the way dates or
numbers are formatted.

Example: COLUMNS: LAST–NAME HIRE–DATE(LONG1) TOTAL–SALES(PIC'$$$,$$9')

The above example uses display formats for two of the columns. The HIRE–DATE field will
be displayed in the LONG1 format (that is, with the month name spelled out). The
TOTAL–SALES field will be formatted using a floating dollar sign, and will print whole
dollars only — no decimal digits. The use of this parm is discussed on page 137.
Chapter 10. Control Statement Syntax 503

COLUMNS
exclude-field1, exclude-field2, ...
Used with a record name to exclude fields from the COLUMNS statement. Any field named
in the parms after a record name will not have a column in the report or output file.

Example: COLUMNS: SALES-FILE(BACKUP-EMPL-NUM COMMISSION-RATE TIME-ON-PHONE)

The above statement would write out all fields from the SALES-FILE except for the three
fields named in the parms as exclude fields.

'heading1|heading2...'
Specifies the column heading to use for an item in a report or PC file. Enclose the column
heading text in either apostrophes or quotation marks. If you need to use that same
character (an apostrophe or quotation mark) within the text, use two of those characters for
each character desired.

Use a vertical bar (|) to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Spectrum Writer automatically centers each part of the column
heading for you

See page 130 for more information on column headings. A list of special options related to
the column headings appears on page 133.

Example: COLUMNS: LAST–NAME('EMPLOYEE|NAME') ' '('NEW TELEPHONE')

The above example specifies column headings for both columns. The column heading for
the LAST–NAME field will be "EMPLOYEE" on the first line, and "NAME" on the second line.
Even though the two texts are different lengths, they will be correctly centered over the
report column. The column that just contains literal underscores will have a column
heading that says "NEW TELEPHONE" on a single line.

Note: You may use the HDGSEP parm of the OPTIONS statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If you do not want any column headings for a particular column, specify a blank column
heading text. To suppress even the column heading underscores, specify a null column
heading text.

Example: COLUMNS: LAST–NAME(' ') HIRE–DATE('')

The above statement specifies that neither the LAST–NAME column nor the HIRE–DATE
column should have columns headings. The width of the LAST–NAME column will still be
indicated by a number of underscores in the column heading. The HIRE–DATE column will
not even have underscores over it.

If a column heading text is not specified in the COLUMNS statement, Spectrum Writer uses
the column headings specified when the field was defined (in a FIELD or COMPUTE
statement). If no columns headings were specified when the field was defined, Spectrum
Writer uses the field name itself as the column heading. The field name will be broken apart
at each dash or underscore, with each part of the name going onto a separate heading line.
504 Spectrum Writer Reference Manual

COLUMNS
INNER/OUTER
Used with a record name to specify which field to exclude from the output when two or
more fields overlap in the input record. Consider this definition of a date field, with a
redefinition of its component parts:

FIELD: SALES-DATE TYPE(YYMMDD)
FIELD: SALES-YY LEN(2) COLUMN(SALES-DATE)
FIELD: SALES-MM LEN(2)
FIELD: SALES-DD LEN(2)

The SALES-DATE field is considered the "outer" field. The last three fields are all "inner"
fields, since they are within another field. By default, Spectrum Writer will create an output
column for all four fields. Specify the OUTER parm if you want to exclude outer fields
when overlaps occur. Specify the INNER parm to exclude inner fields when overlaps occur.

Example: COLUMNS: SALES-FILE(INNER)

The above statement would result in SALES-YY, SALES-MM and SALES-DD being excluded
from the report or output file. SALES-DATE will be in the output.

LEFT/CENTER/ RIGHT
Specifies how the data should be justified within a column. If none of these parms is
specified, no justification is performed. The use of these parms is discussed on page 146.

Example: COLUMNS: LAST–NAME(CENTER) HIRE–DATE(LONG1,RIGHT)

The above example specifies that the names printed in the LAST–NAME column should be
centered within the column. The HIRE–DATE column (in LONG1 format) will be right-
justified.

LIST/ NOLIST
Used with a record name to specify whether or not to list the individual fields that will be
output from the record. By default, the fields will be listed. Specify NOLIST to suppress the
list from the control statement listing.

Example: COLUMNS: SALES-FILE(NOLIST)

NOREPEAT/NOREPEATPAGE
These parms specify that "repeated" values should not be printed in the report or PC file.
The NOREPEAT parm blanks out repeated values except at the top of each new page and at
the beginning of each new control group. The NOREPEATPAGE parm blanks out repeated
values except at the top of each new page. The use of these parms is discussed beginning
on page 144.

Example: COLUMNS: REGION(NOREPEAT) EMPL–NAME SALES–DATE CUSTOMER AMOUNT

width
This is a numeric parm that specifies the number of characters to reserve for a particular
column in a report or PC file. Use this parm if the default column width is larger or smaller
than you desire. The use of the width parm is discussed on page 135.

Example: COLUMNS: LAST–NAME TOTAL–SALES(20)

The above example specifies that 20 bytes should be reserved for printing the TOTAL-SALES
column in the report. This might be needed if the sales figures were very large and the
default column width was not big enough to display all of the digits.
Chapter 10. Control Statement Syntax 505

COMPUTE Statement
COMPUTE

PURPOSE
Defines a new field that can be computed from other values. You may use arithmetic
operations, string operations and built–in functions to compute the value of the new field.
You may also use logical conditions to determine what value to assign to a field.

A computed field can be used in any way that a field from an actual file may be used. That
is, you can print it in a report column or title, output it to a PC file, sort on it, break on it,
total it, compare it to other fields, and even use it to compute additional new fields.

FEATURES
Use the COMPUTE statement to:

! define a new field using a name of your choice

! specify one or more computational expressions to use in assigning a value to
that field

! specify certain conditions that should be evaluated to determine what value to
assign to the new field.

! specify that control break totals and Grand Totals for this field should be
computed by performing a group–wide division rather than merely summing its
individual values (DIVTOTS parm)

! specify the column heading to use when the field appears in a report or PC file

! specify the display format to use when displaying the field

! specify whether or not the field should be accumulated (and thus appear in the
Grand Total line, etc.)

! specify the size of a character field

! specify the number of decimal places to be retained in a numeric or a time field

LEARNING MORE
The complete syntax of the COMPUTE statement is shown on the following pages. In
addition, the following parts of the manual relate to the COMPUTE statement:

! a lesson on using the COMPUTE statement in reports begins on page 46

! a lesson on using the COMPUTE statement in PC files begins on page 98

! use of the DIVTOTS parm in the COMPUTE statement is discussed beginning on
page 202
506 Spectrum Writer Reference Manual

COMPUTE
! a complete list of built-in fields available for use in COMPUTE statements appears
in Appendix D, "Built-In Functions" (page 628).

! suggestions on writing COMPUTE statements for maximum CPU efficiency are
given in Appendix G, "Speed-Up Tips" (page 652).

SYNTAX

Values are assigned to computed fields each time a new primary input file record is read.
(Or, in certain cases, each time a new logical input record is assembled.)

There are two forms of the COMPUTE statement. A simple COMPUTE statement contains a
single computational expression. Each time a new primary input record read, the specified
computation is performed and the result is assigned to the computed field.

COMPUTE STATEMENT SYNTAX

COMPUTE: fieldname[(parms)] = computational–expression

or

COMPUTE: fieldname[(parms)] =
WHEN(conditional–expression)ASSIGN(computational–expression)

[WHEN(conditional–expression)ASSIGN(computational–expression)]
[WHEN(conditional–expression)ASSIGN(computational–expression)]

...
[ELSE ASSIGN(computational–expression)/RETAIN]

The parms available are:

ACCUM/NOACCUM
display–format
DIVTOTS
'heading1|heading2...'
nnn

Standard Alternate
Spelling Spellings
ACCUM ACC
ASSIGN ASS
COMPUTE COMP
DIVTOTS DIVTOT, DT
NOACCUM NOACC
WHEN WH
Chapter 10. Control Statement Syntax 507

COMPUTE
A conditional COMPUTE statement may contain multiple computational expressions. It
will also contain one or more conditional expressions. Each time a new primary input
record is read, one of the following actions will be taken:

! a computational expression from one of the ASSIGN parms will be used to assign
a value to the computed field, or

! the previous value of the computed field will be retained, or

! a default value will be assigned to the computed field.

The action taken depends on the conditions contained in the conditional expressions in the
WHEN parms. Spectrum Writer evaluates each of the WHEN expressions, in the same order
in which they are written. As soon as a WHEN expression is found that is "true," the
corresponding ASSIGN expression is calculated and the field is assigned this value. (Any
remaining WHEN parms are not evaluated.)

If none of the WHEN expressions are "true", the field is assigned the value of the ELSE
ASSIGN expression, if any. Or, if ELSE RETAIN was specified the compute field will retain
the value it had for the previous input record. If none of the WHEN expressions are "true",
and no ELSE ASSIGN/RETAIN parm is present, the field will be set to a default value. The
default value depends on the type of field being defined, as shown in the following table:

In general, the data type of the COMPUTE field will be the data type of the first operand
found in the first (or only) computational expression.

There is one exception to this rule and it involves time fields. A computational expression
for a time value may contain a mixture of time and numeric operands. A COMPUTE field
will be considered a time field if any of the computational expressions use a time operand,
regardless of the data type of the first operand in the expression. This allows you to begin
time–type computational expressions with a numeric operand.

A description of the size of character compute fields and the number of decimal digits in
numeric and time compute fields appears under the "nnn" parm (page 511).

fieldname[(parms)]
Specifies the name of the field being created, and optionally specifies certain attributes for
it. The fieldname must not have been previously used (in either a FIELD statement for the
same file, or in a previous COMPUTE statement). You may name the new field anything you
like, within the rules governing field names given on page 446.

DEFAULT VALUE ASSIGNED TO COMPUTE FIELDS

FIELD TYPE DEFAULT VALUE

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)

Time Zeros (00:00:00)
Bit OFF
508 Spectrum Writer Reference Manual

COMPUTE
No parms are required with the fieldname. If desired, specify one or more parms by placing
them in parentheses immediately after the fieldname. (Do not leave a space between the
field name and the open parenthesis). Separate the parms with a comma and/or blanks.

Example: COMPUTE: SEMI–ANNUAL–SALES = SALES–QTR1 + SALES–QTR2

The above example creates a new field named SEMI–ANNUAL–SALES. It will be a numeric
field, since the first operand in the computational expression (SALES–QTR1) is a numeric
field.

computational–expression
Used in the simple form of the COMPUTE statement. Specifies how to compute the value to
assign to the field. The syntax for computational expressions is shown on page 472.

Example: (See the examples beginning on page 513.)

ACCUM/NOACCUM
This parm is valid only for numeric and time fields. It specifies whether the field should be
accumulated or not when it appears as a column in a report or PC file. Fields that are
accumulated will appear in the totals line, as well as in any other statistics lines that have
been requested (such as the average line, the maximum line, etc.) Fields that are not
accumulated will not appear in the totals and statistics lines.

By default, Spectrum Writer accumulates all numeric fields listed in the COLUMNS
statement, with one exception. Numeric fields that are displayed using a PICTURE which
contains special characters are not accumulated. (Special characters include such things as
parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed with
such a PICTURE are not accumulated and therefore do not appear in the total line and other
statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you want to see totals for a
time field. This might be the case for time fields that contain durations, as opposed to times
of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS
statement. The use of the ACCUM and NOACCUM parms is discussed on page 148.

Example: COMPUTE: AVERAGE–SALES(NOACCUM) = YEARLY–SALES / 4

The above example specifies that the AVERAGE–ANNUAL–SALES field will not be
accumulated when it appears as a column in a report. Therefore, it will not receive Grand
Totals or totals at control breaks.

Example: COMPUTE: DURATION(ACCUM) = END–TIME – START–TIME

The above example specifies that the DURATION field should be accumulated. Therefore, a
total value for it will appear in the total lines at control breaks and in the Grand Total line.

ASSIGN(computational–expression)
Specifies how to compute a value which might be assigned to the compute field. If more
than one ASSIGN expressions are used in the COMPUTE statement, they must all compute a
result of the same data type. The syntax for computational expressions is shown on
page 472.
Chapter 10. Control Statement Syntax 509

COMPUTE
Note: No space is allowed between the word ASSIGN and the parenthesis that
follows it.

Example: See the examples beginning on page 513.

display–format
Specifies the default format to be used when displaying this field in a report. A complete
list of display formats is found in Appendix B, "Display Formats" (page 617).

The display–format specified in the COMPUTE statement tells Spectrum Writer the default
format to use when displaying the field anywhere in a report –– in the titles, the main report
lines, the break headings and footings, etc. The display format specified here can later be
overridden by specifying a display format parm directly in the COLUMNS statement, the
TITLE statement, etc.

If this parm is not specified, Spectrum Writer uses a default display format when printing
the field in a report. Default display formats are shown in the table on page 618.

Note: Specifying a PC file option (LOTUS, for example) causes any display format
specified in the COMPUTE statement to be overridden (with a display format
appropriate for the desired PC program).

Example: COMPUTE: AVERAGE–SALES(PIC'$$$,$$9') = YEARLY–SALES / 4

The above example specifies that the AVERAGE–SALES field should be displayed using the
PICTURE "$$$,$$9" when it is printed in a report. This picture uses a floating dollar sign, and
does not display any decimal digits.

DIVTOTS
This parm is valid only for certain types of numeric computations. It specifies how the
"total" value for this field should be computed at control breaks and at the Grand Totals
line. By default, a field's total is merely the sum of all the individual values for the field.
For percentages and ratios, such a total is often meaningless. Instead, what is desired is that
the percentage or ratio be computed for the entire control group (or for the entire report at
the Grand Total). The DIVTOTS ("divide totals") parm tells Spectrum Writer to compute the
field's total by performing just such a control-group-wide division. The DIVTOTS parm is
discussed in more detail in "Computing True Percentages and Ratios at Control Breaks"
(page 202).

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

! At its highest level, the expression must consist of a single division operation.
The numerator and/or denominator themselves, however, can be expressions
within parentheses.

! Neither the numerator nor the denominator may be literal values. Each must be
either a field or an expression.

! Only simple COMPUTE statements may use the DIVTOTS parm. It is not allowed in
conditional COMPUTE statements. (Conditional COMPUTE statements are those
that use the WHEN and ASSIGN parms to assign different values to a field.)
However, either or both of the numerator and the denominator can be COMPUTE
fields that may have been computed with conditional COMPUTE statements.
510 Spectrum Writer Reference Manual

COMPUTE
Example: See the DIVTOTS example on page 515.

ELSE
Indicates the action to take if none of the preceding WHEN parms are "true." When the ELSE
parm is followed by an ASSIGN parm, the value from that ASSIGN parm is assigned to the
compute field. When the ELSE parm is followed by a RETAIN parm, the value of the compute
field is not changed–– it retains whatever value it had for the previous input file record. If
present, the ELSE parm and its associated ASSIGN/RETAIN parm must be the last items in the
COMPUTE statement.

Example: See the examples beginning on page 513.

'heading1|heading2...'
Specifies the column heading lines to use for this field when it appears as a column in a
report or PC file. Enclose the column heading in either apostrophes or quotation marks. If
you need to use that same character (an apostrophe or quotation mark) within the text, use
two of those characters for each character desired.

Use a vertical bar (|) to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Spectrum Writer automatically centers each part of the column
heading for you.

Note: You may use the HDGSEP parm of the OPTIONS statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If no column headings are specified, Spectrum Writer will use the field name itself as the
column heading. The name will be broken apart at each dash or underscore, with each part
of the name going onto a separate heading line.

Note: Any column headings specified here can be overridden by using a column
heading parm directly in the COLUMNS statement.

See page 130 for more information on column headings.

Example: COMPUTE: AVERAGE–SALES('AVERAGE|ANNUAL|SALES') = YEARLY–SALES / 4

The above example specifies that "AVERAGE|ANNUAL|SALES" should be used as the column
heading when this field appears in a report. The vertical bars specify that each word will
go on a separate column heading line.

nnn
This parm is valid only for character, numeric and time compute fields. For character
fields, this numeric parm specifies the size of the character field being created. If this parm
is omitted, the default size of the field will be the sum of the size of all operands in the
computational expression. If there are more than one computational expressions in the
statement, the size of the largest possible result is used. If an explicit size parm is specified
and it is not the same as this default size, the computed result will either be truncated or
right–padded with blanks to create a field of the desired size. The maximum size of a
character field is 32K.

Example: COMPUTE: SHORT–NAME(5) = LAST–NAME
Chapter 10. Control Statement Syntax 511

COMPUTE
The above example creates a character field that is only 5 bytes long. The SHORT-NAME
field will contain the first five bytes of the LAST–NAME field. If the "5" parm had been
omitted, the SHORT–NAME field would have been the same size as the only operand in the
expression–– the LAST–NAME field.

For numeric and time fields, this numeric parm specifies how many decimal digits
should be retained at each stage of the computation. The final result, as well as each
intermediate result obtained during the computation, will be rounded to this precision. If
this parm is omitted, Spectrum Writer chooses a default number of decimal places to
maintain, based on the precision of the operands involved and on the operations performed.

If you choose to override the default and specify a number of decimal digits here, be sure
to specify at least 2 decimal digits more than you actually plan to display in the report (to
allow for intermediate rounding). This is especially important if your computational
expression involves division.

Here is an illustration of why this is important. Suppose we compute a "percent tax" field
by dividing TAX into AMOUNT and then multiplying by 100. Even assuming we only want
to show one decimal digit for this field in our report, you should still specify at least 3
decimal digits in your COMPUTE statement:

COMPUTE: TAX-PERCENT(3) = TAX / AMOUNT * 100

COLUMNS: TAX-PERCENT(PIC’ZZ9.9%’)

Here’s why. The TAX field in the first SALES-FILE record contains 6.09: the AMOUNT field
contains 101.38. For that record, the first division in the COMPUTE statement
(6.09 / 101.38) gives a rounded intermediate result of 0.060. That is then multiplied by
100, giving a final rounded result of 6.000. (This result will then be displayed with just one
decimal digit — as 6.0% — in the report.) If we had specified only one decimal digit in
the COMPUTE statement, the first division would have been rounded to 0.1 (that is, 0.060
rounded down to just one decimal digit.) Multiplying by 100 would then have resulted in
a final result of 10.0, — an incorrect result caused by the loss of precision in the earlier
operation.

Note: The maximum number of digits (including decimal digits) allowed for
numeric fields is 31.

Example: COMPUTE: PERCENT–CHANGE(4) = (NEW – OLD) / OLD * 100
COLUMNS: PERCENT–CHANGE(P'ZZ9.9')

The above example specifies that 4 decimal digits should be maintained while computing
the value of PERCENT–CHANGE. In the COLUMNS statement, however, we specified that only
1 decimal digit should actually be displayed for that field.

Example: COMPUTE: DURATION(1) = END–TIME – START–TIME

The above example specifies that the DURATION field should contain 1 decimal digit. If the
"1" parm had not been specified, the result would have had the same number of decimal
digits as the operands.

Also see the examples beginning on page 513.

RETAIN
When used, this keyword must be the last item in the COMPUTE statement and must be
preceded by the keyword ELSE. It specifies that if none of the WHEN parm conditional
512 Spectrum Writer Reference Manual

COMPUTE
expressions are true, the COMPUTE field should retain its previous value (rather than be
assigned a default value). For a speed–up tip relating to the RETAIN parm, see page 656.

WHEN(conditional–expression)
Specifies a conditional expression to be evaluated before assigning a value to the field
being created. The WHEN parms are evaluated in the order in which they appear in the
COMPUTE statement. Evaluation of WHEN parms stops as soon as the first WHEN parm is
found whose conditional expression is "true". The value specified in the following ASSIGN
parm is assigned to the computed field.

The syntax for conditional expressions is shown on page 459.

Note: No space is allowed between the word WHEN and the parenthesis that follows
it.

Note: If a field containing invalid data is encountered while evaluating the
conditional expression in a WHEN parm, the entire WHEN expression will be
considered false. The associated ASSIGN parm will not be used.

Example: See the examples beginning on page 513.

EXAMPLES
See page 474 for additional examples of COMPUTE statements.

Case 1. Creating a numeric field with a simple COMPUTE statement.

COMPUTE: BONUS = TOTAL–SALES * .08

The above example creates a new field named BONUS. Its value will be computed by
multiplying the TOTAL–SALES field by .08.

Case 2. Creating a numeric field, based on conditions.

COMPUTE: BONUS(2) = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE < 1/1/1985) ASSIGN(TOTAL–SALES * .07)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above example creates a new field named BONUS, which will have two decimal digits.
The value assigned to this new field depends on conditions involving the HIRE-DATE field.
When the hire date is before January 1, 1980, the bonus is computed as 8 percent of the
total sales (TOTAL–SALES * .08). If the hire date is not before January 1, 1980, but is before
January 1, 1985, then the bonus is computed based on 7 percent. Otherwise (if neither of
the two preceding conditions is true) the bonus is computed using 5 percent of total sales.

Case 3. Creating a character field, based on conditions.

COMPUTE: STATE–NAME = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'TX') ASSIGN('TEXAS')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ELSE ASSIGN('?????')
Chapter 10. Control Statement Syntax 513

COMPUTE
The above example creates a new field called STATE–NAME. It will be a 10-byte character
field, since "CALIFORNIA" is the largest possible value that may be assigned to it. The value
assigned to the STATE–NAME field depends on conditions involving the value of the STATE
field. If the STATE field contains some value other than those listed in the three WHEN
parms, the STATE–NAME field will be assigned a value of 5 question marks. Use this
technique to perform "table lookups." (See page 655 for a speed-up tip involving table
lookups.)

Case 4. Creating a date field, based on conditions.

COMPUTE: START–DATE = WHEN(HIRE–DATE > 1/1/1990) ASSIGN(HIRE–DATE)
 ELSE ASSIGN(1/1/1990)

The above example creates a new date field called START–DATE. Its value will either be the
value of the HIRE–DATE field (if the hire date is after January 1, 1990), or else it will be the
literal date 1/1/1990.

Case 5. Creating a bit field, based on conditions.

COMPUTE: VIP = WHEN(TOTAL–SALES > 50000 OR HIRE–DATE < 1/1/1985) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

The above example creates a new bit field named VIP. The value of the field will be ON if
the TOTAL–SALES field is greater than 50000, or if the HIRE–DATE field is earlier than
1/1/1985. Otherwise, the VIP field will be OFF. (The ELSE ASSIGN pair in this example are
not actually necessary, since OFF is the default value assigned to bit fields when none of
the WHEN parms is true.)

Case 6. Creating a character field using a hexadecimal literal.

COMPUTE: MASTER–FILE–KEY = X'FF' + EMPL–NUM + X'0000'

The above example creates a new character field named MASTER–FILE–KEY. It will be a 6
byte field, consisting of 1 byte of "high–values" (X'FF'), followed by the contents of the
3–byte character field EMPL–NUM, followed by 2 bytes of "low values" (hex zeros).

Case 7. Creating a field using a built–in function.

COMPUTE: BIGGEST–QTR = #MAX(SALES–QTR1, SALES–QTR2, SALES–QTR3, SALES–QTR4)

The above example creates a new numeric field named BIGGEST–QTR. Its value will be the
greater of the four quarterly sales values. A complete list of built–in functions that can be
used in the COMPUTE statement is found in Appendix D, "Built-In Functions" (page 628).

Case 8. Creating a field based on the contents of a bit field.

COMPUTE: BONUS = WHEN(FULL–TIME) ASSIGN(TOTAL–SALES * .10)
 ELSE ASSIGN(TOTAL–SALES * .07)

The above example creates a new numeric field named BONUS. Its value will depend on the
contents of the FULL–TIME bit field. When the FULL–TIME bit is "on," the bonus is computed
as 10 percent of TOTAL–SALES. Otherwise (when the bit field is "off") the bonus is
computed as 7 percent of TOTAL–SALES.
514 Spectrum Writer Reference Manual

COMPUTE
Case 9. Using the DIVTOTS ("divide totals") parm with a percentage computation.

COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT

The above example computes the PERCENT–TAX field by dividing the TAX field by the
AMOUNT field. If the DIVTOTS parm had not been specified, the sum of all of the
PERCENT–TAX fields would have printed in the total lines. The DIVTOTS parm tells Spectrum
Writer to use the result of a group-wide division as the total value instead of such a sum.
At control breaks and at Grand Totals time, Spectrum Writer will now divide the total value
of TAX by the total value of AMOUNT. This group–wide division will then be used instead of
the normal total for the PERCENT–TAX field.
Chapter 10. Control Statement Syntax 515

COPY Statement
COPY

PURPOSE
Specifies that control statements stored in a dataset should be processed at this point. This
is useful for groups of control statements that are used in many different jobs.

Also use this statement to copy Cobol or Assembler record layouts from their respective
libraries.

You are allowed to have additional COPY statements imbedded among the statements that
are being copied. This nesting of COPY statements is allowed to any level.

FEATURES
Use the COPY statement to:

! specify where the control statements to be copied are located

! specify whether or not to list the copied control statements in the control listing

LEARNING MORE
The complete syntax of the COPY statement is shown on the following pages. In addition,
the following parts of the manual relate to the COPY statement:

! the Spectrum Writer Copy Library is discussed beginning on page 360

! the OS/390 JCL aspects of the copy library are discussed beginning on page 423

! the VSE JCL aspects of the copy library are discussed beginning on page 437

! the use of the COPY statement in conjunction with Cobol and Assembler record
layouts is discussed on page 382
516 Spectrum Writer Reference Manual

COPY
SYNTAX

Either a copyname parm or a DDNAME parm is required. All other parms are optional. If
present, the copyname parm must be the first parm in the COPY statement. Other parms may
appear in any order.

copyname (under OS/390)
Identifies a member to be copied from a PDS. If present, copyname must be the first parm
in the COPY statement. The copyname parm can be either:

! a PDS member name. Example: COPY: SALES

! a Spectrum Writer alias (under certain circumstances).
Example: COPY: SALES–FILE

A member name is a 1– to 8–byte alphanumeric name that begins with a non–numeric
character. The special characters #, $, and @ are also allowed anywhere in member names.

Normally, the member will be copied from your Spectrum Writer Copy Library — the PDS
pointed to by the SWCOPY DD in your JCL (see page 423). You can, however, copy from a
different PDS by adding a PDSDDN parm to the COPY statement

Note: If a COPY statement occurs within a COBOL record layout, the member will
be copied from the PDS named in the COBLIB DD (not the SWCOPY DD). Similarly, if
the COPY statement occurs within an Assembly language record layout, the member
will be copied from the PDS named in the ASMLIB DD.

Instead of a member name, you can also use an alias name (if you are copying from the
standard SWCOPY PDS). Alias names can be up to 70 characters long and must conform to
the Spectrum Writer naming conventions for file names (page 446). Aliases for library

COPY STATEMENT SYNTAX (OS/390)

COPY: copyname/DDNAME(ddname)
[LIST(YES/NO)]
[NOTALIAS]
[PDSDDN(ddname)]

COPY STATEMENT SYNTAX (VSE)

COPY: copyname
[LIST(YES/NO)]
[NOTALIAS]
[SUBLIB('libr.sublib')]

Standard Alternate
Spelling Spellings
DDNAME DDN
NO N
YES Y
Chapter 10. Control Statement Syntax 517

COPY
members are assigned in a special member named SWALIAS in the standard Spectrum
Writer Copy Library. The use of aliases is discussed in the section beginning on page 367.

Note: Aliases may not be used when the PDSDDN parm is used, or when the COPY
statement occurs within a Cobol or Assembler record layout.

Example: COPY: SALES

The above example copies the member named SALES from the PDS pointed to by the
SWCOPY DD.

Example: COPY: SALES–FILE

The above example specifies that the member associated with the alias "SALES-FILE" should
be copied. That name must be defined as an alias in the SWALIAS member of the copy
library (SWCOPY DD). As shown in Appendix F, "Files Used in Examples" (page 648),
"SALES–FILE" is an alias for the member named "SALES". Therefore, the above statement
would also copy the control statements from the copy library member named SALES.

copyname (under VSE)
Identifies a member to be copied from a Librarian sublibrary. The copyname parm is
required and must be the first parm in the COPY statement. The copyname parm can be any
of the following:

! a member name. Example: COPY: SALES

! a member name and a member type, separated with a dot.
Example: COPY: SALES.SW

! an alias name (under certain circumstances). Example: COPY: SALES–FILE

A member name is a 1– to 8–byte alphanumeric name that begins with a non–numeric
character. The special characters #, $, and @ are also allowed anywhere in member names.

Normally, the member will be copied from your Spectrum Writer Copy Library — the
sublibrary named in an OPTIONS statement SUBLIB parm (see page 437). You can, however,
copy from a different sublibrary by adding a SUBLIB parm to the COPY statement.

Note: You can also specify special sublibraries to be used for COPY statements that
occur within Cobol or Assembler record layouts. Use the COBLIB or ASMLIB options
(in an OPTIONS statement), respectively.

You may also append a member type after the member name, separated by a dot. (For
example: SALES.SW). If no member type is specified in this way, the member type used for
the copy will be:

! "C", if the COPY statement is embedded within a Cobol record layout, or

! "A", if the COPY statement is embedded within an Assembler record layout, or

! the member type specified in an OPTIONS statement MEMTYPE parm, if any, or

! "SPECTWTR" otherwise

Instead of a member name, you can also use an alias name (if you are copying from the
standard copy library specified in an OPTIONS statement SUBLIB parm). Alias names can be
up to 70 characters long and must conform to the Spectrum Writer naming conventions for
518 Spectrum Writer Reference Manual

COPY
file names (page 446). Aliases for library members are assigned in a special member
named SWALIAS.SPECTWTR in the sublibrary named in the SUBLIB parm of an OPTIONS
statement. The use of aliases is discussed in the section beginning on page 367.

Note: Aliases may not be used when the SUBLIB parm (of the COPY statement) is
used, or when the COPY statement occurs within a Cobol or Assembler record
layout.

Example: OPTIONS: SUBLIB(’SPECTRUM.PROD’)
COPY: SALES

The above example copies the member named SALES.SPECTWTR from the SPECTRUM.PROD
sublibrary.

Example: OPTIONS: SUBLIB(’SPECTRUM.PROD’)
COPY: SALES–FILE

The above example specifies that the member associated with the alias "SALES-FILE" should
be copied. That name must be defined as an alias in the SWALIAS.SPECTWTR member of the
copy library (SPECTRUM.PROD). As shown in Appendix F, "Files Used in Examples"
(page 648), "SALES–FILE" is an alias for the member named "SALES". Therefore, the above
statement would also copy the control statements from the copy library member named
SALES.SPECTWTR

DDNAME(ddname)
OS/390 only. Specifies the DD name of a sequential input file that is to be copied. This
feature is useful when the control statements that you want to copy are not in a PDS. This
parm and the copyname parm are mutually exclusive.

One use of the DDNAME parm is to copy datasets that are stored in proprietary libraries that
Spectrum Writer does not access directly (such as PANVALET or LIBRARIAN). Add a job step
ahead of Spectrum Writer to copy the desired proprietary data to a temporary sequential
dataset. Then have Spectrum Writer copy that sequential dataset by using the DDNAME
parm.

Example: COPY: DDNAME(TEMPDD)

The above example specifies that the control statements to be copied are located in a
sequential dataset identified by the TEMPDD DD in the JCL.

LIST(YES/NO)
The LIST parm specifies whether the copied control statements should be listed in the
control listing. If the LIST parm is not specified, the default is not to list the copied
statements.

Note: If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example: COPY: SALES LIST(YES)

The above example specifies that the control statements copied from the SALES member
should be listed in the control listing.

NOTALIAS
Specifies that the copyname parm is not an alias. When this parm is present, no alias
checking is performed and the copyname must be the name of the member to be copied.
Chapter 10. Control Statement Syntax 519

COPY
Use this parm if the name of the member you want to copy also happens to be the alias
name of a different member.

Example: COPY: SALES NOTALIAS

The above example specifies that the control statements should be copied from the member
named SALES. This will be done even if SALES has been defined as an alias for some other
member.

PDSDDN(ddname)
OS/390 only. The PDSDDN parm specifies the DDNAME of a DD statement in the JCL that
points to the PDS containing the member to be copied. This parm is valid only in
conjunction with the copyname parm. When PDSDDN is used, the copyname must specify
a member name rather than an alias. (No alias checking is performed on the copyname.)

Example: COPY: SALES PDSDDN(MYLIB)

The above example specifies that the control statements to be copied are in the PDS
identified by the MYLIB DD in the JCL. The member copied is named SALES.

SUBLIB('lib.sublib')
VSE only. The SUBLIB parm specifies the name of the Librarian sublibrary containing the
member to be copied. When SUBLIB is used, the copyname must specify a member name
(and optionally a member type) rather than an alias. (No alias checking is performed on the
copyname.)

Note: Ensure that your JCL contains any DLBL and EXTENT statements needed to
define the sublibrary named in this parm.

Example: COPY: SALES.TEST SUBLIB('TEST.MYLIB')

The above example specifies that the control statements to be copied are in the sublibrary
named TEST.MYLIB. The member copied is named SALES.TEST.
520 Spectrum Writer Reference Manual

FIELD Statement
FIELD

PURPOSE
Defines one field from an input file to Spectrum Writer. This statement provides certain
essential information about a field, such as where it is located in a record, how long it is,
etc. Before a field can be referred to in any other control statement, it must first be defined
using the FIELD statement.

You can also use the FIELD statement to specify various display options to be used when
the field appears in a report or PC file. These options include: the columns headings to use;
the display format to use; whether to include the field in Grand Totals, etc.

You may have as many FIELD statements as you like. These statements are normally kept
in the Spectrum Writer Copy Library (see page 420).

FEATURES
Use the FIELD statement to:

! define where a field is located within a record

! define the type of data contained within the field

! define the default column headings to be used whenever the field is printed in a
report or PC file

! define the default display format to be used whenever the field is printed in a
report

! define whether or not a numeric field should be accumulated, and therefore
appear in total lines (and other statistical lines)

! define the texts that should be used in a report to indicate whether a bit field is
ON or OFF

! define how to use a data exit to obtain a field's value

LEARNING MORE
The complete syntax of the FIELD statement is shown on the following pages. In addition,
the following parts of the manual relate to the FIELD statement:

! how to write FIELD statements is discussed beginning on page 328.
Chapter 10. Control Statement Syntax 521

FIELD
SYNTAX

The fieldname is required in a FIELD statement, and must be the first item after the
statement prefix. After that, one or more other parms will be required, depending on the
type of field being defined. Those parms may appear in any order.

fieldname
Specifies the name of the field being defined. All other control statements will use this
name when referring to this field. You may assign any name you like, within the rules
governing field names given on page 446.

Example: FIELD: LAST–NAME COLUMN(4) LENGTH(15)

The above example defines a field named LAST–NAME.

 FIELD STATEMENT SYNTAX

FIELD: fieldname
[ACCUM/NOACCUM]
[BIT(n)]
[COLUMN(nnnnn/expr/*)/DISP(nnnnn/expr/*)]
[DECIMALS(nn/0)]
[DXPARM('text')]
[DXPROG('program')]
[DXRETDEC(nn)]
[DXRETLEN(nnnnn)]
[FILE(filename/*)]
[FORMAT(display-format)]
[HEADING('heading1|heading2|heading3...')]
[LENGTH(nnnnn)]
[OFFSET(numeric–expression)]
[OFFTEXT('text')]
[ONTEXT('text')]
[TYPE(datatype/CHAR)]

Standard Alternate
Spelling Spellings
ACCUM ACC
COLUMN COL
DECIMALS DECIMAL, DEC
DESCRIPTION DESC
DISP DISPLACEMENT
DXRETLEN DXRETLGTH
FIELD FLD
FORMAT FMT
HEADING HEADINGS, HEAD
LENGTH LGTH, LEN
NOACCUM NOACC
OFFTEXT OFF
ONTEXT ON
TYPE TYP
522 Spectrum Writer Reference Manual

FIELD
ACCUM/NOACCUM
This parm is valid only for numeric and time fields. Specifies whether a field should be
accumulated or not when it appears as a column in a report. Fields that are accumulated
will appear in the totals line, as well as in any other statistics lines that have been requested
(such as the average line, the maximum line, etc.) Fields that are not accumulated will not
appear in the totals and statistics lines.

By default, Spectrum Writer accumulates all numeric fields listed in the COLUMNS
statement, with one exception. Numeric fields that are displayed using a PICTURE which
contains special characters are not accumulated. (Special characters include such things as
parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed with
such a PICTURE are not accumulated and therefore do not appear in the total line and other
statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you want to see totals for a
time field. This might be desired for time fields that contain durations, as opposed to times
of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS
statement.

The use of the ACCUM and NOACCUM parms is discussed beginning on page 148.

Example: FIELD: DEPT–NUM COLUMN(37) LENGTH(1) TYPE(NUM) NOACCUM

The above example defines a numeric field called DEPT–NUM. When this field appears as a
column in a report, it will not be accumulated. Therefore, the column will not appear in the
Grand Totals line or in control break totals.

Example: FIELD: TIME–ON–PHONE COLUMN(73) LENGTH(4) TYPE(SECS) DECIMALS(1) ACCUM

The above example defines a time field called TIME–ON–PHONE. Since this time field
represents a length of time (as opposed to a time of day), it is appropriate to total this field.
The ACCUM parm tells Spectrum Writer to accumulate this field by default. Therefore, it
will be included in total and statistical lines.

BIT(n)
This parm is valid only for bit type fields. Identifies the specific bit (within a byte) that is
being defined. The bits are numbered from 1 to 8, starting with the leftmost (high order)
bit. If this parm is present, you do not need to specify the TYPE parm. TYPE(BIT) will be
assumed. The use of this parm is discussed beginning on page 347.

Example: FIELD: PART–TIME COLUMN(42) BIT(2)

The above example defines a bit field named PART–TIME. The bit is the second bit from the
left (the X'40' bit) in the 42nd byte of the record. Notice that the TYPE and LENGTH parms
are not needed when defining a bit type field.

Also be aware that the current location counter is not incremented after a bit field is
defined. That means that a COLUMN or DISP parm will required on the next FIELD statement
(unless it happens to be for another bit field within the same byte).
Chapter 10. Control Statement Syntax 523

FIELD
COLUMN(nnnnn/expr/*)/
DISP(nnnnn/expr/*)

Specifies where the field begins within the record. If you use the COLUMN parm, the bytes
in the record are numbered beginning with 1. If you use the DISP parm, the bytes in the
record are numbered beginning with 0. For example, both of the following statements
define the LAST–NAME field as beginning in the 4th byte of the record:

FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: LAST–NAME DISP(3) LENGTH(15)

When reading variable–length records, Spectrum Writer ignores the 4-byte "record
descriptor word" (RDW) at the beginning of each record. Thus, column 1 always refers to
the first byte of actual user data in a record. It does not refer to the first byte of the RDW, if
present. Use the KEEPRDW option (in the FILE, INPUT or OPTIONS statement) if you do want
to define fields within the RDW.

Instead of using actual numbers within these parms, you may use an expression. (When
using expressions, it makes no difference whether you use the COLUMN or the DISP parm.)
An expression consists of another field name or an asterisk, optionally followed by a plus
or minus sign and a number:

COLUMN(fieldname/* [+/– nnnnn])
DISP(fieldname/* [+/– nnnnn])

If a field name is used, that field's starting byte in the record is used as the base of the
expression. If an asterisk is used, the "default location" in the record is used as the base of
the expression. (The default location is defined as the first byte after the previously defined
field.) Following the base, the expression can optionally contain a number to add to, or
subtract from,— that base. The result is then used as the field's starting position in the
record.

Example: FIELD: HIRE–DATE COLUMN(LAST–NAME + 30)

The above example specifies that the HIRE–DATE field begins 30 bytes after the beginning
of the LAST–NAME field. If the LAST–NAME field began in column 4 (displacement 3), then
the HIRE–DATE field will begin in column 34 (displacement 33). Here is another example:

Example: FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD)
FIELD: HIRE–DD COLUMN(* – 2) LENGTH(2)

The first statement above defines HIRE–DATE as a 6 byte date field in the format YYMMDD.
The second statement defines a field which redefines the last two bytes of the previous
field. The second field starts two bytes before the current position in the record. This field,
named HIRE–DD, is just a two byte character field which contains the DD portion of the
HIRE–DATE field.

Note: Blanks are required around any minus sign used in these parms (to avoid
ambiguity with dashes used within fieldnames). Blanks are optional around the plus
sign.

If neither COLUMN nor DISP is specified for a field, the default is to use the "default" location
in the record. In other words, the default is to assume that COLUMN(*) — or DISP(*) — was
specified.

The use of the COLUMN and DISP parms is discussed beginning on page 350.
524 Spectrum Writer Reference Manual

FIELD
DECIMALS(nn/0)
This parm is valid only for numeric and time fields. Specifies how many decimal digits are
contained within the data in the record. If this parm is omitted, the data is assumed to
contain zero decimal digits.

Example: FIELD: SALARY COLUMN(42) LENGTH(4) TYPE(PACKED) DECIMALS(2)

The above example defines a numeric field named SALARY. There are two decimal digits
in this field's data. Thus, if the value in a record is X'0123456C', the SALARY value would be
1234.56.

Example: FIELD: TIME–ON–PHONE COLUMN(69) LENGTH(4) TYPE(SECS) DECIMALS(1)

The above example defines a time field named TIME–ON–PHONE. It is a 4–byte field
containing a time expressed as a number of seconds. The number of seconds includes one
decimal digit. Thus, if the value in a record is C'0123', the TIME–ON–PHONE value would be
12.3 seconds (00:00:12.3).

DXPARM('text')
This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example).
Anytime the user data exit program is called by Spectrum Writer, the text specified in this
parm will be passed to the exit program. Typically this text is used to tell the exit program
what function to perform. The use of this parm is discussed in the section beginning on
page 357.

Example: See the example below under the DXPROG parm.

DXPROG('program')
This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example).
Specifies the name of the load module (OS/390) or phase (VSE) that Spectrum Writer will
call in order to obtain the field's value. The use of this parm is discussed in the section
beginning on page 357.

Example: FIELD: DECRYPTED–NAME TYPE(CHAREXIT) COLUMN(29) LENGTH(15)
 DXPROG('DECRYPGM')
 DXPARM('DECRYPT NAME')
 DXRETLEN(20)

The above example defines a character field named DECRYPTED–NAME. The contents of this
field do not exist within the record itself, but can be created by an exit program named
DECRYPGM. (This imaginary program takes a 15 byte encrypted value and decrypts it into
a readable 20-byte name). The DECRYPGM program will be passed the 15 bytes of data
beginning at column 29 in the record. It will also be given the contents of the parm
("DECRYPT NAME") to tell it what function it should perform. The exit program will then
perform its decryption logic and return a 20-byte value to be used by Spectrum Writer as
the value for the DECRYPTED–NAME field.

DXRETDEC(nn)
This parm is required for all fields whose TYPE is NUMEXIT or TIMEEXIT, and is not allowed
for any other type of field. This parm tells Spectrum Writer how many decimal digits there
will be in the numeric or time value returned by the data exit for this field. For any kind of
data exit field, the FIELD statement's DECIMALS parm value (if any) is simply passed to the
data exit (which may or may not choose to make any use it). The DXRETDEC parm tells how
many decimal digits to expect in the value passed back from the exit. Spectrum Writer
needs to know how many decimal digits have been returned so that it can correctly format
Chapter 10. Control Statement Syntax 525

FIELD
the value (including the decimal point) when printing this field in a report. The use of this
parm is discussed in the section beginning on page 357.

Example: FIELD: LAST–YEAR–SALES TYPE(NUMEXIT)
 COLUMN(EMPL–NUM) LENGTH(3)
 DXPROG('SALELKUP')
 DXPARM('LAST YEAR')
 DXRETDEC(2)

The above example defines a numeric field named LAST–YEAR–SALES. The contents of this
field do not exist within the record itself, but can be looked up in a special table by an exit
program named SALELKUP. (This program takes a 3 byte employee number and looks up
the sales figure for the year specified in the parm.) The SALELKUP program will be passed
the 3 bytes of data beginning at the EMPL–NUM field in the record. It will also be given the
contents of the parm ("LAST YEAR") to tell it what function it should perform. The exit
program will then return the numeric value to be used for the LAST-YEAR-SALES field. That
value will contain two decimal digits.

DXRETLEN(nnnnn)
This parm is required for all fields whose TYPE is CHAREXIT, and is not allowed for any
other type of field. This parm tells Spectrum Writer the length of the character data that will
be returned by the data exit program for this field. For a CHAREXIT field, the FIELD
statement's LENGTH parm specifies how many bytes of raw data from the input record
should be passed to the data exit. The DXRETLEN parm tells how many bytes will be passed
back from the data exit. Spectrum Writer needs to know how much data will be passed back
from the exit so that it can reserve the correct amount of space when printing this field in
a report. The use of this parm is discussed in the section beginning on page 357.

Example: See the example above under the DXPROG parm.

FILE(filename/*)
Identifies the file in which the field is found. If this parm is omitted, it is assumed that the
field being defined exists in the most recently defined file. (Files are defined using the FILE
control statement.) This parm is useful for defining fields "out of order." This might occur
if you used a COPY statement to read in the FILE and FIELD statements for several different
files, and you want to go back and define additional fields for an earlier file.

Example: FIELD: WHOLE–NAME COLUMN(4) LENGTH(30) FILE(EMPL–FILE)

The above example defines a field named WHOLE–NAME. This field is defined as a field in
the EMPL–FILE file, even if other files have been defined more recently.

FORMAT(display–format)
Specifies the default format to be used when displaying the field in a report. This parm is
used mainly for numeric, date and time fields. Appendix B, "Display Formats" (page 617)
contains a complete list of the display formats available for each type of data.

If the FORMAT parm is omitted, a default display format will be used to format the field in
a report. (The default display formats are listed on page 618.)

The FORMAT parm that you specify in the FIELD statement tells Spectrum Writer the default
format to use when displaying the field anywhere in the report–– in the titles, the main
report lines, the break headings and footings, etc. Any display format specified here,
however, can be overridden by putting a display format parm directly in the COLUMNS
statement (or TITLE statement, etc.)
526 Spectrum Writer Reference Manual

FIELD
Note: The display–format parm is not allowed for bit fields. Bit fields are always
displayed in a report with either the ONTEXT or OFFTEXT text.

Note: Specifying a PC file option (EXCEL, for example) causes any display format
specified in the FIELD statement to be overridden (with a display format appropriate
for the desired PC program).

Note: Fields containing invalid data are normally displayed using a special error
indicator (for example, ****I****). This happens regardless of what display format may
have been specified for the field.

Example: FIELD: SALARY COLUMN(56) LENGTH(4) TYPE(PACK) FORMAT(PIC'$$,$$$,$$9.99')
FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD) FORMAT(LONG1)
FIELD: STATUS–BYTE COLUMN(42) LENGTH(1) FORMAT(HEX)

The first example above defines a numeric field named SALARY. When SALARY is displayed
in a report, the PICTURE specified in the FORMAT parm will be used to format it. It will
occupy 13 bytes, will include a floating dollar sign, and will show two decimal digits.

The second example defines a date field named HIRE–DATE. When this field is displayed in
a report, the date will be formatted in the LONG1 format (with the month name spelled out
completely).

The third example defines a one byte character field named STATUS–BYTE. When this field
is displayed in a report, it will be shown in hexadecimal format (for example C1).

HEADING('heading1|heading2|heading3 ...')
Specifies the column heading line(s) to use for this field when it appears in a report or PC
file. Enclose the column heading text in either apostrophes or quotation marks. If you need
to use that same character (an apostrophe or quotation mark) within the text, use two of
those characters for each character desired.

Use the vertical bar (|) to separate the column heading text into separate lines.

Note: You may use the HDGSEP parm of the OPTIONS statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If no HEADING parm is specified, Spectrum Writer will use the field name itself as the
column heading. The name will be broken apart at each dash or underscore, with each part
of the name going onto a separate heading line.

Any column headings specified here can be overridden by using an override column
heading parm in the COLUMNS statement.

See page 130 for more information on column headings.

Example: FIELD: LAST–NAME HEADING('NAME OF|EMPLOYEE') COLUMN(4) LENGTH(15)

The above example defines a field called LAST–NAME. When this field appears as a column
in a report, its column heading will be "NAME OF" on the first line, and "EMPLOYEE" on the
second line.
Chapter 10. Control Statement Syntax 527

FIELD
LENGTH(nnnnn)
Specifies how many bytes the field occupies in the record. Some data types imply a
particular length (for example, FULLWORD and YYMMDD). For such data types, the LENGTH
parm is not required. For data types that can be of various lengths, the LENGTH parm is
required. The maximum length allowed varies according to the data type of the field being
defined. The tables in Appendix A, "Data Types" (page 609) show the maximum length
allowed for each data type. They also show which data types have a standard default length.

Note: This parm tells how many bytes a field occupies in the input record. This is
not necessarily equal to the number of digits that a numeric field contains. Refer to
page 335 which discusses how to compute a numeric field's length based on how
many digits it has.

Example: FIELD: FIRST–NAME COLUMN(19) LENGTH(15)
FIELD: SALARY COLUMN(46) LENGTH(4) TYPE(PACKED)

The first example above defines a character field (FIRST–NAME) that occupies 15 bytes in
the record. The second example defines a numeric field (SALARY) which occupies 4 bytes
in the record. Since the field is defined as a PACKED type field, it will actually contain 7
digits.

OFFSET(numeric–expression)
Used to define the beginning of a "variably located" record segment. (That is, a segment
that begins at different locations in different input records.) The contents of the OFFSET
parm tell Spectrum Writer the offset from the beginning of the record to the variably
located segment. The OFFSET parm can contain any numeric expression. Spectrum Writer
computes the value of the OFFSET parm anew for each input record (since the value can
vary from record to record). It then adds this value to the location specified in the DISP or
COLUMN parm (if there is one) to determine where the field is located within the input
record. For more information on using the OFFSET parm, see "Variably Located Record
Segments" on page 353.

Note: The OFFSET value remains in effect for all subsequent FIELD statements, until
another OFFSET parm is used to change or cancel it. Use OFFSET(0) in a FIELD
statement if you later want to define fields without any OFFSET value.

Note: The OFFSET parm also resets the default location pointer to "displacement
zero." Thus, unless an explicit DISP (or COLUMN) parm is also specified, the field
being defined will be at displacement zero within the variably located segment. If
needed, you can use an explicit DISP (or COLUMN) parm to specify that the field
begins at some other displacement within the segment.

Example
** FIELDS IN FIXED LOCATIONS
FLD: ID–OFFSET DISP(32) TYPE(FULLWORD) /* DISP TO IDENTIFICATION SEGMENT */
FLD: ID–LEN TYPE(HALFWORD)
FLD: ID–NUM TYPE(HALFWORD)
FLD: IO–OFFSET TYPE(FULLWORD) /* DISP TO I/O ACTIVITY SEGMENT */
FLD: IO–LEN TYPE(HALFWORD)
FLD: IO–NUM TYPE(HALFWORD)
**
** SELECTED FIELDS FROM THE VARIABLY LOCATED IDENTIFICATION SEGMENT
FLD: JOBNAME LEN(8) OFFSET(ID–OFFSET)
FLD: PGMNAME LEN(8)
FLD: STEPNAME LEN(8)
**
528 Spectrum Writer Reference Manual

FIELD
** SELECTED FIELDS FROM THE VARIABLY LOCATED I/O ACTIVITY SEGMENT
FLD: NUM-CARDS TYPE(FULLWORD) OFFSET(IO–OFFSET)
FLD: NUM-TPUTS TYPE(FULLWORD) DISP(*+4)
FLD: NUM-TGETS TYPE(FULLWORD)
**
FLD: FILLER OFFSET(0) LEN(1) /* A "DUMMY" FIELD TO CANCEL THE OFFSET PARM */

The above statements use OFFSET parms to define two variably located segments within an
SMF type 30 record. See "Variably Located Record Segments" (page 353) for a further
explanation of this example.

OFFTEXT('text')
This parm is valid only for bit type fields. Specifies a text to print in reports for a bit field
when its value is OFF. If omitted, the default is to print the word "NOT" followed by the field
name itself (when its value is OFF). The use of this parm is discussed in the section
beginning on page 347.

Example: FIELD: PART–TIME COLUMN(42) BIT(2)
 ONTEXT('PART TIME EMPL') OFFTEXT('FULL TIME EMPL')

The above example defines a bit field named PART–TIME. When this field is printed in a
report, the text "PART TIME EMPL" will print if the field's value is ON. The text "FULL TIME
EMPL" will print if the field's value is OFF.

Example: FIELD: DELETE–BIT COLUMN(100) BIT(8) ONTEXT('1') OFFTEXT('0')

The above example defines a bit field named DELETE–BIT. When this field is printed in a
report, a "1" will print if the field's value is ON, and a "0" will print if the field's value is OFF.

ONTEXT('text')
This parm is valid only for bit type fields. Specifies a text to print in reports for a bit field
when its value is ON. If omitted, the default is to print the field name itself in the report
(when its value is ON). The use of this parm is discussed in the section beginning on
page 347.

Example: See the example above under the OFFTEXT parm.

TYPE(datatype/CHAR)
Specifies what type of data the field contains. There are five general categories of data that
Spectrum Writer recognizes: character, numeric, date, time, and bit. However, within each
category there is more than one way that the data can actually be represented in a record.
The TYPE parm specifies exactly how the data is stored in a record. Appendix A, "Data
Types" (page 609) contains a complete list of the data types that Spectrum Writer supports.

If the TYPE parm is omitted, the default data type of CHAR (character) is assumed. However,
there is one exception to this rule. If a BIT parm is present in the FIELD statement, then a data
type of BIT is assumed.

Example: FIELD: SALARY TYPE(COMP-3) COLUMN(46) LENGTH(4)
FIELD: HIRE–DATE TYPE(YYMMDD) COLUMN(34)
FIELD: PART–TIME TYPE(BIT) COLUMN(42) BIT(2)

The first example above defines a numeric field (SALARY) which contains COMP-3 data.
(COMP-3 data is called "packed" in Assembler and "fixed decimal" in PL/1.)
Chapter 10. Control Statement Syntax 529

FIELD
The second example defines a date field (HIRE–DATE) which contains a date in character
YYMMDD format.

The third example defines a bit field (PART–TIME). The bit is the second bit from the left
(the X'40' bit) in the 42nd byte of the record. In this example, it was not actually necessary
to specify the TYPE parm, since the BIT parm implies a data type of BIT.
530 Spectrum Writer Reference Manual

FILE Statement
FILE

PURPOSE
Defines one input file to Spectrum Writer. Before a file can be used as input for a report or
PC file, it must first be defined using the FILE statement.

This statement by itself does not specify that a file should be used as input for a particular
run. This statement simply defines a filename to Spectrum Writer so that subsequent
control statements can refer to it. After a file has been defined using this statement, an
INPUT or READ statement may be used to request that the file be used as input to a report or
PC file.

You may have as many FILE statements as you like. These statements are normally kept
together with FIELD statements in the Spectrum Writer Copy Library (see page 420).

FEATURES
Use the FILE statement to:

! define the DDNAME or DLBL/TLBL to use when reading a file

! define the type of file (for example, whether it's VSAM)

! define a file's record length

LEARNING MORE
The complete syntax of the FILE statement is shown on the following pages. In addition, the
following parts of the manual relate to the FILE statement:

! how to write FILE statements is discussed beginning on page 328

! using a file that is accessed in a user I/O Exit is discussed in Appendix I, "I/O
Exits" (page 673).
Chapter 10. Control Statement Syntax 531

FILE
SYNTAX

The filename is required in a FILE statement and must be the first item after the statement
prefix. After that, one or more other parms may be required, depending on the type of file
being defined. Those parms may appear in any order.

filename
This parm specifies the name of the file being defined. All other control statements will use
this name when referring to this file. You may assign any name you like, within the rules
governing file names given on page 446.

Example: FILE: SALES–FILE DDNAME(SALESDD)

The above example defines a file named SALES–FILE.

ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize [,blksize] [,STDLABEL/NOLABEL])
VSE only. This parm describes the attributes of a VSE file. This parm can also be specified
in the INPUT and READ statements (and omitted from the FILE statement. For a file to be used
as an input file in a report, the ATTR must be specified either in this statement, or in the
INPUT or READ statement.

The following table describes the subparms. It is not necessary to use "place holding"
commas for omitted subparms.

FILE STATEMENT SYNTAX

FILE: filename
[ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize

 [,blksize] [,STDLABEL/NOLABEL]) (VSE only)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (OS/390 only)]
[EXITPARM('text')]
[IOEXIT(‘program' [,'parm'] [,TRACE])]
[KEEPRDW]
[LRECL(nnnnn/1000) (OS/390 only)]
[NORMALIZE(fieldname, num-expr [, ...]) ...]
[NORMWHEN(conditional-expression)]
[STOPWHEN(conditional-expression)]
[TYPE(SEQ/VSAM/DB2/EXIT) (OS/390 only)]

Standard Alternate
Spelling Spellings
DDNAME DDN
DESCRIPTION DESC
EXITPARM PARM
FILE FIL
NORMALIZE NORM
NORMWHEN NORMALIZEWHEN
532 Spectrum Writer Reference Manual

FILE
Example: FILE: SALES–FILE ATTR(DASD, 'SALEFIL', 80, 160)

The statement above defines a file named SALES–FILE. It is a SAM file on DASD, uses SALEFIL
as the DLBL name, has fixed length 80–byte records, and has 160–byte blocks.

SUBPARMS ALLOWED IN THE ATTR PARM

SUBPARM MEANING

type

This parm is required. It tells Spectrum Writer what kind of file is
being defined. It must be one of the following values:

DASD a SAM file on a DASD device (disk). Use DASD (rather than
VSAM) for VSAM–managed SAM files.

TAPE a SAM file residing on a magnetic tape

VSAM a VSAM file

EXIT a file accessed via an I/O Exit program

'dlbl/tlbl'

This parm is required (except for exit files). It specifies the filename
of a DLBL or TLBL statement present in the JCL. This DLBL/TLBL
statement in the JCL will identify the actual data set to be read.
Spectrum Writer uses the DLBL/TLBL to open an input file and read
from it. This parm must be a 1– to 7–byte name within apostrophes
(or quotation marks). For EXIT type files, the this parm is not
required, but will be passed to the I/O Exit program if it is specified.

SYSnnn

This parm is required for TAPE files. It is treated as a comment for
other file types. It identifies the logical unit on which the file will
reside. The value specified here must also be "assigned" to a tape
drive in your execution JCL.

F/V This parm specifies whether your file contains fixed (F) or variable
(V) length records. If omitted, fixed (F) is assumed.

recsize

This parm is required. It specifies the length of the records in your
file. For variable length files, this parm specifies the length of the
largest record that may be encountered in the file. Also, for variable
length files this value should include the length of the 4–byte "record
descriptor word" (RDW) which begins each variable–length record.

blksize

This parm is optional. It is treated as a comment for VSAM and EXIT
files. For DASD and TAPE files, it specifies the length of each block in
the file. For variable length files, this parm specifies the length of the
largest block that may be encountered in the file. Also, for variable
length files this value should include the length of the 4–byte block
prefix. If block size is not specified, single record blocking is
assumed. For fixed length files, this means a block size equal to the
record size is assumed. For variable length files, this means that a
block size equal to the record size plus 4 is assumed.

STDLABEL/
NOLABEL

This parm is optional and is allowed only for TAPE files. It specifies
whether the tape file has standard labels (the default) or no labels.
Chapter 10. Control Statement Syntax 533

FILE
See page 331 for more examples and for a discussion of the ATTR parm.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view to associate with this file. The table
name must be enclosed in quotation marks or apostrophes. Generally the table name will
be qualified. If it is not explicitly qualified, DB2 will assume an implicit qualifier, which
will be the Authorization ID of the job which is executing Spectrum Writer. When this
parm is present, no parms other than the filename are required in the FILE statement. The
TYPE(DB2) parm is assumed.

Note: A FILE statement is not required when working with DB2 inputs. You can
specify the DB2NAME directly in your INPUT and READ statements. See page 393.

Example: FILE: PROJECT DB2NAME('DSN8230.PROJ')

The above example defines a file that will be referred to in Spectrum Writer control
statements as PROJECT. It refers to the DB2 table (or view) named DSN8230.PROJ.

DDNAME(ddname)
OS/390 only. The DDNAME parm specifies the name of a DD statement present in the JCL.
This DD statement will identify the actual data set to be read. Spectrum Writer uses the
DDNAME value to open an input file and read from it. The DDNAME parm can also be
specified in the INPUT or READ statements (and omitted in the FILE statement.)

For a file to be used as an input file in a report, the DDNAME must be specified either in this
statement, or in the INPUT or READ statement. For EXIT type files, the DDNAME parm is not
required, but will be passed to the I/O Exit program if it is specified.

Example: FILE: SALES–FILE DDNAME(SALESDD)

The above example defines a file named SALES–FILE. When records from this file are
needed in a report, the DD named SALESDD in the JCL will be used.

EXITPARM('text')
This parm specifies any information that should be passed to user data exit programs (not
to be confused with "I/O Exit" programs). (Most installations will not use data exits, and
will not need this parm.) Anytime a data exit program is called by Spectrum Writer for a
field within this file, the text string specified in this parm will be passed to it. The use of
the EXITPARM parm is discussed in the section beginning on page 357.

Example: FILE: SALES–FILE EXITPARM('XYZ')

The above example defines a file named SALES–FILE. If any fields within this file are
defined as exit type fields, the text "XYZ" will be passed to their data exit programs each
time they are called.

IOEXIT(‘program' [,'parm'] [,TRACE])
EXIT files only. This parm provides the information necessary for Spectrum Writer to
process an EXIT type input file. More information on I/O Exits can be found in Appendix I,
"I/O Exits" (page 673).

OS/390 Note: When this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.
534 Spectrum Writer Reference Manual

FILE
VSE Note: When this parm is present, an ATTR parm specifying a type of EXIT and
a RECSIZE is required.

'program' This parm is required. It specifies the name of the load module (OS/390) or phase
(VSE) that Spectrum Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Spectrum Writer,
the text specified in this parm is passed to the exit program. Typically this text is used to
provide the exit program with any special information it may need in order to process the
file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Spectrum Writer prints trace information in
the control listing before and after each call to the I/O Exit. This information can be useful
when developing and debugging a new I/O Exit program. The TRACE parm is normally not
used in production runs.

Example: FILE: MASTER-FILE IOEXIT('MYEXIT')

The above example specifies that a program named MYEXIT should be called whenever a
record is needed from MASTER-FILE.

KEEPRDW
Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte
"record descriptor word" (RDW) at the beginning of each record should be considered a part
of the record. The default is to treat the record as starting after the RDW. The use of this
parm is discussed on page 352.

Example: FILE: PAYROLL–FILE KEEPRDW

The above example specifies that the RDW should be kept when reading records from the
PAYROLL–FILE. Thus, assuming that PAYROLL–FILE is a non–VSAM variable length file, a
field defined as starting in column 1 would point to the 2–byte record length within the
RDW.

LRECL(nnnnn/1000)
OS/390 only. Specifies the length of the largest record that might be found in the file. If this
parm is not specified, Spectrum Writer assumes a default LRECL of 1000.

Note: Spectrum Writer uses this value only to determine the size of the I/O area that
it allocates for use with the input file. Therefore it is not required that this value
match the file’s actual LRECL parm in the JCL or in the dataset’s label information.
In fact, if you suspect that a file's record size may grow in the future, you may want
to specify a larger LRECL parm with some "growth" room in it. On the other hand,
specifying an excessively large LRECL may result in higher CPU usage in some
circumstances.

Note: When defining variable length SEQ files, the LRECL should include the length
of the 4–byte "record descriptor word" (RDW) at the beginning of each record.

Example: FILE: SMF–FILE LRECL(32767)

The above example defines a file named SMF–FILE. The LRECL parm specifies that records
as large as 32,767 bytes may be encountered in the file. Spectrum Writer will reserve a
32,767 byte I/O area for reading records from this file.
Chapter 10. Control Statement Syntax 535

FILE
NORMALIZE(fieldname, num-expr [, ...]) ...
Specifies how to normalize the file. (See "Using Normalization to Process Arrays" on
page 237 for an explanation of file normalization.)

The NORMALIZE parm can be specified either here in the FILE statement or later in an INPUT
or READ statement. If a file will be normalized for most runs, it is usually more convenient
to put the parm here in the FILE statement. (NORMALIZE parms in the FILE statement can be
cancelled, if desired, by specifying NONORMALIZE in the INPUT or READ statement.)

A full description of the NORMALIZE parm appears under the INPUT statement syntax on
page 548.

NORMWHEN(conditional-expression)
Specifies which records from the file to normalize. (This parm is discussed in more detail
under "Normalizing only Certain Records" on page 247.)

The NORMWHEN (and NORMALIZE) parms can be specified either here in the FILE statement
or later in an INPUT or READ statement. If a file will be normalized for most runs, it is usually
more convenient to put the parms here in the FILE statement.

A full description of the NORMWHEN parm appears under the INPUT statement syntax on
page 549

STOPWHEN(conditional-expression)
Tells Spectrum Writer to stop reading this file when a certain condition is met.(when the
file is used as the primary input for a run).

The STOPWHEN parm can be specified either here in the FILE statement or later in the INPUT
statement. It is safer to specify this parm in each report’s INPUT statement unless you are
sure that the parm should apply to all runs from the file. (This is because any users who are
not aware of the STOPWHEN parm in this statement could unknowingly get inaccurate
results.)

If you do use a STOPWHEN parm in the FILE statement, it can be overridden by specifying
NOSTOPWHEN in the INPUT statement.

A full description of the STOPWHEN parm appears under the INPUT statement syntax on
page 551.

TYPE(SEQ/VSAM/DB2/EXIT)
OS/390 only. Specifies the type of access method to use when reading this file. If not
specified, SEQ is assumed. Valid types are listed in the following table:

FILE TYPES ALLOWED IN THE TYPE PARM

FILE TYPE DESCRIPTION

SEQ

Standard sequential files, including tapes and disk datasets. The
QSAM access method will be used. Sequential files can only be used
as a primary input file (in the INPUT statement). They may not be used
as an auxiliary input file (in a READ statement).
536 Spectrum Writer Reference Manual

FILE
Example: FILE: EMPL–FILE TYPE(VSAM) DDNAME(EMPLFILE) LRECL(150)

The above example defines a VSAM file named EMPL–FILE.

VSAM

Any VSAM file, whether keyed or not. The IDCAMS access method will
be used. Any kind of VSAM file can be used as a primary input file (in
the INPUT statement). However, only keyed VSAM files may be used
as auxiliary input files (in READ statements).

DB2

A DB2 table or view. This parm is optional, since Spectrum Writer
assumes a TYPE of DB2 whenever the DB2NAME parm is used in the
FILE statement. You may use this parm for documentation purposes
if you wish.

EXIT

A file accessed via an I/O Exit program. This parm is optional, since
Spectrum Writer assumes a TYPE of EXIT whenever the IOEXIT parm
is used in the FILE statement. You may use this parm for
documentation purposes if you wish.

FILE TYPES ALLOWED IN THE TYPE PARM (CONTINUED)

FILE TYPE DESCRIPTION
Chapter 10. Control Statement Syntax 537

FOOTNOTE Statement
FOOTNOTE

PURPOSE
Specifies a footnote to print at the bottom of each page of the report. You may have as
many FOOTNOTE statements in your report as you like. Each FOOTNOTE statement creates
one line at the bottom of your report.

FOOTNOTE statements are ignored when producing PC files.

FEATURES
Use the FOOTNOTE statement to:

! specify the contents of the footnote lines (which can include literal text, data
from input files, and special items like the current page number, date, time, etc.)

! specify how to left align, center and right align different parts of the same
footnote

! specify the desired width, display format, and justification for data fields that
appear in a footnote

LEARNING MORE
The complete syntax of the FOOTNOTE statement is shown on the following page. In
addition, the following parts of the manual relate to the FOOTNOTE statement:

! the use of the FOOTNOTE statement is discussed beginning on page 175
538 Spectrum Writer Reference Manual

FOOTNOTE
SYNTAX

The FOOTNOTE statement consists of from one to three print expressions, separated by
slashes. If a FOOTNOTE statement has no slashes, the single print expression will be
centered under the report. If there is one slash, the first print expression will be left aligned
and the second print expression will be right aligned under the report. If there are two
slashes, the first print expression will be left aligned, the second one will be centered, and
the third one will be right aligned. It is okay for one or more of the print expressions to be
empty. Examples of using various combinations of print expressions and slashes is
illustrated in the section beginning on page 168.

You may also use empty FOOTNOTE statements. An empty FOOTNOTE statement results in
one blank footnote line.

The syntax of the FOOTNOTE statement is identical to that of the TITLE statement. See
page 604 for the complete syntax information.

FOOTNOTE STATEMENT SYNTAX

FOOTNOTE: print–expression [/ print–expression] [/ print–expression]

Note: the syntax for the print-expressions — which is identical to that of TITLE
statement print-expressions — is shown on page page 604.

Standard Alternate
Spelling Spellings
FOOTNOTE FOOT
Chapter 10. Control Statement Syntax 539

INCLUDEIF Statement
INCLUDEIF

PURPOSE
Specifies which input records to include in the report or PC file. Each time a record is read
from the primary input file, the expression in the INCLUDEIF statement is evaluated using
the data from that record (and from any necessary auxiliary input file records). If the
expression in the INCLUDEIF statement is true, then that record will be included in the run.
If the expression is not true, then the record will not be included in the run. This process
goes on until all records in the primary input file have been read and evaluated. The records
that were included are then sorted and formatted into the desired report or output file.

Only one INCLUDEIF statement is allowed per report, but it may contain as many conditions
as you like.

If no INCLUDEIF statement is specified, all records from the input file will be included in
the run.

To include only a certain number of records from the input file in your report, use the
MAXINPUT or MAXINCLUDE parms in the OPTIONS statement.

During the evaluation of the INCLUDEIF expression, if a test is attempted that involves a
field with an error condition, the whole INCLUDEIF expression is automatically considered
false and the input record is not included in the run. An example of such an error condition
is when a packed–type field contains hex zeros or spaces. Other examples include
computed fields where an overflow or divide–by–zero error occurred during their
computation. However, see the OPTIONS statement's ZEROINVDATA, ZEROOVERFLOW and
ZERODIVZERO parms. These options can be used to treat fields with error conditions as
though they contained a zero value.

FEATURES
Use the INCLUDEIF statement to:

! select which input records will appear in a report or output file

LEARNING MORE
The complete syntax of the INCLUDEIF statement is shown on the following page. In
addition, the following parts of the manual relate to the INCLUDEIF statement:

! a lesson on using the INCLUDEIF statement with reports begins on page 40

! a lesson on using the INCLUDEIF statement with PC files begins on page 93

! the syntax of conditional expressions (including examples) is described
beginning on page 459
540 Spectrum Writer Reference Manual

INCLUDEIF
! suggestions on writing INCLUDEIF statements for maximum CPU efficiency are
given in Appendix G, "Speed-Up Tips" (page 652)

SYNTAX

conditional–expression
Specifies one or more conditions to evaluate. As each record is read from the input file, the
conditions specified in this expression are evaluated. If the conditional expression is true,
the record is included in the run. Otherwise, the record is not included in the run. The
syntax for conditional expressions is shown on page 459.

INCLUDEIF STATEMENT SYNTAX

INCLUDEIF: conditional–expression

Standard Alternate
Spelling Spellings
INCLUDEIF INCLUDE, INCL, INC
Chapter 10. Control Statement Syntax 541

INPUT Statement
INPUT

PURPOSE
Specifies which file should be used as the primary input for a report or PC file. One (and
only one) INPUT statement is required in order to produce a Spectrum Writer report or PC
file.

FEATURES
Use the INPUT statement to:

! specify the name of the primary input file for a report or PC file

! to automatically copy additional control statements from the Spectrum Writer
Copy Library (typically to copy the FILE and FIELD statements that define the
input file)

! specify a record name to be associated with records from this input file

! temporarily override certain aspects of the input file definition (such as the
DDNAME, the file type, etc.)

LEARNING MORE
The complete syntax of the INPUT statement is shown on the following pages. In addition,
the following parts of the manual relate to the INPUT statement:

! a lesson on using the INPUT statement begins on page 34

! information on using the INPUT statement with DB2 tables begins on page 393

! reading a file that is processed by a user I/O Exit is discussed in Appendix I, "I/O
Exits" (page 673)
542 Spectrum Writer Reference Manual

INPUT
SYNTAX

The filename is required in an INPUT statement, and must be the first item after the
statement prefix. All other parms are optional and can appear in any order in the INPUT
statement.

filename
Specifies the primary input file for the run. This file will be read sequentially — from
beginning to end. (Certain options, such as KEYRANGE and STOPWHEN, can reduce the

INPUT STATEMENT SYNTAX

INPUT: filename
[ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize
 [,blksize] [,STDLABEL/NOLABEL]) (VSE only)]

[BUFND(nnn) (VSAM only)]
[BUFNI(nnn) (VSAM only)]
[CLEAR(SPACES/ZEROS/NO)]
[COPY(YES/NO)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (OS/390 only)]
[EXITPARM('text')]
[IOEXIT(‘program’ [,’parm’] [TRACE])]
[KEEPRDW]
[KEYRANGE(‘begin’ [’end’])]
[LIST(YES/NO)]
[LRECL(nnnnn) (OS/390 only)]
[NONORMALIZE]
[NORMALIZE(fieldname, num-expr [, ...]) ...]
[NORMWHEN(conditional-expression)]
[NOSTOPWHEN]
[ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)]
[ORDERBY(fieldname [ASC/DESC] [, ...]) (DB2 only)]
[RECNAME(name/filename)]
[SHOWFLDS(YES/NO)]
[STOPWHEN(conditional-expression)]
[TYPE(SEQ/VSAM/DB2/EXIT) (OS/390 only)]
[WHERE(search–condition) (DB2 only)]

Standard Alternate
Spelling Spellings
DDNAME DDN
DEFAULT DEF
ERROR ERR
EXITPARM PARM
INPUT INP
NO N
NONORMALIZE NONORM
NORMALIZE NORM
NORMWHEN NORMALIZEWHEN
ONNORMERROR ONNORMERR
TYPE TYP
WARNING WARN
YES Y
Chapter 10. Control Statement Syntax 543

INPUT
number of records read.) Each record that passes the conditions in the INCLUDEIF statement
(if there is one) will be included in the run.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically copied
at the time the INPUT statement is processed. This process is explained beginning on
page 360.

Example: INPUT: EMPL–FILE

The above example specifies that the file named EMPL–FILE will be the primary input file
for the run.

ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize [,blksize] [,STDLABEL/NOLABEL])
VSE only. Specifies override file attributes to use for this file (for the current run only). For
a complete description of the ATTR parm, see under the FILE statement syntax (page 531).
For examples of using this parm, see page 331.

Example: INPUT: SALES–FILE ATTR(DASD,'SALEFIL',80,160)

The statement above names SALES–FILE as the primary input file for the run. Regardless of
how SALES–FILE was earlier described in a FILE statement, it will be treated in the current
run as a SAM file on DASD, with SALEFIL as the DLBL name, with fixed length 80-byte records
and with 160–byte blocks.

BUFND(nn)
VSAM files only. Specifies the number of "data buffers" that the VSAM access method should
maintain when processing this input file. When this parm is not specified for a VSAM file,
Spectrum Writer chooses a default number of data buffers to maintain.

Note: According to the VSAM manual, increasing the number of data buffers to 4 or
5 (from VSAM's default of 2) should improve performance for sequential processing.
At some point after that, excessive paging may cancel any benefit. You may wish to
experiment with this parm if you have long–running, VSAM-intensive jobs.

Example: INPUT: EMPL–FILE BUFND(5)

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

BUFNI(nn)
VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a VSAM
file, Spectrum Writer chooses a default number of index buffers to maintain.

Note: According to the VSAM manual, VSAM's default number of index buffers
(which is 1) should be sufficient for sequential processing of VSAM files that have
index components. You may wish to experiment with this parm if you have
long–running, VSAM–intensive jobs.

Example: INPUT: EMPL–FILE BUFND(5) BUFNI(2)

The above statement specifies that VSAM should allocate buffers for 5 data control intervals
and 2 index control intervals when processing the EMPL–FILE.
544 Spectrum Writer Reference Manual

INPUT
CLEAR(SPACES/ZEROS/NO)
When processing certain types of input files, Spectrum Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not followed
by leftover data from a previous longer record. For certain record layouts such leftover data
could cause misleading results. Specifying CLEAR(NO) suppresses this clearing, which may
result in improved performance. You might want to specify CLEAR(NO) if you are certain
that any leftover data in the I/O area will not adversely affect your run. Specifying
CLEAR(ZEROS) causes Spectrum Writer to initialize the I/O area to hex zeros (rather than
blanks) before each read.

Note: You can also specify the CLEAR parm in the FILE statement to avoid having to
put it in the INPUT statement each time. The NOCLEARIO parm in the OPTIONS
statement can be used to prevent clearing of all files in a run.

Example: INPUT: PAYROLL–FILE CLEAR(NO)

The above statement names the PAYROLL–FILE as the input file for a run. Spectrum Writer
will not clear its I/O area each time it reads a record from that file.

COPY(YES/NO)
Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the input
file. This process is explained beginning on page 360.

If an attempt to copy records is unsuccessful (due to a missing copy library or a missing
member) that is not considered an error. Normal control statement processing continues,
without any copy being performed.

Example: INPUT: EMPL–FILE COPY(NO)

The above example specifies that no attempt should be made to copy records from the copy
library.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view that you wish to use as input for the
run. For DB2 inputs, this parm is required unless the filename in this statement was defined
in an earlier FILE statement that included a DB2NAME parm. The table name must be
enclosed in quotation marks or apostrophes. Generally the table name will be qualified. If
it is not explicitly qualified, DB2 will assume an implicit qualifier, which will be the DB2
Authorization ID of the job executing Spectrum Writer.

Example: INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

The above example specifies that the DB2 table named 'DSN8230.PROJ' should be used as the
primary input "file" for the run. This input file has a Spectrum Writer file name of
PROJECT. That is, other Spectrum Writer control statements that refer to this input file will
refer to PROJECT (rather than to DSN8230.PROJ).
Chapter 10. Control Statement Syntax 545

INPUT
DDNAME(ddname)
OS/390 only. Specifies an override DDNAME to use when reading the input file (for the
current run only). If omitted, the DDNAME will be taken from the FILE statement that defined
the file. A DDNAME parm must be present in either the FILE statement or the INPUT statement.

Example: INPUT: EMPL–FILE DDNAME(TEMPDD)

The above example specifies that the TEMPDD DD statement in the JCL should be used to
read the EMPL–FILE file, regardless of the DDNAME specified when the file was originally
defined.

EXITPARM('text')
Most installations will not use exits, and will not need this parm. Specifies an override exit
parm text. If this parm is omitted, the exit parm text (if any) will be taken from the FILE
statement that defined the file. Exit parm text is passed to user data exit programs. Anytime
a user data exit is called by Spectrum Writer for a field within this file, the text string
specified in this parm will be passed to the exit. The use of this parm is discussed beginning
on page 357.

Example: INPUT: EMPL–FILE EXITPARM('12345')

The above example specifies that the text '12345' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

IOEXIT(‘program' [,'parm'] [,TRACE])
EXIT files only. Specifies override I/O Exit information for the input file. May also override
the input file type (if it was something other than EXIT in the FILE statement). This parm
provides the information necessary for Spectrum Writer to process an EXIT type input file.
More information on I/O Exits can be found in Appendix I, "I/O Exits," on page 673.

OS/390 Note: When this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.

VSE Note: When this parm is present, an ATTR parm specifying a type of EXIT and
a RECSIZE is required (in either this statement or the FILE statement).

'program' This parm is required. It specifies the name of the load module (OS/390) or phase
(VSE) that Spectrum Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Spectrum Writer,
the text specified in this parm will be passed to the exit program. Typically this text is used
to provide the exit program with any special information it needs in order to process the
file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Spectrum Writer will print trace
information in the control listing before and after each call to the I/O Exit. This information
can be useful when developing and debugging a new I/O Exit program. The TRACE parm
is normally not used in production runs.

Example: INPUT: MASTER-FILE IOEXIT(‘MYEXIT')

The above example specifies that a program named MYEXIT should be called to read records
from the primary input file MASTER-FILE.
546 Spectrum Writer Reference Manual

INPUT
KEEPRDW
Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte
"record descriptor word" (RDW) at the beginning of each record will be considered a part
of the record. The default is to treat the record as starting after the RDW. The use of this
parm is discussed beginning on page 352.

Example: INPUT: HISTORY–FILE KEEPRDW

The above example specifies that the RDW should be kept when reading records from the
HISTORY–FILE. Thus, assuming that HISTORY–FILE is a non–VSAM variable length file, a field
defined as starting in column 1 would point to the 2–byte record length within the RDW.

KEYRANGE(‘begin' ['end'])
KSDS VSAM files and EXIT files only. This parm specifies that only a certain range of records
from the primary input file should be processed. Only records whose keys are greater than
or equal to the ‘begin' value and less than or equal to the ‘end' value will be processed. If
no ‘end' value is specified, the ‘end' value is assumed to be the same as the ‘begin' value.

The ‘begin' and ‘end' values in the KEYRANGE parm can each be a full or a partial (generic)
key. Partial ‘begin' values are treated as if they were right-padded with hex zeros. Partial
‘end' values are treated as if they were right-padded with high values.

Speed-Up Tip: The use of this parm, where appropriate, can speed up your runs by
eliminating unnecessary VSAM I/O.

Note: For files which are not KSDS VSAM files, you may be able to use the
STOPWHEN parm to achieve similar savings in I/O processing.

Example: INPUT: EMPL–FILE KEYRANGE(‘03')

The above example specifies a partial key in the KEYRANGE parm. Only those records
whose 3-byte EMPL-NUM (which is the key to this file) begins with "03" will be read from
the EMPL-FILE.

Example: INPUT: EMPL–FILE KEYRANGE(‘032' ‘036')

The above example specifies that only records with keys between "032" and "036"
(inclusive) should be read from the EMPL-FILE.

LIST(YES/NO)
Applies only if the COPY function is performed. The LIST parm specifies whether the copied
control statements should be listed in the control listing. If no LIST parm is present, the
default is to not list the copied statements.

Note: If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example: INPUT: EMPL–FILE LIST(YES)

The above example specifies that the records copied from the copy library should be listed
in the control listing.

LRECL(nnnnn)
OS/390 only. Specifies an override record length for the input file. This is the length of the
largest record that might be found in the file. If this parm is omitted, the LRECL value (if
Chapter 10. Control Statement Syntax 547

INPUT
any) from the FILE statement is used. If no LRECL parm is found in either the FILE or the
INPUT statement, a default LRECL of 1000 is assumed.

Note: Spectrum Writer uses this value only to determine the size of the I/O area that
it allocates for use with the input file. Therefore it is not required that this value
match the file’s actual LRECL parm in the JCL or in the dataset’s label information.
In fact, if you suspect that a file's record size may grow in the future, you may want
to specify a larger LRECL parm with some "growth" room in it. On the other hand,
specifying an excessively large LRECL may result in higher CPU usage in some
circumstances.

Example: INPUT: EMPL–FILE LRECL(4000)

The above example specifies that a record as large as 4000 bytes long may be encountered
in the EMPL–FILE file.

NONORMALIZE
Specifies that the input file should not be normalized. Any NORMALIZE parms specified in
the FILE statement for this file (or in this INPUT statement) will be ignored.

Example: INPUT: SALES-HISTORY NONORMALIZE

The above example specifies that the sales history input file should not be normalized for
the current run, even though there may be NORMALIZE parms in its FILE statement.

NORMALIZE(fieldname, num-expr [, ...]) ...
Specifies that the input file should be normalized. (See "Using Normalization to Process
Arrays" on page 237 for an explanation of file normalization.) The fieldname must be the
name of a field that defines the entire first occurrence of the array that is to be normalized.
The numeric expression specifies how many occurrences the array contains. (This numeric
expression is evaluated individually for each input record to determine the number of
occurrences in that record.)

The NORMALIZE parm may contain any number of fieldname-numeric-expression pairs.
Each pair identifies one array to be normalized. When multiple arrays are thus specified
within a NORMALIZE parm, those arrays will be normalized in parallel (see "Normalizing
Multiple, Non-Nested Arrays" on page 245).

In addition, you may have any number of NORMALIZE parms in the INPUT statement. When
multiple NORMALIZE parms are present, they represent nested arrays (see "Normalizing
Nested Arrays" on page 244). The last NORMALIZE parm in the INPUT statement specifies
the most deeply nested array, and is normalized first.Then the array specified in the next-
to-last NORMALIZE parm is normalized, and so on.

Example: INPUT: SALES-HISTORY NORMALIZE(SALE-ARRAY, NUM-SLOTS)

The above example specifies that the input records from the SALES-HISTORY file should be
normalized. The first occurrence of the array being normalized is defined by the SALE-
ARRAY field. The number of occurrences to be used from the array is contained in the NUM-
SLOTS field.

Note: If only certain records from the input file should be normalized, use a
NORMWHEN parm before the NORMALIZE parm.
548 Spectrum Writer Reference Manual

INPUT
Note: NORMALIZE (and NORMWHEN) parms can also be specified in FILE statements.
If you have a file that will be normalized most of the time, you may want to put the
NORMALIZE parms in the FILE statement.That way you won’t need to include the
parms in every report request. Spectrum Writer will automatically normalize the file
according to the NORMALIZE parms from the FILE statement. If you later do not want
to normalize such a file for a particular report, just use the NONORMALIZE parm in the
INPUT statement. Spectrum Writer will then ignore the NORMALIZE parms from the
FILE statement for that run.

NORMWHEN(conditional-expression)
Specifies which records from the input file to normalize. (This parm is discussed in more
detail under "Normalizing only Certain Records" on page 247.) When the conditional
expression is true for a record, then all subsequent NORMALIZE parms (up until the next
NORMWHEN parm) will be processed. If the conditional expression is false, the subsequent
NORMALIZE parms will not be processed for that input record. (Any NORMALIZE parms that
are not preceded by a NORMWHEN parm are processed for every input record.)

Example: INPUT: BATCH-FILE
 NORMWHEN(RECORD-TYPE = ’HDR’) NORMALIZE(STATUS-ARRAY, 5)
 NORMWHEN(RECORD-TYPE = ’DET’) NORMALIZE(CUSTOMER-ARRAY, 8)

The above statement tells Spectrum Writer to normalize the STATUS-ARRAY only for those
records where the RECORD-TYPE field contains ’HDR’. And the CUSTOMER-ARRAY will be
normalized only for those records where the RECORD-TYPE field contains ’DET’. Records
with any other value in the RECORD-TYPE field will not be normalized at all.

NOSTOPWHEN
Specifies that any STOPWHEN parm in this file’s FILE statement (or in this INPUT statement)
should be ignored for the current run.

Example: INPUT: SALES-FILE NOSTOPWHEN

The above example specifies that STOPWHEN processing is not wanted for the current run,
even though there may be a STOPWHEN parm in the FILE statement for SALES-FILE.

Note: The NOSTOPWHEN parm in this statement does not cancel STOPWHEN parms
specified in the OPTIONS statement

ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)
Specifies how normalization errors in this file should be treated. (For examples of
normalization errors, see "Normalization Errors" on page 248.)

By default, normalization error messages are treated as informational messages only.
When a normalization error occurs, Spectrum Writer processes the physical record, and
then skips the normalization for that record. If you want normalization errors to be treated
as more serious errors, use the ONNORMERROR parm.

Specify WARNING in this parm to change the control listing message from "informational"
to a "warning" (which also sets the job completion code to 4).

Specify ERROR in this parm to change the control listing message from "informational" to
an "error" (which also sets the job completion code to 8).
Chapter 10. Control Statement Syntax 549

INPUT
Specify STOP in this parm to have Spectrum Writer halt the run immediately when a
normalization error occurs. Spectrum Writer will print a message and then issue a "user
ABEND" to terminate the run immediately.

Note: You can also specify an ONNORMERROR parm in the OPTIONS statement, if
you want it to apply to all of the normalized files used in a run.

Note: When normalization errors occur, Spectrum Writer also prints a dump of the
record in error. You can use the MAXNORMDUMP option (in an OPTIONS statement) to
control how many such dumps appear in your control listing.

Example: INPUT: SALES-HISTORY NORMALIZE(SALE-ARRAY, NUM-SLOTS) ONNORMERROR(ERROR)

The above example specifies that any normalization errors in the SALES-FILE should be
treated as an "error."

ORDERBY(fieldname [ASC/DESC] [, ...])
DB2 only. This parm is optional and not normally used in the INPUT statement. If this parm
is omitted, DB2 passes the rows from the DB2 table to Spectrum Writer in an "arbitrary"
order. This is not normally of any consequence, as Spectrum Writer then sorts the selected
rows according to the SORT statement before producing your report or PC file. Use this
parm if you want to specify the order in which the rows from the DB2 table should be passed
to Spectrum Writer. The contents of this parm is one or more column names from the DB2
table, optionally separated with commas. You may also include the DB2 keywords ASC or
DESC after the column names. This parm is discussed in more detail on page 399.

Example: INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 ORDERBY(DEPTNO, PROJNAME)

The above example would cause DB2 to pass the rows from the project table to Spectrum
Writer in department number order, with "ties" being passed in project name order.

RECNAME(name/filename)
Specifies a record name to use when referring to fields in this input file. This is especially
useful when you will be reading multiple records from the same input file (by using a READ
statement in addition to the INPUT statement). The RECNAME parm (in each statement) can
be used to assign unique names to each record read from the file. You may give the record
any name you like, within the rules governing names given on page 446. The use of the
RECNAME parm is discussed on page 228.

If no RECNAME parm is specified, the filename is used as the record name.

Example: INPUT: EMPL–FILE RECNAME(EMP)

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field from
the EMPL–FILE, like this:

Example: COLUMNS: EMP.DATE

SHOWFLDS(YES/NO)
Specifies whether Spectrum Writer should print a list of all fields that have been defined
for the input file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.) This
550 Spectrum Writer Reference Manual

INPUT
list appears immediately after the INPUT statement in Spectrum Writer's control statement
listing. The list will include the data type of each field (character, numeric, date, time or
bit). Use this parm if you aren't sure of the names or spellings of the fields (or DB2 columns)
in your input file.

Example: INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field ("column") defined
for the DSN8230.PROJ table.

STOPWHEN(conditional-expression)
Tells Spectrum Writer to stop reading the primary input file when a certain condition is
met. Use this parm to reduce I/O processing (and run time) if you know that your report
will not need records after a certain point in your input file (and if that point can be
specified in a conditional expression).

Example: INPUT: SALES-FILE
 STOPWHEN(EMPL-NUM > ’039’)

The above statement tells Spectrum Writer to stop reading the primary input file when it
encounters a record whose EMPL-NUM field is greater than ’039’. When Spectrum Writer
reads a record whose EMPL-NUM is greater than ’039’, it will ignore that record and act as
if it has hit EOF on that file. No more records will be read from the file. The report will be
produced based on the records read up to that point.

Note: The STOPWHEN parm can also be specified in the FILE statement. However, it
is safer to specify this parm in each report’s INPUT statement unless you are sure that
the parm should apply to all runs from the file. (Any users who were unaware of the
STOPWHEN parm in the FILE statement could unknowingly get inaccurate results.) If
you do use a STOPWHEN parm in the FILE statement, it can be overridden by
specifying NOSTOPWHEN in the INPUT statement. Spectrum Writer will then ignore
the STOPWHEN parm from the FILE statement for that run.

Note: The STOPWHEN parm in the INPUT statement (or in the FILE statement) affects
the input file processing for all reports in a multi-report run. However, you can also
specify a STOPWHEN parm in the OPTIONS statement. A STOPWHEN parm in an
OPTIONS statement applies only to the report that is currently being defined. Thus,
if you want each report in a multi-report run to have its own STOPWHEN condition
(or no STOPWHEN condition), do not put a STOPWHEN parm in the INPUT statement.
Instead, put each report’s STOPWHEN parm in an OPTIONS statement within that
report’s definition statements.

Note: If your input file is a KSDS VSAM file and you want to read only a certain range
of records, you should use the KEYRANGE parm instead of the STOPWHEN parm.

TYPE(SEQ/VSAM/DB2/EXIT)
OS/390 only. Specifies an override file type for the input file. If this parm is omitted, the
file type will be taken from the FILE statement that defined the file. A complete list of file
types is given under the FILE statement description on page 536.

Example: INPUT: EMPL–FILE TYPE(VSAM)
Chapter 10. Control Statement Syntax 551

INPUT
The above example specifies that the VSAM access method should be used when reading the
EMPL–FILE file, regardless of the file type specified when the file was originally defined.

WHERE(search–condition)
DB2 only. This parm is optional. If this parm is omitted, DB2 will pass all rows in the DB2
table to Spectrum Writer. (Spectrum Writer will then decide which of those rows to use
based on the INCLUDEIF statement, if any.) Use this parm to specify a "search condition" for
DB2 to use in deciding which rows from the DB2 table to pass to Spectrum Writer. The
syntax of the search–condition is generally the same as DB2's syntax for the WHERE clause
in a DB2 SELECT statement. The use of this parm is discussed in the section beginning on
page 397. The precise syntax rules for the WHERE parm are given on page 405.

Example: INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')

In the example above, the WHERE parm causes DB2 to return to Spectrum Writer only those
rows from the project table whose DEPTNO field is equal to "D21". Those are the only rows
that could then appear in the Spectrum Writer report or PC file. An INCLUDEIF statement
could be used to reduce even further the number of rows that are actually included in the
run.

NOTES

How the Primary Input File is Processed
The file specified in the INPUT statement is called the primary input file for a run. Each
run must have one (and only one) primary input file.

Spectrum Writer opens this file for sequential input starting with the first record in the file.
(Or starting with the first record in the specified key range, if the KEYRANGE parm was
used.) Records are then read sequentially from the input file until any one of the following
occurs:

! the EOF (end of file) condition occurs

! the last record in the specified KEYRANGE has been read

! a record is read for which the STOPWHEN condition is true

After each record is read, the conditions specified in the INCLUDEIF statement (if any) are
evaluated, using the data from that record (as well as from any linked auxiliary input file
records that may be needed). Based on these INCLUDEIF conditions, the record will either
be included in the run or will be ignored. If the record is to be included, a smaller internal
sort record is built containing just the necessary data from the input record (and from any
required auxiliary input records). This internal sort record is then passed to the sortin phase
of the system sort program and the next sequential record is read from the primary input
file.

This process is repeated until all records in the primary input file have been evaluated.
Then, the sorted sort records are retrieved from the sortout phase of the system sort
552 Spectrum Writer Reference Manual

INPUT
program. The final report (or output file) is then written from the information in these
sorted internal records.
Chapter 10. Control Statement Syntax 553

NEWOUT Statement
NEWOUT

PURPOSE
The NEWOUT statement is used to create an additional output (report or PC file) during the
same run. All control statements following the NEWOUT statement apply only to the new
output.

You may have more than one NEWOUT statement in a run.

LEARNING MORE
The following parts of the manual relate to the NEWOUT statement:

! for a discussion of multiple output runs, see "Creating Multiple Reports in a
Single Run" (page 289)

SYNTAX

The NEWOUT statement has no parms.

NEWOUT STATEMENT SYNTAX

NEWOUT:

Standard Alternate
Spelling Spellings
NEWOUT NEWOUTPUT
554 Spectrum Writer Reference Manual

OPTIONS Statement
OPTIONS

PURPOSE
Specifies various special options. You may specify as many options as you like on a single
OPTIONS statement. In addition, you may have as many separate OPTIONS statements as you
like.

OPTIONS statements normally must appear before all other control statements.

FEATURES
Use the OPTIONS statement to:

! specify options that affect the overall appearance of a report

! specify that a PC or mainframe file should be created rather than a report

! change defaults settings used in producing a report

! limit the amount of processing performed, for test runs

! specify printer setup texts

LEARNING MORE
The complete syntax of the OPTIONS statement is shown on the following pages. In
addition, certain individual options are discussed and illustrated in other parts of this
manual. To see if additional information is available about a specific option, check under
the name of the option in the Index to this manual.
Chapter 10. Control Statement Syntax 555

OPTIONS
SYNTAX

OPTIONS STATEMENT SYNTAX

OPTIONS:
[ASCIITABLE(‘text’)]
[ASMLIB('library.sublibrary') (VSE only)] †
[AUTOSORT]
[CENTURY(nn/50)] †
[COBLIB('library.sublibrary') (VSE only)] †
[COLHDGONCE]
[COLSEP('text')] †
[COLSPACE(nnn/1)]
[DATEDELIM('char'/'/')]
[DB2PLAN('plan'/'SPECTnnn') (DB2 only)]
[DB2SUBSYS('subsystem') (DB2 only)] †
[DDMMYYLIT] †
[DETAIL(nnnnn)]
[EBCDICTABLE(‘text’)]
[EMPTYCC(nn)]
[EMPTYMSG('text')]
[FORMAT(display–format [,display–format] ...)]
[HEADINGSEP('char'/'|')]
[HGCOLHDG]
[HTML[('title')]]
[HTMLAID[(YES/NO)]]
[KEEPRDW] †
[LEFTMARGIN(nnn/0)]
[MAINFRAME]
[MAXINCLUDE(nnnnn)]
[MAXINPUT(nnnnn)]
[MAXINVSHOW(nnnnn/10)] †
[MAXNORMDUMP(nnnnn/10)] †
[MAXPAGES(nnnnn)]
[MAXPRINT(nnnnn)]
[MEMTYPE('type'/'SPECTWTR') (VSE only)] †
[MISSOFFSET] †
[MULTICOLHDG]
[NOBLOCKSIZE (OS/390 only)]
[NOCC]
[NOCHECK]
[NOCLEARIO] †
[NOCOLHDGS]
[NOGRANDSPACES]
[NOGRANDTOTAL]
[NOMAXMSG]
[NOOVERPRINT]
[NOSORTSIZE]
[NOSYSINLIMIT] †
[NOTEMPTYCC(nn)]
[NOTITLES]
[NOUNDERSCORES]
[ONIOERROR(DEFAULT/ERROR/STOP)] †
[ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)] †
[OUTATTR(type [,'dlbl/tlbl'][,SYSnnn][,recsize][,blksize]) (VSE only)]
[OUTDDN(ddname) (OS/390 only)]

(Continued on next page)
556 Spectrum Writer Reference Manual

OPTIONS
OPTIONS STATEMENT SYNTAX (CONTINUED)

[OUTLRECL(nnnnn) (OS/390 only)]
[OUTTYPE(SEQ/VSAM) (OS/390 only)]
[PAGELENGTH(nnn/60)]
[PC/OUTPUT/ACCESS/COREL/CSV/DBASE3/DBASE4/EXCEL

/FOXPRO/HARVARD/LOTUS/MS–WORKS/PARADOX/QUATTRO/RBASE]
[POSTSCRIPT('text')]
[PRESCRIPT('text')]
[PRTSETUP('text')]
[PRTSHEET('text')]
[QCHAR('char'/'"')]
[SCALEPIC]
[SINGLE/DOUBLE/TRIPLE]
[SKIPBLANKDET]
[SKIPZERODET]
[SORTDD('prefix')]
[SORTNAME('program'/'SORT')]
[SORTOPT('text')]
[SORTSIZE(nnnn/256)]
[SORTWORKNUM(n/0) (VSE only)]
[SPLITDETAIL]
[STCKADJ(nn)] †
[STOPWHEN(conditional-expression)]
[SUBLIB('library.sublibrary') (VSE only)] †
[SUMMARY]
[TIMEDELIM('char'/':')]
[TITLEONCE]
[ZERODIVBYZERO] †
[ZEROINVDATA] †
[ZEROOVERFLOW] †

Standard Alternate
Spelling Spellings
DB2SUBSYS DB2SUBSYSTEM
DDMMYYLIT DDMMYYYYLIT
DETAIL DET
DOUBLE DOUBLESPACE
FORMAT FMT
HEADINGSEP HDGSEP
LEFTMARGIN LEFTMARG
MAINFRAME MAIN
MAXINCLUDE MAXINCL, MAXINC
MAXINPUT MAXINP
MAXPAGES MAXPAGE
MAXPRINT MAXPRT
MEMTYPE MEMBERTYPE
NOBLOCKSIZE NOBLKSIZE
NOCOLHDGS NOCOLHDG
NOGRANDSPACES NOGRANDSPACE
NOGRANDTOTAL NOGRANDTOTALS, NOGRANDTOT,

NOGRANDTOTS, NOGRAND

(Continued on next page)
Chapter 10. Control Statement Syntax 557

OPTIONS
ASCIITABLE(‘text')
Use this option to specify your own translation table to be used for EBCDIC-to-ASCII
translations. (Such translations are performed when the ASCII parm is specified in a print-
expression, as well as for the #ASCII built-in function.) The text parm for this option must
be a string that is exactly 256 bytes long. For convenience, you can split this 256-byte
string into as many smaller strings as you like. This string tells Spectrum Writer what value
to return for each of the 256 possible byte values it could encounter when translating a
character string. If this option is not specified, Spectrum Writer uses a default ASCII
translation table.

Example: OPTION: ASCIITABLE(X'000102030405060708090A0B0C0D0E0F'
 X'101112131415161718191A1B1C1D1E1F'
 X'202122232425262728292A2B2C2D2E2F'
 X'303132333435363738393A3B3C3D3E3F'
 X'404142434445464748494A4B4C4D4E4F'
 X'505152535455565758595A5B5C5D5E5F'
 X'606162636465666768696A6B6C6D6E6F'
 X'707172737475767778797A7B7C7D7E7F'
 X'808182838485868788898A8B8C8D8E8F'
 X'909192939495969798999A9B9C9D9E9F'
 X'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF'
 X'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF'
 X'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF'
 X'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF'
 X'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF'
 X'F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF')

OPTIONS STATEMENT SYNTAX (CONTINUED)

Standard Alternate
Spelling Spellings
NOOVERPRINT NOOVERPRT
NOTITLES NOTITLE
NOUNDERSCORES NOUNDERSCORE, NOUNDER
OPTIONS OPTION, OPTS, OPT
PAGELENGTH PAGELGTH, PAGELEN, PAGEL
SINGLE SINGLESPACE
SKIPBLANKDET SKIPBLKDET
SPLITDETAIL SPLITDET
SUBLIB SUBLIBRARY
TITLEONCE TITLESONCE
TRIPLE TRIPLESPACE
ZERODIVBYZERO ZERODIVZERO, ZERODIVZ
ZEROINVDATA ZEROINV
ZEROOVERFLOW ZEROOVER

Notes
† means that the option is a "run wide" option. The option applies to all reports and

output files created in the run. It does not matter which output was being defined
when the OPTION statement was encountered among the control statements.

All other options are "by output." Those options are in effect only for the report
or output file that is being defined when the OPTION statement is encountered. The
option does not affect any other report or output file created in the same run.
558 Spectrum Writer Reference Manual

OPTIONS
The above example merely serves to illustrate the syntax of the ASCIITABLE option. This
example uses 16 hex strings of 16 bytes each to provide the necessary 256-byte table. (The
values shown in the example would cause the #ASCII function to simply return the same
operand without change.)

ASMLIB('library.sublibrary')
VSE only. Specifies the default sublibrary to copy members from while in the scope of an
ASM statement.

Example: OPTION: ASMLIB('TEST.COPYASM')

The above statement means that COPY statements appearing within the scope of an ASM
statement will copy members from the TEST.COPYASM sublibrary by default. This default
can be overridden, however, by specifying a sublibrary name directly in the COPY
statement.

AUTOSORT
When no SORT statement is specified, the AUTOSORT option tells Spectrum Writer to sort
the report or output file on the first 5 fields named in the COLUMNS statement. When an
explicit SORT statement is used, the AUTOSORT option tells Spectrum Writer to add up to 5
"tie–breaker" sort fields to the fields named in the SORT statement. The tie–breaker fields
will be the first 5 fields named in the COLUMNS statement (not considering those fields
explicitly named in the SORT statement).

CENTURY(nn/50)
Specifies the century cutoff year for all YY dates in the input files and in the control
statements. This option tells Spectrum Writer which century a 2–digit year belongs to. Any
year below the specified value is considered to be in the 21st century (20YY). Any year
greater than or equal to the specified value is considered to be in the 20th century (19YY).

The default value of 50 means that:

! 2–digit years from 00 to 49 are treated as 2000 though 2049, and

! 2-digit years from 50 to 99 are treated as 1950 through 1999.

Note: This option does not affect the way dates with 4–digit years are processed.

Example: OPTION: CENTURY(20)

The above example specifies that all 2-digit dates with a year less than 20 are in the 21st
century. Thus, the date 8/31/19 would mean August 31, 2019. However, 8/31/20 would
mean August 31, 1920.

COBLIB('library.sublibrary')
VSE only. Specifies the default sublibrary to copy members from while in the scope of a
COBOL statement.

Example: OPTION: COBLIB('TEST.COPYCOB')

The above statement means that COPY statements appearing within the scope of a COBOL
statement will copy members from the TEST.COPYCOB sublibrary by default. This default
can be overridden, however, by specifying a sublibrary name directly in the COPY
statement.
Chapter 10. Control Statement Syntax 559

OPTIONS
COLHDGONCE
Print column headings only once, at the very beginning of the report or PC file. This is
Spectrum Writer's default when creating many type of PC files. This option also suppresses
titles, footnotes and all page break logic. (Use the similar TITLEONCE option if you want the
report titles to print once along with the column headings.)

COLSEP('text')
Specifies a default column separator text. This text will appear between each column in the
report. Normally, the column separator text is a single blank space.

This option is useful when creating output files (especially PC files). In that case, use this
option to specify a "delimiter" character (such as a comma, or a "tab" character) to separate
the fields in the output record.

Example: OPTIONS: COLSEP(',')

The above statement causes the fields ("columns") in the output record to be separated by
commas.

Note: Specifying this option also causes the COLSPACE option to be set to the length
of the COLSEP text.

COLSPACE(nnn/1)
Specifies the default number of spaces to leave between columns in the report. (This
default spacing factor can be overridden directly in the COLUMNS statement.) The normal
default is to leave one blank space between each report column.

This option is also useful when creating mainframe output files. You may then want to
specify COLSPACE(0) to eliminate all blanks between the fields in the output records.

Note: This parm only affects spacing between the actual report columns — in the
detail lines of the report. It does not change the default spacing factor (of one) that
is used in titles, footnotes, control break footings, etc.

Note: Specifying the COLSEP option also changes the COLSPACE value.

DATEDELIM('char'/ '/ ')
This option lets you specify any character you choose to be used as the delimiter when
formatting dates. This delimiter will be used with all date display formats that use a
delimiter. The default date delimiter is a slash (/). For example, to format all dates using
dots rather than slashes, you would specify:

Example: OPTIONS: DATEDELIM('.')

This would cause the MM-DD-YY display format to appear as "12.31.99" and the DD-MM-YYYY
format to appear as "31.12.1999".

Note: Use of this parm does not affect the way Spectrum Writer recognizes date
literals in the control statements. Date literals must always be written using slashes
as delimiters.

DB2PLAN('plan'/'SPECTnnn')
DB2 only. Specifies the DB2 plan name to use. This parm is needed only if the default plan
name was not used during installation of Spectrum Writer's DB2 Option (see page 409).
560 Spectrum Writer Reference Manual

OPTIONS
Spectrum Writer assumes that you use a plan name of "SPECTnnn", where nnn is the
Spectrum Writer version number. (Thus, for release 3.0 of Spectrum Writer, a plan name
of SPECT300 is assumed.) If you used a different plan name to bind Spectrum Writer in your
shop, you must tell Spectrum Writer your plan name via the DB2PLAN option. Enclose the
plan name in quotation marks or apostrophes. For example, if you bound Spectrum Writer
with a plan name of XYZ12345, you would need to use the following statement:

OPTION: DB2PLAN('XYZ12345')

DB2SUBSYS('subsystem')
DB2 only. Specifies the name of the DB2 subsystem to use for the run. This option is required
for any run that uses DB2 data. Enclose the subsystem ID in quotation marks or apostrophes.

Example: OPTIONS: DB2SUBSYS('DB2T')

The above statement causes Spectrum Writer to use the DB2 subsystem named DB2T for all
DB2 requests in the run.

DDMMYYLIT
Indicates that all date literals used in the control statements are in DD/MM/YY or
DD/MM/YYYY format.

Example: OPTIONS: DDMMYYLIT
...
INCLUDEIF: SALES–DATE < 31/12/1996

The above OPTIONS statement specifies that any date literals in the control statements are
in DD/MM/YY (or DD/MM/YYYY) format. In the INCLUDEIF, we select all records whose
SALES–DATE field is before December 31, 1996.

Note: The slash (/) is always used as the delimiter in date literals. The DATEDELIM
option, if any, only changes the way dates are formatted in the output–– not the way
date literals must be written in the control statements.

DETAIL(nnnnn)
Specifies how many detail lines should be printed within each control break. (If no control
breaks are used, it specifies how many detail lines to print in the whole report.) The default
is to print all detail lines.

You may specify DETAIL(0) to suppress all detail print lines. In that case you would see only
the lines printed at control breaks and at Grand Total time.

This option is useful for printing "Top Ten Sales in each Department" type of reports. It is
also helpful when developing new reports that have lots of detail lines. Use this option to
print just a few detail records for each control group while you develop the new report. This
will keep your trial run down to a smaller, more convenient size. Remove the option when
your are ready for the final run.

Example: OPTIONS: DETAIL(10)
INPUT: EMPL–FILE
TITLE: ’TOP 10 SALES PER DEPARTMENT’
COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES
SORT: DEPT–NUM TOTAL–SALES(DESC)
BREAK: DEPT–NUM
Chapter 10. Control Statement Syntax 561

OPTIONS
The above example produces a report that lists the top 10 sales people in each department,
in descending sales volume order.

EBCDICTABLE(‘text')
Use this option to specify your own translation table to be used by the #EBCDIC built-in
function. The text parm for this option must be a string that is exactly 256 bytes long. For
convenience, you can split this 256-byte string into as many smaller strings as you like.
This string tells Spectrum Writer what value to return for each of the 256 possible byte
values it could encounter when performing the #EBCDIC built-in function. If this option is
not specified, Spectrum Writer uses a default EBCDIC translation table.

Example: See the example under the ASCIITABLE option (page 558) which has the same
syntax.

EMPTYCC(nn)
Sometimes it is important to know when Spectrum Writer did not write any records to the
report or output file. This option lets you specify a special completion code for Spectrum
Writer to issue for such "empty" runs.

Example: OPTION: EMPTYCC(12)

The above statement tells Spectrum Writer to set the step completion code to 12 if no input
records pass the INCLUDEIF conditions for the report. If one or more records are included,
the standard completion code will be used (normally 0, unless an error was encountered).

Note: This option can not be used to lower Spectrum Writer’s standard completion
code (which may be 4 or 8 if warning or error messages were issued).

Note: See also the related EMPTYMSG and NOTEMPTYCC options.

EMPTYMSG('text')
Normally, when no records are included in a report, the report output file is simply left
empty. (No titles, column headings or Grand Totals are written to it.) This can be confusing
to some users, who might be unsure if the report is just empty, or if an error occurred while
running the job. Use this parm to specify a one-line message that Spectrum Writer should
write to the output file when no records have been selected.

Example: OPTIONS: EMPTYMSG('NO TRANSACTIONS FOUND OVER $1,000,000')

The above example specifies that the indicated message should be written to the output file
when no records pass the INCLUDEIF tests for the report. When one or more records are
included, this message will not appear in the report.

Note: see also the related EMPTYCC option.

FORMAT(display–format [,display–format] [,display–format] [,display–format])
Specifies one or more display formats to be used as default display formats. You may
specify one character–type display format, one numeric–type display format, one date-type
display format, and one time–type display format. You may specify any or all of these, in
any order. (A complete list of display formats is found in Appendix B, "Display Formats"
on page 617.) The display formats specified in this option become the default display
format for all fields of the associated data type. This option is especially useful when
562 Spectrum Writer Reference Manual

OPTIONS
creating output files. For example, when creating a comma delimited PC file, you might
use the following statement:

OPTIONS: FORMAT(QCHAR, Q–MM–DD–YY, Q–HH–MM–SS, NOCOMMA)

The above statement would cause the QCHAR display format to be used for all character
fields (enclosing the character data in quotation marks). All dates would be formatted as
MM/DD/YY, also enclosed in quotation marks. All times would be formatted as HH:MM:SS,
also enclosed in quotation marks. And all numeric fields would be formatted in the
NOCOMMA display format –– without using commas to separate thousands, millions, etc.

When the FORMAT option is used, you may still specify an override display format for any
particular item directly in the COLUMNS statement (or TITLE statement, etc.) The FORMAT
option just changes the default display format used when no explicit display format is
given.

Note that the output file options (PC, EXCEL, MAINFRAME, etc.) also change one or more of
the default display formats.

Note: When the CHARACTER or HEX display format is specified alone in the FORMAT
option, it applies to data of all types.

Example: OPTIONS: FORMAT(HEX)

The above statement would cause all character, numeric, date and time fields to
appear in hex format. If you want the HEX or CHARACTER display format to apply
only to character fields, you should also specify numeric, date and time display
formats after the CHARACTER or HEX format in the FORMAT parm.

Example: OPTIONS: FORMAT(HEX, NUMERIC, MM–DD–YY, HH–MM–SS)

The above statement would cause all character fields to be formatted in HEX format,
and all numeric, date and time fields to be formatted the way they normally would
be.

HEADINGSEP('char'/ ' | ')
Specifies the character that will be used to separate column heading texts into separate
lines. The default heading separator character is the vertical bar (|).

Note: The vertical bar is the "Shift 1" key on most mainframe terminals. When
working at a PC running terminal emulation software, you will probably not see a
key with this symbol on it. Some terminal emulator programs use the "pipeline" key
as the vertical bar key. Some others use the right–hand square bracket key "]" for
this purpose.

Example: OPTIONS: HEADINGSEP('/')
COLUMNS: LAST–NAME('EMPLOYEES/LAST/NAME')

The above example specifies that the slash character (/) should be used as the heading
separator character. The COLUMNS statement specifies an override column heading text
using slashes. The slashes would cause the three words in the column heading to appear on
three separate lines.
Chapter 10. Control Statement Syntax 563

OPTIONS
HGCOLHDG
Specifies that "Harvard Graphics" style column headings are wanted. (This is also the
default when the HARVARD option is specified.) This option causes the column headings to
appear in a single line in the output file (rather than being split onto multiple lines). The
"blank" line that normally separates the column headings from the actual data is also
suppressed. This option is useful when the PC program which will be importing your
output file expects the first line of input to contain a "legend" for the data in the subsequent
lines.

HTML[('title')]
Tells Spectrum Writer to wrap standard HTML code around the report. This creates a Web
report that can be viewed on Web browsers, such as Internet Explorer and Netscape
Navigator. You can also specify an optional HTML title for the Web page. Specifying the
HTML option also turns on the HTMLAID option (see below). The use of these options is
discussed in Chapter 5, "How to Make a Web Report."

Example: OPTIONS: HTML('SALES REPORT BY REGION')

HTMLAID[(YES/NO)]
The HTMLAID option tells Spectrum Writer that you will be putting your own HTML tags
within the report and that Spectrum Writer should recognize and support those tags. This
option itself does not cause Spectrum Writer to add any HTML codes to your report. This
option is implied by the HTML option. Therefore, you do not need to specify the HTMLAID
option if you have specified the HTML option. (If you specify the HTML option and do not
want the HTMLAID option, specify HTMLAID(NO) to turn it off.) The use of this option is
discussed in Chapter 5, "How to Make a Web Report."

Example: OPTIONS: HTMLAID

Following are the specific actions that Spectrum Writer takes when the HTMLAID option is
in effect:

1. When an HTML-format literal is specified as an item in a COLUMNS statement,
Spectrum Writer also copies that HTML literal into the same location in the default
total lines (that is, the lines that print by default at control breaks and at the Grand
Total). The purpose of this is to keep the columns in the default total lines aligned
with the body of the report. It also causes the same HTML formatting information
that is applied to a particular report column to be applied to the total for that
column (if it is a totalled column).

2. When an HTML-format literal is specified as an item in a COLUMNS statement and
no explicit column heading is specified for it, Spectrum Writer uses the HTML
literal itself as its own column heading. The HTML literal will be propagated into
all column headings lines, including even the underscore line. The purpose of
this is to keep the column headings aligned with the body of the report. It also
causes the same HTML formatting information that is applied to a particular report
column to be applied to the column headings for that column.

3. When the column heading for any item (whether a field or a literal) in a COLUMNS
statement is a simple, one-line HTML literal, Spectrum Writer propagates that
literal into any column heading lines above that line and also into the underscore
line. The purpose of this is to keep all column headings lines aligned with each
other.
564 Spectrum Writer Reference Manual

OPTIONS
4. When the column heading for any item (whether a field or a literal) in a COLUMNS
statement consists solely of multiple lines of HTML literals, Spectrum Writer
propagates the HTML literal for the bottom column heading line into the
underscore line. (It does not propagate anything upward.) The purpose of this is
to keep the column heading underscore line aligned with the other column
heading lines.

KEEPRDW
When reading non–VSAM input files with variable length records, Spectrum Writer
considers column 1 of the input record to be the first byte after the RDW (record descriptor
word). This option tells Spectrum Writer that you want the RDW to be considered a part of
the input record. When KEEPRDW is specified, the RDW is considered to be in column 1 of
the input record. The first column after the RDW will be column 5. Specifying KEEPRDW in
the OPTIONS statement makes it apply to all input files used in the run. You may also
specify this keyword in individual FILE or INPUT statements. The use of this parm is
discussed on page 352.

Note: VSAM files and DB2 tables do not have RDWs at the beginning of each record.
This option is ignored for these kinds of files.

LEFTMARGIN(nnn/0)
Specifies a number of blank spaces to use as a left margin when printing the report. By
default, there is no left margin.

MAINFRAME
Specifies that a mainframe output file is wanted (rather than a report). This parm:

! disables report titles and column headings

! disables Grand Totals

! sets the default inter-column spacing factor to zero bytes

! prevents the carriage control character from being written

! sets the default display formats to CHAR, DISPLAY, YYMMDD, and HHMMSS

The use of this parm is discussed in "Producing Files for Mainframe Programs" (page 280).

MAXINCLUDE(nnnnn)
Specifies the maximum number of records from the primary input file that should be
included in the report. (That is, the maximum number of records that pass the INCLUDEIF
statement conditions.) This is helpful while developing new reports that use very large
input files. You can use this option to limit the number of records processed during test
runs. You may need to use this option rather than the related MAXINPUT option, when the
records required for your report are not the first records in the input file.

MAXINPUT(nnnnn)
Specifies the maximum number of records that should be read from the primary input file
when producing the report. This option is helpful when you are developing a new report
that uses a large input file. This allows you to read in only a few hundred records (for
example) to get an idea of how your report will look. This will run much faster than a report
that processes the whole file. (Also see the related MAXINCLUDE option.)
Chapter 10. Control Statement Syntax 565

OPTIONS
MAXINVSHOW(nnnnn/10)
Specifies the maximum number of invalid fields that should be displayed in hex format in
the control listing. The default is to display the first 10 invalid fields that are encountered.
Specify MAXINVSHOW(0) if you don't want to see any details about invalid fields.

MAXNORMDUMP(nnnnn/10)
Specifies the maximum number of times a record dump should be printed for
normalization errors. (Normalization errors are discussed in "Normalization Errors" on
page 248.) The default is to print a record dump for the first 10 normalization errors in a
run. Specify MAXNORMDUMP(0) if you don't want any such dumps in your listing.

MAXPAGES(nnnnn)
Specifies the maximum number of report pages that should be printed. This is helpful while
developing new reports. It ensures that whole boxes of paper won't accidentally be printed
if there are serious errors in the control statements. (See also the related MAXPRINT,
NOCHECK and NOMAXMSG options.)

MAXPRINT(nnnnn)
Specifies the maximum number of report lines that should be printed (including titles,
column headings, footnotes, etc.) This is helpful while developing new reports. It ensures
that whole boxes of paper won't accidentally be printed if there are serious errors in the
control statements. (See also the related MAXPAGES, NOCHECK and NOMAXMSG options.)

MEMTYPE('type' / 'SPECTWTR')
VSE only. Specifies the default member type to use when reading members from the
Spectrum Writer Copy Library. If this parm is not specified, the default member type is
SPECTWTR. The default member type is used for COPY statements that do not explicitly
specify a member type.

Note: This default member type applies only to copies performed outside the scope
of ASM and COBOL statements. Different default member types are used within the
scope of those statements. (See the ASMLIB and COBLIB options.)

Example: OPTIONS: MEMTYPE('SW')

The above statement tells Spectrum Writer to look for members whose member type is SW,
when copying members from the copy library.

MISSOFFSET
Specifies that fields having OFFSET parm errors (page 353) should be treated as if they
were "missing." (Missing fields are assigned zeros for numeric, date and time fields, blanks
for character fields, and OFF for bit fields). Use this option if you want to suppress "offset
error indicators" (***F***) in your report.

MULTICOLHDG
By default, when more than one COLUMNS statement is used Spectrum Writer does not
automatically produce column headings. (The TITLE statement is often used in such
situations to manually create column headings — see page 153.) If you want Spectrum
Writer to automatically provide column headings in a report that has multiple COLUMNS
statements, specify:

OPTIONS: MULTICOLHDG
566 Spectrum Writer Reference Manual

OPTIONS
Spectrum Writer will use the column headings that would have been generated if the
request contained only the first COLUMNS statement. For many multi–line reports, this
provides an easy way to produce useful column headings. Of course, you can specify
override column headings in your first COLUMNS statement, as usual. Those override
column headings will then be used in the report. Any default or explicit column headings
in the second and later COLUMNS statements will be ignored.

NOBLOCKSIZ
OS/390 only. Prevents Spectrum Writer from setting a default blocksize for the SWOUTPUT
DD. Otherwise, when no blocksize (or a zero blocksize) is specified in the JCL, Spectrum
Writer sets the block size equal to the record size (resulting in single blocked output).

NOCC
Specifies that no "carriage control" characters should be written. Normal report lines are
prefixed with a carriage control character, which contains a printer spacing command.
When writing to an output file, rather than to a printer, the carriage control character is not
normally wanted.

Note: Specifying a PC file formatting option (or the MAINFRAME option) also
suppresses the carriage control character.

NOCHECK
Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Spectrum Writer that the
NOCHECK option is in effect for your shop's sort program. This means Spectrum Writer can
safely quit the sort early when the MAXINPUT or MAXINCLUDE limit has been reached.
Otherwise, in order to prevent a SORT ABEND, Spectrum Writer must continue to process
the remainder of the sort file (flushing the records), which requires more processing time.

NOCLEARIO
For some input files, Spectrum Writer clears (sets to hex zeros) the I/O area before
performing each read. The NOCLEARIO option specifies that such clearing should not be
performed for all of the files used in the run. When such clearing is not necessary,
suppressing it may improve performance. (You can use a CLEAR(NO) parm in an INPUT or
READ statement to suppress such clearing for individual files.)

NOCOLHDGS
Specifies that Spectrum Writer should not create column headings for the report or PC file.
Spectrum Writer also defaults to the NOCOLHDG option for all reports that use more than
one COLUMNS statement.

NOGRANDSPACES
Suppresses all spacing before the Grand Totals. Normally, the Grand Totals are separated
from the body of the report by two blank lines, or are printed on a separate page. When
creating output files, you may want to specify this option to prevent any blank records from
being written to your output file before the Grand Total record.

NOGRANDTOTAL
Specifies that Grand Totals are not wanted for this report.

NOMAXMSG
Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Spectrum Writer not to
print a message in your report when the maximum limit has been reached.
Chapter 10. Control Statement Syntax 567

OPTIONS
NOOVERPRINT
Specifies that no lines should be "over–printed" in the report. (They will be single-spaced
instead.) An example of an over–printed line is the line of underscores under the column
headings. Use this option when the printer being used to print the report does not have
over–print capability.

NOTEMPTYCC(nn)
Sometimes it is important to know that a report is not "empty" (that is, that one or more
records did pass the inclusion tests.) For example, you may have an "exception report" that
checks for error situations that should not normally occur. Normally the report is empty.
When an exceptional situation is found, you want the completion code to call attention to
that fact. This option lets you specify a special completion code for Spectrum Writer to use
for runs that are not empty.

Example: OPTION: NOTEMPTYCC(16)

The above statement tells Spectrum Writer to set the step completion code to 16 if any
records are included in the run. If no records are included, the standard completion code
will be used (normally 0, unless an error was encountered).

Note: This option can not be used to lower Spectrum Writer’s standard completion
code (which may be 4 or 8 if warning or error messages were issued).

Note: See also the related EMPTYCC option.

NOSORTSIZE
Tells Spectrum Writer not to pass any MAINSIZE parm to the system Sort program. (The
MAINSIZE parm tells Sort how much memory to use in performing the sort.) You may want
to use this parm to ensure that your shop’s default parm remains in effect.

NOSYSINLIMIT
By default Spectrum Writer suspects a loop when more than 50,000 control cards have
been processed. (Looping can be caused by copying a member that copies itself
recursively.) When this occurs, a message is printed and the run is terminated. To disable
this limit on the number of control cards accepted, specify this option.

NOTITLES
Specifies that no titles are wanted for the report. By default, if no TITLE statements are
specified for a report, Spectrum Writer prints a default title line. This option prevents that
default title line from printing. When NOTITLES is specified, no page break processing is
performed–– the report will print over paper perforations, etc. This option is useful when
the report output will be routed to a dataset for further processing, rather than to a printer.

Note: This option also suppresses the printing of all column headings and
FOOTNOTE lines.

NOUNDERSCORES
Specifies that the column headings in the report should not be underscored. This is often
desirable for reports that will be viewed online, since the underscore line uses up an
additional line on the screen.
568 Spectrum Writer Reference Manual

OPTIONS
ONIOERROR(DEFAULT/ERROR/STOP)
Specifies how I/O errors on input files should be treated. When specified in an OPTIONS
statement, this parm applies to all input files (except those with an explicit ONIOERROR
parm directly in their INPUT or READ statement).

This parm affects mostly auxiliary input files, since I/O errors on the primary input file
terminate the report.

When an I/O error occurs on an auxiliary input file, Spectrum Writer simply prints a
warning message in the control listing and continues the run without reading from that file
again. (All records from the file are treated as "missing".)

Sometimes, however, the data from the file in error may be so important to the report that
it is pointless — or worse, misleading — to continue the run without it. Or, you may want
to continue the run, but change the job completion code to indicate that a problem exists
with the report. Use the ONIOERROR parm for such situations.

Specify ERROR in this parm to change the control listing message from a warning to an
error (which also sets the job completion code to 8).

Specify STOP in this parm to have Spectrum Writer halt the run immediately when an I/O
error occurs on a file. Spectrum Writer will print a message and then issue a "user ABEND"
to terminate the run immediately.

Note: The OPTIONS statement containing this parm must appear early in the control
statements — before any non-OPTIONS statements.

Note: "Missing" records from auxiliary input files are not considered I/O errors.

Example: OPTION: ONIOERROR(ERROR)

The above example specifies that an I/O error on any input file should be considered an
"error" condition.

ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)
Specifies how normalization errors in input files should be treated. (For examples of
normalization errors, see page 248.) When specified in an OPTIONS statement, this parm
applies to all input files (except those with an explicit ONNORMERROR parm directly in their
INPUT or READ statement).

By default, normalization error messages are treated as informational messages only.
When a normalization error occurs, Spectrum Writer processes the physical record, and
then skips the normalization in question for that record. If you want normalization errors
to be treated as more serious errors, use the ONNORMERROR parm.

Specify WARNING in this parm to change the control listing message from "informational"
to a "warning" (which also sets the job completion code to 4).

Specify ERROR in this parm to change the control listing message from "informational" to
an "error" (which also sets the job completion code to 8).

Specify STOP in this parm to have Spectrum Writer halt the run immediately when a
normalization error occurs. Spectrum Writer will print a message and then issue a "user
ABEND" to terminate the run immediately.
Chapter 10. Control Statement Syntax 569

OPTIONS
Note: The OPTIONS statement containing this parm must appear early in the control
statements — before any non-OPTIONS statements.

Note: When normalization errors occur, Spectrum Writer also prints a dump of the
record in error. You can use the MAXNORMDUMP option (in an OPTIONS statement) to
control how many such dumps appear in your control listing.

Example: OPTION: ONNORMERROR(ERROR)

The above example specifies that all normalization errors should be treated as "errors."

OUTATTR(type [,'dlbl/tlbl'] [,SYSnnn] [,recsize] [,blksize])
VSE only. This parm describes the attributes to use for Spectrum Writer's output. The
section beginning on page 431 discusses the use of this parm.

SUBPARMS ALLOWED IN THE OUTATTR PARM

SUBPARM MEANING

type

This parm is required. It tells Spectrum Writer what kind of device
to write the output to. It must be one of the following values:

PRINTER/
PRT a printer–type device (including POWER print queues)

DASD a SAM file on a DASD device (disk). (Use DASD type even
if your SAM files are managed by VSAM.)

TAPE a SAM file on a magnetic tape

VSAM an ESDS VSAM file

'dlbl/tlbl'

This parm is required unless writing to a printer device. It tells
Spectrum Writer what DLBL or TLBL is used in the JCL for the
output file. The 1– to 7–byte name within apostrophes (or
quotation marks) must be the same as the filename in a DLBL or
TLBL statement in your JCL.

SYSnnn

This parm is required for PRINTER and TAPE output. It is treated as
a comment for other output types. It identifies the logical unit to
write the output to. The value specified here must also be
"assigned" in your JCL.

recsize

This parm is optional. It specifies the length of the output records
to be written. If omitted, a record size of 133 is assumed.

Note that for report output, the first byte in each record is used as
a "carriage control character." Therefore, by default 132 bytes are
available for the report data itself. For PC file and mainframe file
output (or when using the NOCC option) no control character is
written, and the entire length of the record is available for data.

blksize

This parm is optional. It specifies the block size to use when
writing a DASD or TAPE output file. (This parm is not allowed for
PRINTER or VSAM output types.) This value must be a multiple of
the recsize value. If omitted, single record blocking is used. That
is, the default is to make the block size the same as the record size.
570 Spectrum Writer Reference Manual

OPTIONS
Notice that the OUTATTR parm does not have a record format parm (F/V), which the similar
ATTR parm in the FILE statement has. Spectrum Writer output is always written as fixed
length records (and fixed length blocks, if blocked).

OUTDDN(ddname)
OS/390 only. Specifies the ddname (in the JCL) to be used for the output records written
by Spectrum Writer. Use this parm if you do not want your output(s) to be written to the
standard output ddnames (SWOUTPUT, SWOUT002, SWOUT003, etc.)

Note: The OPTIONS statement containing this parm must appear early in the report
request to which is applies — before any non-OPTIONS statements. In a multi-output
run, this parm applies to the output currently being defined.

OUTLRECL(nnnnn)
OS/390 only. Specifies the LRECL to be used for the output records written by Spectrum
Writer. This parm is mainly intended for use when writing to a VSAM output file. The LRECL
chosen by Spectrum Writer for its output records is determined in this way.

For VSAM output files, the LRECL used is:

1. the OUTLRECL parm value (if it is valid for the VSAM file's definition), or
2. 133 (if it is valid for the VSAM file's definition), or
3. the maximum LRECL value defined for the VSAM file

For QSAM output, the LRECL used is:

1. the LRECL specified in the JCL, if any, or
2. the LRECL specified in the file's label, when writing to an existing dataset, or
3. the OUTLRECL parm value, if any, or
4. 133

Note: The OPTIONS statement containing this parm must appear early in the report
request to which is applies — before any non-OPTIONS statements. In a multi-output
run, this parm applies to the output currently being defined.

OUTTYPE(SEQ/VSAM)
OS/390 only. Specifies the type of I/O to be used by Spectrum Writer when writing output
records. When VSAM is specified, the dataset named in the output DD (ddname SWOUTPUT
by default) must be an existing, ESDS VSAM dataset. If Spectrum Writer's output will be
written to a SYSOUT DD or to a non–VSAM dataset, specify SEQ (which is also the default).

Note: The OPTIONS statement containing this parm must appear early in the report
request to which is applies — before any non-OPTIONS statements. In a multi-output
run, this parm applies to the output currently being defined.

PAGELENGTH(nnn/60)
Specifies how many lines should be printed per page. The first title line of your report is
considered line 1. The default number of lines to print per page is 60. Use this option to
change the number of blank lines that appear at the bottom of each page.
Chapter 10. Control Statement Syntax 571

OPTIONS
PC/OUTPUT/ACCESS/COREL/CSV/DBASE3/DBASE4/EXCEL/FOXPRO/
HARVARD/LOTUS/MS–WORKS/PARADOX/QUATTRO/RBASE

Specifies that a particular kind of output file is wanted (rather than a report). The use of
these options is discussed in the lesson that begins on page 88.

POSTSCRIPT('text')
Specifies a literal text that should be printed once at the end of the report (or output file).
You may have as many POSTSCRIPT options as you like. They will print in the order they
are specified in. The HTML option, if specified, also causes certain lines to print at the end
of a report. The POSTSCRIPT lines print just before the lines produced by the HTML option.

PRESCRIPT('text')
Specifies a literal text that should be printed once, before the beginning of the report (or
output file). You may have as many PRESCRIPT options as you like. They will print in the
order they are specified in. The HTML option, if specified, also causes certain lines to print
at the beginning of a report. The PRESCRIPT lines print just after the lines produced by the
HTML option.

PRTSETUP('text')
Specifies a string of characters to be sent to the printer once before the report is printed.
This string can contain any setup information that is valid for your printer. One use of this
option is to request a "condensed font" with your laser printer. This may allow you to print
reports wider than the standard 132 characters.

Tip: If the text you specify doesn't seem to work, try adding an extra space at the
beginning of your text. The printer may be treating the first character as a carriage
control character and ignoring it.

Example: OPTION: PRTSETUP('+$$$DJDE$ JDE=40,FORMAT=L66200,DATA=(0,200),END;')

The above statement causes the specified setup string to be sent to the printer once, before
the report starts printing. Of course, the actual contents of the setup string will be different
for each shop.

PRTSHEET('text')
Specifies a string of characters that can be sent to a laser printer to force it to skip to a new
sheet of paper. When the NEWSHEET or NEWSHEET1 space options are used at control
breaks, this option must be specified. At the appropriate time, Spectrum Writer will send
this string to the printer to cause it to skip to a new sheet.

Note: If NEWSHEET or NEWSHEET1 is specified for any control break, the PRTSHEET
text will also be sent to the printer at the very beginning of the report. This is to
ensure that the first page of the report begins on a new sheet of paper.

Tip: If the text you specify doesn't seem to work, try adding an extra space at the
beginning of your text. The printer may be treating the first character as a carriage
control character and ignoring it.

Example: OPTION: PRTSHEET('+$$$DJDE$ SIDE=NUFRONT,END;')

The above statement causes the specified string to be sent to the printer each time Spectrum
Writer needs to skip to a new sheet of paper. Of course, the actual contents of the string
will be different for each shop.
572 Spectrum Writer Reference Manual

OPTIONS
QCHAR('char'/ '"')
Specifies the "quotation character" to use in conjunction with the QCHAR, Q–MM–DD–YY,
Q–HH–MM–SS and similar display formats. The default is to use a regular (double) quotation
mark as the enclosure character for those display formats. If you need to enclose such data
in some other character, use this option.

Example: OPTIONS: QCHAR("'")

The above statement specifies that the apostrophe character should be used to enclose data
that is formatted with a quoted-type display format. For example, a date formatted with the
Q–MM–DD–YY display format would now look like
'12/31/96' rather than "12/31/96".

SCALEPIC
This option enables the automatic scaling symbols in PICTURE display formats. If not
specified, the symbols "@" and "?" within a PICTURE are simply literal characters. When
SCALEPIC is specified (prior to the PICTURE in question), those two symbols are treated as
automatic scaling symbols.

SINGLE/DOUBLE/TRIPLE
Specifies how the report should be spaced. The default is to single space the report.

Note: This option determines how many (if any) blank lines are left between the
detail report line(s) for each input record. If multiple COLUMNS statements are used,
the detail report lines for a single input record are always single spaced. You can use
empty COLUMNS statements if you want to print blank lines within the detail report
lines for a single input record.

SKIPBLANKDET
This option causes Spectrum Writer to skip (not write out) any detail report line (or PC file
record) that is all blank. For the purposes of this option, "detail lines" means: the detail lines
printed for each input record; the total lines printed at control breaks (if any); and the Grand
Total lines (if any). Titles, column headings and break headings are not affected by this
option. Use of this option is discussed on page 249.

Note: Only the first 256 bytes of each line are examined when checking for blank
detail lines.

SKIPZERODET
This option causes Spectrum Writer to skip (not write out) any detail report line (or PC file
record) that contains only "zero values". The following are considered "zero" values for
this purpose:

! blanks (for character fields)
! 0's (including decimal points such as 0.00)
! 00/00/00 (zero dates)
! 00:00:00 (zero times)

For the purposes of this option, "detail lines" means: the detail lines printed for each input
record; the total lines printed at control breaks (if any); and the Grand Total lines (if any).
Titles, column headings and break headings are not affected by this option. Use of this
option is discussed on page 249.
Chapter 10. Control Statement Syntax 573

OPTIONS
Note: Only the first 256 bytes of each line are examined when checking for zero
detail lines.

SORTDD('prefix')
This parm tells Spectrum Writer the 4-byte DDNAME prefix that the Sort program should use
when opening sort work files (for the report currently being defined). (The complete
DDNAMEs are then formed by appending "WK01", "WK02", etc. to this prefix. Under VSE,
the complete DLBLs are formed by appending "WK1", "WK2", etc. to this prefix.) Unless
your shop’s system sort allocates its work files dynamically, your JCL should include one
or more DD (or DLBL) statements with these names. If not specified, Spectrum Writer
assumes the following prefixes for the sort work files DD (or DLBL) statements:

! SORT, for the first (or only) output in the run

! SRT2, for the second output in the run

! SRT3, for the third output in the run

. . .

! SR10, for the tenth output in the run, and so on

Note: In a multi-output run, this parm applies only to the Sort for the output
currently being defined in the control statements.

Example: OPTIONS: SORTDD('TEMP')

The above statement specifies that Spectrum Writer should tell the Sort program to use
DDNAMEs TEMPWK01, TEMPWK02, TEMPWK03, etc., for any sort work files that it needs to sort
the current report.

SORTNAME('program'/'SORT')
This parm specifies the name of your shop's sort program. The default name of SORT is
used in almost all shops. However, some shops have multiple sort programs available and
you may want to use an alternate sort program.

Example: OPTIONS: SORTNAME('SORT2')

The above statement specifies that Spectrum Writer should use the program named SORT2
to perform any necessary sorts.

SORTOPT('text')
Use this parm to pass any special option parm to the system Sort program. If specified,
Spectrum Writer will append a comma and your text to the end of the Option control
statement that it passes to the system Sort program.

Note: In a multi-output run, this parm applies only to the Sort for the output
currently being defined in the control statements.

Example: OPTIONS: SORTOPT('FILSZ=E5000')

The above statement tells Spectrum Writer to add the parm FILSZ=E5000 to the Options
statement that it builds and passes to the system Sort program. (The parm in this example
tells the Sort program to expect approximately 5000 records to be sorted.)
574 Spectrum Writer Reference Manual

OPTIONS
SORTSIZE(nnnn/256)
This parm specifies the MAINSIZE parameter (in kilobytes) that should be passed to your
shop's sort program when it is called. This parm tells the sort program how much memory
it should use while performing the sort. If you omit this parm, Spectrum Writer passes your
sort program a size parm of 256K. You may want to specify a smaller value in order to run
in a smaller region or partition. Or, in some cases you may get better performance by
specifying a larger value than the default. The maximum value allowed by Spectrum
Writer is 8191 (which means 8191K, or 8M). (Your sort program may have a smaller
maximum limit. You may also be limited by the size of the region or partition you run in.)
Under VSE, you may also need to modify the SIZE parm in your EXEC JCL statement (to
ensure that your partition has this much memory available for the sort program).

Note: In a multi-output run, this parm applies only to the Sort for the output
currently being defined in the control statements.

Example: OPTIONS: SORTSIZE(64)

The above statement tells Spectrum Writer to pass the sort program a size parm of 64K.

SORTWORKNUM(n/0)
VSE only. This parm specifies how many, if any, external work files can be used by the
system Sort program. By default, zero sort work files are assumed. That is, the sort program
will attempt to perform the entire sort in memory. For larger runs, you may need to provide
DLBL (and EXTENT) statements for "sort work" files in your JCL. The DLBLs should
generally be named SORTWK1, SORTWK2, etc. (See page 434.) Use this parm to tell
Spectrum Writer how many of these sort work files are available for it to use. You may
specify a number from 0 to 9.

Example: OPTIONS: SORTWORKNUM(3)

The above statement specifies that 3 sort work file DLBL statements are provided in the JCL
for the sort program to use.

SPLITDETAIL
Specifies that it is OK to split the detail lines for a single input record across pages in the
report. If you do not specify this option, Spectrum Writer will skip to a new page whenever
the current page does not have enough room to show all of the detail lines for an input
record. (Using multiple COLUMNS statements results in multiple detail lines for a single
input record.) Normally you will probably not use SPLITDETAIL, since it is easier to view
related data when it is all on a single page. But that does use extra paper. And, it may be
impractical if you are listing 30 or 40 items from each input record, since virtually every
record would end up requiring a new page. In these cases, you may specify SPLITDETAIL to
allow Spectrum Writer to fill up each page before going on to the next page of the report.

STCKADJ(nn)
Specifies how many hours should be added to fields stored in the STCKDATE and STCKTIME
data types in order to obtain the local date and time. IBM's STCK machine instruction stores
its date–time stamps in GMT. Spectrum Writer normally converts STCKDATE and STCKTIME
values from GMT to local time. The number of hours Spectrum Writer adds or subtracts to
the GMT time is determined by your installation's system parms. If you do not want this
automatic conversion performed, use the STCKADJ option. This option specifies the number
of hours that should be added to the STCK value. (The number of hours may be a positive
or negative value.)
Chapter 10. Control Statement Syntax 575

OPTIONS
For example, to suppress conversion altogether and leave STCKDATE and STCKTIME values
in GMT, you would specify the following:

OPTIONS: STCKADJ(0)

STOPWHEN(conditional-expression)
Tells Spectrum Writer that it can stop reading the primary input file when a certain
condition is met. Use this parm to reduce I/O processing — and run time — if you know
that your report will not need records after a certain point in your input file (and if that point
can be specified in a conditional expression).

Note: When specified in an OPTIONS statement, this parm affects only the report
currently being defined. Any other reports produced in the same run will not be
affected by this STOPWHEN parm. (If you want the STOPWHEN parm to apply to all
reports in a run, then put it in the INPUT or FILE statement, rather than in the OPTIONS
statement.)

Example: OPTION: STOPWHEN(EMPL-NUM > ’039’)

The above statement tells Spectrum Writer that, for the purposes of the current report, it
can stop reading the primary input file when it encounters a record whose EMPL-NUM field
is greater than ’039’. When Spectrum Writer reads a record whose EMPL-NUM is greater
than ’039’, it will ignore that record and act as if it has hit EOF on that file. No more records
will be read from the file. The report will be produced based on the records read up to that
point.

SUBLIB('library.sublibrary')
VSE only. Specifies the name of the VSE sublibrary to use as the Spectrum Writer Copy
Library.

Example: OPTIONS: SUBLIB('LIB.SPECTWTR')

The above statement causes the Librarian dataset named LIB.SPECTWTR to be used as the
Spectrum Writer Copy Library.

SUMMARY
Specifies that a summary report is wanted. The report will contain no detail lines. Only
lines associated with control breaks (and the Grand Total) will print. This option has the
same effect as specifying DETAIL(0). However, this option also changes the default break
spacing for the lowest level control break from two blank lines to zero blank lines. This
prevents the report’s summary lines from appearing to be triple spaced.

TIMEDELIM('char'/ ':')
This option lets you specify any character you choose to be used as the delimiter when
formatting times. This delimiter will be used with all time display formats that include a
delimiter. The default time delimiter is a colon (:). For example, to format all times using
dots rather than colons, you would specify:

OPTIONS: TIMEDELIM('.')

This would cause the HH–MM–SS display format to appear as "12.00.00" (for example).

Note: Use of this parm does not affect the way Spectrum Writer recognizes time
literals in the control statements. Time literals must always be written using colons
as delimiters.
576 Spectrum Writer Reference Manual

OPTIONS
TITLEONCE
Causes the titles (and any column headings) to print only once at the beginning of the
report. Also, any footnotes will print only once at the end of the report. There will be no
page breaks within the report. In other words, the entire report is treated as one long page.
This option is sometimes useful when creating Web reports (which are viewed on PC
screens rather than on pages of paper).

ZERODIVBYZERO
Tells Spectrum Writer to assign a value of zero to a COMPUTE field when a division by zero
error occurs. This suppresses the ***Z*** error indicator in reports.

ZEROINVDATA
Tells Spectrum Writer to assign a value of zero to fields that contain invalid data in the
input record. This suppresses the ***I*** error indicator in reports.

ZEROOVERFLOW
Tells Spectrum Writer to assign a value of zero to a COMPUTE field when an overflow error
occurs. This suppresses the ***V*** error indicator in reports.
Chapter 10. Control Statement Syntax 577

READ Statement
READ

PURPOSE
Specifies an auxiliary input file to be used in producing a report or PC file. Each run must
have one (and only one) primary input file, which is specified with an INPUT statement. If
a report or PC file requires information from additional files, these files must be specified
with READ statements. You may have as many READ statements in a run as you like. The
READ statements must appear after the INPUT statement.

An auxiliary input file is useful if the primary input file does not contain all of the
information needed for a run. After a READ statement has been processed by Spectrum
Writer, all of the fields defined for that auxiliary file become available for use in producing
the report (or PC file). These fields can be used in exactly the same way as fields from the
primary input file. They can be used: as a column of data in the report or PC file; in report
titles; as a sort field; as a control break field; as part of a conditional expression; as
operands in computational expressions; even as key fields used to read records from other
auxiliary input files.

The READ statement is one of the most powerful statements in Spectrum Writer.

FEATURES
Use the READ statement to:

! specify the name of an auxiliary input file

! specify a field containing the read key to be used when reading from VSAM files

! specify a WHERE clause to be used when reading from a DB2 table or view

! automatically copy additional control statements from the Spectrum Writer
Copy Library (typically used to copy the FILE and FIELD statements that define
the auxiliary input file)

! specify a record name to be associated with records from this auxiliary input file

! override certain aspects of the auxiliary input file definition

LEARNING MORE
The complete syntax of the READ statement is shown on the following pages. In addition,
the following parts of the manual relate to the READ statement:

! a lesson on using the READ statement in reports begins on page 76

! a lesson on using the READ statement in PC files begins on page 116
578 Spectrum Writer Reference Manual

READ
! advanced techniques involving the READ statement are discussed beginning on
page 224

! the use of the READ statement with DB2 tables is discussed beginning on page 400

! suggestions on writing READ statements for maximum run–time efficiency are
given in Appendix G, "Speed-Up Tips" (page 652)

! reading a file that is processed by a user I/O Exit is discussed in Appendix I, "I/O
Exits" (page 673)

SYNTAX

READ STATEMENT SYNTAX

READ: filename
[ATTR(VSAM/EXIT, 'dlbl', recsize) (VSE only)]
[BUFND(nn) (VSAM only)]
[BUFNI(nn) (VSAM only)]
[CLEAR(SPACES/ZEROS/NO)]
[COPY(YES/NO)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (OS/390 only)]
[EXITPARM('text')]
[GENERIC]
[IOEXIT(‘program’ [,’parm’] [TRACE])]
[KGE]
[LIST(YES/NO)]
[LRECL(nnnnn) (OS/390 only)]
[MULTI]
[NONORMALIZE]
[NORMALIZE(fieldname, num-expr [, ...]) ...]
[NORMWHEN(conditional-expression)]
[ONIOERROR(DEFAULT/ERROR/STOP)]
[ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)]
[ORDERBY(fieldname [ASC/DESC] [, ...]) (DB2 only)]
[READKEY(fieldname)]
[RECNAME(name/filename)]
[SHOWFLDS(YES/NO)]
[TYPE(VSAM/DB2/EXIT) (OS/390 only)]
[WHERE(search–condition) (DB2 only)]

(continued on next page)
Chapter 10. Control Statement Syntax 579

READ
The filename parm is required. In addition, either a WHERE parm (for DB2 files) or a
READKEY parm (for other files) is also required. The syntax of the READ statement is
otherwise very similar to that of the INPUT statement.

filename
Identifies the auxiliary input file to use. One or more records will be read from this file each
time a new record is read from the primary input file. Files named in READ statements must
be either keyed files or DB2 tables.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically copied
into the report at the time the READ statement is processed. This process is explained
beginning on page 360.

Example: READ: EMPL–FILE READKEY(EMPL–NUM)

The above statement specifies that the file named EMPL–FILE will be an auxiliary input file
for the run.

ATTR(VSAM/EXIT, 'dlbl', recsize)
VSE only. Specifies override file attributes to use for this file (for the current run only).
Files named in VSE READ statements must be keyed VSAM files or EXIT files. For examples
of using this parm, see page 331.

Example: READ: EMPL–FILE READKEY(EMPL–NUM)
 ATTR(VSAM, 'EMPLFIL', 80)

The statement above names EMPL–FILE as an auxiliary input file for the run. Regardless of
how EMPL–FILE was defined in an earlier FILE statement, for the current run it is treated as
a VSAM file, with EMPLFIL as the DLBL name, with 80–byte (or smaller) records.

READ STATEMENT SYNTAX (CONTINUED)

Standard Alternate
Spelling Spellings
DDNAME DDN
DEFAULT DEF
ERROR ERR
EXITPARM PARM
GENERIC GEN
NO N
NONORMALIZE NONORM
NORMALIZE NORM
NORMWHEN NORMALIZEWHEN
ONIOERROR ONIOERR
ONNORMERROR ONNORMERR
READKEY KEY
RECNAME NAME
TYPE TYP
WARNING WARN
YES Y
580 Spectrum Writer Reference Manual

READ
BUFND(nn)
VSAM files only. Specifies the number of "data buffers" that the VSAM access method should
maintain when processing this input file. When this parm is not specified for a VSAM file,
Spectrum Writer chooses a default number of data buffers to maintain.

Note: According to the VSAM manual, increasing the number of data buffers by one
or two (from VSAM's default of 2) may improve performance for random reads. After
that, more benefit is obtained by increasing the number of index buffers instead (use
the BUFNI parm for that). You may wish to experiment with this parm if you have
long–running, VSAM–intensive jobs.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3)

The above statement specifies that VSAM should allocate buffer space for three data control
intervals when processing the EMPL–FILE.

BUFNI(nn)
VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a VSAM
file, Spectrum Writer chooses a default number of index buffers to maintain.

Note: According to the VSAM manual, increasing the number of index buffers (from
VSAM's default of 1) should improve performance for random reads up to a certain
point. At some point, excessive paging may cancel any benefit. Optimal
performance is sometimes achieved by having one index buffer for each level of the
file's index. You may wish to experiment with this parm if you have long–running,
VSAM–intensive jobs.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3) BUFNI(6)

The above statement specifies that VSAM should allocate buffers for three data control
intervals and six index control intervals when processing the EMPL–FILE.

CLEAR(SPACES/ZEROS/NO)
When processing certain types of input files, Spectrum Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not followed
by leftover data from a previous longer record. For certain record layouts such leftover data
could cause misleading results. Specifying CLEAR(NO) suppresses this clearing, which may
result in improved performance. You might want to specify CLEAR(NO) if you are certain
that any leftover data in the I/O area will not adversely affect your run. Specifying
CLEAR(ZEROS) causes Spectrum Writer to initialize the I/O area to hex zeros (rather than
blanks) before each read.

Note: You can also specify the CLEAR parm in the FILE statement to avoid having
to put it in the READ statement each time. And, the NOCLEARIO parm in an OPTIONS
statement can be used to prevent clearing of all files in a run.

Example: READ: PAYROLL–FILE READKEY(EMPL–NUM) CLEAR(NO)

The above statement names the PAYROLL–FILE as the input file for a run. Spectrum Writer
will not clear its I/O area each time it reads a record from that file.
Chapter 10. Control Statement Syntax 581

READ
COPY(YES/NO)
Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the input
file. This process is explained beginning on page 360.

If an attempt to copy records is unsuccessful (due to a missing copy library or missing
member), that is not considered an error. Normal control statement processing continues,
without any copy being performed.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) COPY(NO)

The above example specifies that no attempt should be made to copy records from the copy
library.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view that you wish to use as an auxiliary
input for the run. For DB2 inputs, this parm is required (unless the filename was defined in
an earlier FILE statement that included the DB2NAME parm.) The table name must be
enclosed in quotation marks or apostrophes. Generally the table name will be qualified. If
it is not explicitly qualified, DB2 will assume an implicit qualifier, which will be the DB2
Authorization ID of the job executing Spectrum Writer.

Example: READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

The above example specifies that the DB2 table named 'DSN8230.EMP' should be used as an
auxiliary input "file" for the run. This input file has a Spectrum Writer file name of
EMPLOYEE. That is, other Spectrum Writer control statements that refer to this input file
will refer to EMPLOYEE (rather than to DSN8230.EMP).

DDNAME(ddname)
OS/390 only. Specifies an override DDNAME to use when reading the input file (for the
current run only). If omitted, the DDNAME will be taken from the FILE statement that defined
the file. A DDNAME parm must be present in either the FILE statement or the READ statement.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) DDNAME(TEMPDD)

The above example specifies that the TEMPDD DD statement in the JCL will be used to read
the EMPL–FILE file, regardless of the DDNAME specified when the file was originally defined.

EXITPARM('text')
Most installations will not use exits, and will not need this parm. Specifies an override exit
parm text. If this parm is omitted, the exit parm text (if any) will be taken from the FILE
statement that defined the file. Exit parm text is passed to user data exit programs. Anytime
a user data exit is called by Spectrum Writer for a field within this file, the text string
specified in this parm will be passed to the exit. The use of this parm is discussed beginning
on page 357.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) EXITPARM('12345')
582 Spectrum Writer Reference Manual

READ
The above example specifies that the text '12345' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

GENERIC
VSAM and EXIT only. Specifies that the contents of the READKEY parm is a generic key rather
than an entire key. That is, the length of the READKEY parm may be shorter than the key
length in the VSAM file's definition. The first record in the file whose partial key matches
the READKEY value will be read. If GENERIC is not specified, the READKEY value is assumed
to be an entire key. The use of GENERIC keys is discussed in the section beginning on
page 230.

Example: COMPUTE: SHORT–KEY = #SUBSTR(EMPL–NUM,1,2)
READ: EMPL–FILE READKEY(SHORT–KEY) GENERIC

The READ statement above uses a generic read key. The SHORT–KEY field is only two bytes
long, while the defined key length for the EMPL–FILE file is three bytes. Thus, when
performing the above read, the record read will be the first one where the first two bytes of
its key equals the contents of SHORT–KEY.

IOEXIT(‘program' [,'parm'] [,TRACE])
EXIT files only. Specifies override I/O Exit information for the input file. May also override
the input file type (if it was something other than EXIT in the FILE statement). This parm
provides the information necessary for Spectrum Writer to process an EXIT type input file.
More information on I/O Exits can be found in Appendix I, "I/O Exits" (page 673).

OS/390 Note: When this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.

VSE Note: When this parm is present, an ATTR parm specifying a type of EXIT and
a RECSIZE is required (in either this statement or the FILE statement).

'program' This parm is required. It specifies the name of the load module (OS/390) or phase
(VSE) that Spectrum Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Spectrum Writer,
the text specified in this parm will be passed to the exit program. Typically this text is used
to provide the exit program with any special information it needs in order to process the
file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Spectrum Writer prints trace information in
the control listing before and after each call to the I/O Exit. This information can be useful
when developing and debugging a new I/O Exit program. The TRACE parm is normally not
used in production runs.

Example: READ: MASTER-FILE READKEY(EMPL-NUM) IOEXIT(‘MYEXIT')

The above example specifies that a program named MYEXIT should be called to read records
from the auxiliary input file MASTER-FILE.

KGE
VSAM and EXIT only. Specifies that when reading this file, the first record should be returned
whose key (or partial key, if GENERIC is also specified) is greater than or equal to the key
(or partial key) in the READKEY parm. If KGE is not specified, only records that exactly equal
Chapter 10. Control Statement Syntax 583

READ
the READKEY value (or partial value) will be read. The use of the KGE parm is discussed in
the section beginning on page 230.

Note: The KGE parm may not be specified if the MULTI parm is also specified. Such
a combination would result in reading every record in the file whose key was greater
than or equal to the READKEY parm.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) KGE

When performing the above READ statement, a record is first sought whose key exactly
matches the EMPL–NUM value. If none is found, the first record whose key is greater than
the EMPL–NUM field will be read instead.

LIST(YES/NO)
Applies only if the COPY function is performed. The LIST parm specifies whether the copied
control statements should be listed in the control listing. If no LIST parm is present, the
default is to not list the copied statements.

Note: If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) LIST(YES)

The above example specifies that the records copied from the copy library should be listed
in the control listing.

LRECL(nnnnn)
OS/390 only. Specifies an override record length for the input file. This is the length of the
largest record that might be found in the file. If this parm is omitted, the LRECL value (if
any) from the FILE statement is used. If no LRECL parm is found in either the FILE or the
READ statement, a default LRECL of 1000 is assumed.

Note: Spectrum Writer uses this value only to determine the size of the I/O area that
it allocates for use with the input file. Therefore it is not required that this value
match the file’s actual LRECL parm in the JCL or in the dataset’s label information.
In fact, if you suspect that a file's record size may grow in the future, you may want
to specify a larger LRECL parm with some "growth" room in it. On the other hand,
specifying an excessively large LRECL may result in higher CPU usage in some
circumstances.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) LRECL(4000)

The above example specifies that a record as large as 4000 bytes long may be encountered
in the EMPL–FILE file.

MULTI
For VSAM and EXIT files, specifies that when reading from this file, all records whose key
(or partial key, if GENERIC is specified) matches the READKEY value should be read. If MULTI
is not specified, only the first record whose key (or partial key) matches the READKEY value
will be read.

For DB2 tables, specifies that when reading from this table, all records (rows) which pass
the WHERE parm condition should be read. If MULTI is not specified, only the first record
which passes the WHERE parm condition will be read.
584 Spectrum Writer Reference Manual

READ
The use of the MULTI parm is discussed in the section beginning on page 232.

Note: The MULTI parm may not be specified if the KGE parm is also specified. Such
a combination would result in reading every record in the file whose key was greater
than or equal to the READKEY parm.

Example: COMPUTE: SHORT–KEY = #SUBSTR(EMPL–NUM,1,2)
READ: EMPL–FILE READKEY(SHORT–KEY) GENERIC MULTI

The READ statement above will read multiple records using a generic read key. The
SHORT–KEY field is only two bytes long, while the defined key length for the EMPL–FILE file
is three bytes. Thus, when performing the above read, all records will be read where the
first two bytes of their key equals the contents of SHORT–KEY.

NONORMALIZE
Specifies that the auxiliary input file should not be normalized. Any NORMALIZE parms
specified in the FILE statement (or in this READ statement) will be ignored.

Example: READ: EMPL-FILE READKEY(EMPL-NUM) NONORMALIZE

The above example specifies that the EMPL-FILE should not be normalized for the current
run, even though there may be a NORMALIZE parm in its FILE statement.

NORMALIZE(fieldname, num-expr [, ...]) ...
Specifies that the auxiliary input file should be normalized. (See "Using Normalization to
Process Arrays" on page 237 for an explanation of file normalization.) The fieldname must
be the name of a field that defines the entire first occurrence of the array that is to be
normalized. The numeric expression specifies how many occurrences the array contains.
(This numeric expression is evaluated individually for each input record to determine the
number of occurrences in that record.)

Note: When normalizing an auxiliary input file, you should also specify the MULTI
parm. Otherwise, only the first normalized record (which is the same as the physical
record) will be used for a given read key.

The NORMALIZE parm may contain any number of fieldname-numeric-expression pairs.
Each pair identifies one array to be normalized. When multiple arrays are specified within
a single NORMALIZE parm, those arrays are normalized in parallel (see "Normalizing
Multiple, Non-Nested Arrays" on page 245).

In addition, you may have any number of NORMALIZE parms in the READ statement. When
multiple NORMALIZE parms are present, they represent nested arrays (see "Normalizing
Nested Arrays" on page 244). The last NORMALIZE parm specifies the most deeply nested
array, and is normalized first.Then the array specified in the next-to-last NORMALIZE parm
is normalized, and so on.

Note: If only some of the records from the file should be normalized, use a
NORMWHEN parm before the NORMALIZE parm.

Example: READ: EMPL-FILE READKEY(EMPL-NUM) NORMALIZE(SALES-QTR1, 4) MULTI

The above example specifies that the records read from the EMPL-FILE should be
normalized. The first occurrence of the array being normalized is defined by SALES-QTR1.
There are four occurrences of the array in each record.
Chapter 10. Control Statement Syntax 585

READ
NORMWHEN(conditional-expression)
Specifies which records from the input file should be normalized. (This parm is discussed
in more detail in "Normalizing only Certain Records" on page 247.) When the conditional
expression is true for a record, then all subsequent NORMALIZE parms (up until the next
NORMWHEN parm) will be processed. If the conditional expression is false, the subsequent
NORMALIZE parms will not be processed for that input record. (Any NORMALIZE parms that
are not proceeded by a NORMWHEN parm are processed for every input record.)

Example: READ: BATCH-FILE READKEY(EMPL-NUM) MULTI
 NORMWHEN(RECORD-TYPE = ’HDR’)
 NORMALIZE(STATUS-ARRAY, 5)
 NORMWHEN(RECORD-TYPE = ’DET’)
 NORMALIZE(CUSTOMER-ARRAY, 8)

The above statements tell Spectrum Writer to normalize the STATUS-ARRAY only for those
records where the RECORD-TYPE field contains ’HDR’. And the CUSTOMER-ARRAY will be
normalized only for those records where the RECORD-TYPE field contains ’DET’. Records
with any other value in the RECORD-TYPE field will not be normalized at all.

ONIOERROR(DEFAULT/ERROR/STOP)
Specifies how I/O errors on this file should be treated. By default, when an I/O error occurs
on an auxiliary input file, Spectrum Writer prints a warning message in the control listing
and then continues the run without reading from that file again. (All records from that file
are treated as "missing".)

Specify ERROR in this parm to change the control listing message from a warning to an
error (which also sets the job completion code to 8).

Specify STOP in this parm to have Spectrum Writer halt the run immediately when an I/O
error occurs on the file. Spectrum Writer will print a message and then issue a "user ABEND"
to terminate the run immediately.

Note: You can also specify a ONIOERROR parm in an OPTIONS statement, if you
want it to apply to all of the input files used in the run.

Note: "Missing" records are not considered I/O errors.

Example: READ: EMPL–FILE READKEY(EMPL-NUM) ONIOERROR(ERROR)

The above example specifies that an I/O error on the EMPL-FILE should be considered an
"error" condition rather than just a "warning."

ONNORMERROR(DEFAULT/WARNING/ERROR/STOP)
Specifies how normalization errors in this file should be treated. (For examples of
normalization errors, see "Normalization Errors" on page 248.)

By default, normalization error messages are treated as informational messages only.
When a normalization error occurs, Spectrum Writer processes the physical record, and
then skips the normalization in question for that record. If you want normalization errors
to be treated as more serious errors, use the ONNORMERROR parm.

Specify WARNING in this parm to change the control listing message from "informational"
to a "warning" (which also sets the job completion code to 4).
586 Spectrum Writer Reference Manual

READ
Specify ERROR in this parm to change the control listing message from "informational" to
an "error" (which also sets the job completion code to 8).

Specify STOP in this parm to have Spectrum Writer halt the run immediately when a
normalization error occurs. Spectrum Writer will print a message and then issue a "user
ABEND" to terminate the run immediately.

Note: You can also specify an ONNORMERROR parm in the OPTIONS statement, if
you want it to apply to all of the normalized files used in a run.

Note: When normalization errors occur, Spectrum Writer also prints a dump of the
record in error. You can use the MAXNORMDUMP option (in an OPTIONS statement) to
control how many (if any) such dumps appear in your control listing.

Example: READ: EMPL–FILE READKEY(EMPL-NUM)
 NORMALIZE(SALES-QTR1,4) ONNORMERROR(ERROR)

The above example specifies that any normalization error in the EMPL-FILE should be
treated as an "error".

ORDERBY(fieldname [ASC/DESC] [, ...])
DB2 only. This parm is optional. It is possible that more than one row will pass the search
condition in your WHERE parm. If the MULTI parm is also specified, all of these rows will
be passed to Spectrum Writer, one by one. If MULTI is not specified, Spectrum Writer
accepts only the first row passed to it from DB2. Use this parm to specify the order in which
the selected row(s) should be passed to Spectrum Writer. The contents of this parm is one
or more column name from the DB2 table, optionally separated with commas. You may also
include the DB2 keywords ASC or DESC after the column names.

Example: READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 ORDERBY(LASTNAME)

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a given RESPEMP number, DB2
would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm is
specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. Since MULTI was not specified in this example, Spectrum Writer uses only
the first row returned to it by DB2.

READKEY(fieldname)
This parm is required for VSAM and EXIT files. Identifies the field that will be used as the
key when performing random reads to the file. The manner in which this key value is used
Chapter 10. Control Statement Syntax 587

READ
to locate an input record depends on two other parms which may be present in the READ
statement, as shown in the following table:

The contents of the READKEY field is always used "as is" when performing the read.
Therefore, the key field must have the same format as the file's key values. You may need
to use a COMPUTE statement to build an acceptable READKEY field. (Only character type
COMPUTE fields may be used as read keys. See page 79, as well as below, for examples of
computing a read key.)

The READKEY field must be available at the time the READ statement is processed.
Therefore, it must be either:

! a field from the primary input file

! a field from an earlier auxiliary input file

! a character type computed field (defined in a preceding COMPUTE statement).
Note: if the key to an auxiliary input file contains packed or binary data, use the

READ STATEMENT PARM COMBINATIONS

GENERIC
PARM?

KGE
PARM? DESCRIPTION

No No

The record will be read whose full key exactly matches
the READKEY value. If no such record is found, the record
will be "missing." The READKEY field should be the same
length as the defined key length for the file. If MULTI is
also specified, Spectrum Writer will read all records
whose full key matches the READKEY value. If MULTI is
not specified, only the first record with a matching key
will be read.

Yes No

The record will be read whose partial key matches the
partial key in the READKEY value. The READKEY field
may be any length less than or equal to the defined key
length for the file. If MULTI is also specified, Spectrum
Writer will read all records whose partial key matches
the READKEY value. If MULTI is not specified, only the
first record with a matching partial key will be read.

No Yes

The record will be read whose full key matches the
READKEY value. If no record matches the READKEY value,
then the record with the next greater key value will be
read instead. The READKEY field should be the same
length as the defined key length for the file. The MULTI
parm may not be specified when KGE is specified.

Yes Yes

The record will be read whose partial key matches the
partial key in the READKEY value. If no record matches
the READKEY value, then the record with the next greater
partial key value is read instead. The READKEY field may
be any length less than or equal to the defined key length
for the file. The MULTI parm may not be specified when
KGE is specified.
588 Spectrum Writer Reference Manual

READ
#FORMAT function in a COMPUTE statement to build a character field containing
the data in the PACKED or BINARY display format.

Example: READ: EMPL–FILE READKEY(EMPL–NUM)

The above example specifies that the EMPL–NUM field will be used as the key when reading
records from the EMPL–FILE file. The EMPL–NUM field must exist in a previously specified
input file. For the read to be successful, an exact, full–key match must be found in the
EMPL–FILE.

Example: COMPUTE: BINARY–DEPT–NUM = #FORMAT(DEPT–NUM,BINARY,2)
READ: DEPARTMENT–FILE READKEY(BINARY–DEPT–NUM)

The above example illustrates how to create a key in binary format. Assume that the
DEPARTMENT–FILE uses the department number formatted as a 2–byte binary field for its
key. The regular DEPT–NUM field is defined as a NUMERIC type numeric field (see
Appendix F, "Files Used in Examples" on page 648) and would not work as the READKEY
in this case, since it is not in binary format. The COMPUTE statement above creates a new
2-byte character field to be used when reading records from the DEPARTMENT–FILE. The
contents of the 2 bytes is the department number, formatted in binary format. That field can
be used as the READKEY to the DEPARTMENT–FILE. Since neither KGE nor GENERIC is
specified, an exact full–key match is again required for the read to be successful.

The following example is similar, but assumes that the DEPARTMENT–FILE requires a 4-byte
packed read key:

COMPUTE: PACKED–KEY = #FORMAT(DEPT–NUM,PACKED,4)
READ: DEPARTMENT–FILE READKEY(PACKED–KEY)

RECNAME(name/filename)
Specifies a record name to use when referring to fields in this input file. This is especially
useful when you will be reading multiple records from the same input file (by using
multiple READ statements). The RECNAME parm (in each statement) can be used to assign
unique names to each record read from the file. You may give the record any name you
like, within the rules governing names given on page 446. The use of the RECNAME parm
is discussed beginning on page 228.

If no RECNAME parm is specified, the filename is used as the record name.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) RECNAME(EMP)

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field in the
EMPL–FILE, like this:

COLUMNS: EMP.DATE

SHOWFLDS(YES/NO)
Specifies whether Spectrum Writer should print a list of all fields that have been defined
for the file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.) This list
appears immediately after the READ statement in Spectrum Writer's control statement
listing. The list will include the data type of each field (character, numeric, date, time or
bit). Use this parm if you aren't sure of the names or spellings of the fields (or DB2 columns)
in your input file.
Chapter 10. Control Statement Syntax 589

READ
Example: READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field defined for the
DSN8230.EMP table.

TYPE(VSAM/DB2/EXIT)
OS/390 only. Specifies an override file type for the input file (for the current run only). If
this parm is omitted, the file type will be taken from the FILE statement that defined the file.
A complete list of file types is given under the FILE statement description, on page 536.

Note: SEQ type files (sequential or "flat" files) may not be specified in the READ
statement.

Example: READ: EMPL–FILE READKEY(EMPL–NUM) TYPE(VSAM)

The above example specifies that the VSAM access method should be used when reading the
EMPL–FILE file, regardless of the file type specified when the file was originally defined.

WHERE(search–condition)
This parm is required for DB2 inputs and not allowed for other inputs. It performs the same
function that the READKEY parm performs for VSAM files. For each record read from the
primary input file, Spectrum Writer will ask DB2 for one or more rows from this auxiliary
input file. Use this parm to specify a "search condition" to instruct DB2 which row(s) from
the DB2 table to pass to Spectrum Writer. The syntax of the search–condition is generally
the same as DB2's syntax for the WHERE clause in a DB2 SELECT statement. The use of this
parm in a READ statement is discussed in the section beginning on page 400. Its syntax is
discussed in the section beginning on page 405.

Example: INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

Here's how Spectrum Writer processes the above statements. The primary input to the
report is the project DB2 table. So, Spectrum Writer will retrieve all rows from that DB2
table. After it fetches each row from the project table, Spectrum Writer will now also fetch
one row from the employee table. The row from the employee table will be the one whose
EMPNO field equals the RESPEMP field from the project table. If MULTI had also been
specified in the READ statement, Spectrum Writer would fetch all such rows (in essence, a
"one-to-many" joining of the tables). When MULTI is not specified, Spectrum Writer fetches
just the first such row.
590 Spectrum Writer Reference Manual

READ
NOTES

How Auxiliary Input Files are Processed
The primary input file for a report is always read sequentially —usually from beginning
to end. Auxiliary input files are handled differently. They are read randomly (or "directly")
using either a "read key" or a WHERE expression to determine which record(s) to read.

This section explains in more detail how Spectrum Writer processes multiple input files.

Program Flow With No READ Statements
To understand how auxiliary input files are processed, let's first notice how Spectrum
Writer produces a report when no auxiliary input files are used. In such a case, Spectrum
Writer repeats the following steps over and over.

1. Read a record from the primary input file
2. Evaluate the INCLUDEIF statement using the data from this input record
3. If the record passes the INCLUDEIF tests, pass the record to Spectrum Writer's

output phase (where it will be sorted and formatted into the desired report or PC
file)

4. If the record does not pass the INCLUDEIF tests, discard the record
The above steps are repeated until all records from the primary input file have been read.
(Or, possibly earlier if a KEYRANGE or STOPWHEN parm has been specified.)

Program Flow with READ Statements
The flow described above remains basically the same when one or more auxiliary input
files are added to the request. The only difference is in Step 1 above. Instead of simply
reading records from the primary input file, Spectrum Writer now assembles "logical input
records." A logical input record is a group of records consisting of one record from each
input file.

The records from the primary input file are still read sequentially. The records from the
auxiliary input files are read using a READKEY (or a WHERE clause). Once assembled, this
group of records is then treated by Spectrum Writer as one, big logical input record
containing all of the data fields from all of the input files. Steps 2 through 4 of the program
flow remain the same –– it's just that they are now performed on this logical record rather
than on the primary input record alone.

1. Assemble a "logical input record" consisting of one record from each of the input
files

2. Evaluate the INCLUDEIF statement using the data from this logical input record
3. If the logical input record passes the INCLUDEIF tests, pass the logical input record

to Spectrum Writer's output phase (where it will be sorted and formatted into the
desired report or PC file)
Chapter 10. Control Statement Syntax 591

READ
4. If the logical input record does not pass the INCLUDEIF tests, discard the logical
input record

The specific way that Spectrum Writer assembles its logical input records (in Step 1) is
different depending on whether any READ statements use the MULTI parm. The next two
sections explain how Spectrum Writer assembles its logical records in each case.

Program Flow Without MULTI–type READ
Statements

When none of the READ statements uses the MULTI parm, Spectrum Writer assembles one
logical record for each record it reads from the primary input file. The primary input file is
still read sequentially, from beginning to end. Each time Spectrum Writer reads a new
record from the primary input file, it also reads a single record from each of the auxiliary
input files. This group of related records, one from each input file, is treated as a logical
input record.

Now the program flow can be described this way:

1. Read a record from the primary input file
2. Create one logical input record by also reading a single record from each

auxiliary input file
3. Evaluate the INCLUDEIF statement using the data from this logical input record
4. If the logical input record passes the INCLUDEIF tests, pass the logical input record

to Spectrum Writer's output phase (where it will be sorted and formatted into the
desired report or PC file)

5. If the logical input record does not pass the INCLUDEIF tests, discard the logical
input record

The above steps are repeated until all records from the primary input file have been read.
Note that when no MULTI parm is used, the number of logical records processed is the same
as the number of primary input file records.

Note: The steps above describe what Spectrum Writer does logically. During actual
processing, there may be cases where it is not necessary for Spectrum Writer to read
a particular record from an auxiliary input file. For example, if the INCLUDEIF
statement eliminates a primary input record without referring to fields from any
auxiliary input files, it is not necessary to read the records from those files. The next
primary input record can be read right away. For run–time efficiency, individual
records are not read from auxiliary files when they are not actually needed to
correctly process a request.

Program Flow With MULTI–type READ
Statements

When one or more READ statements with a MULTI parm is used in a request, Spectrum
Writer uses a different process to assemble logical records.

Let's consider a simple request that uses a single READ statement. Assume that the READ
statement contains the MULTI parm. Rather than only reading a single record from the
auxiliary input file each time, Spectrum Writer must now read all records that match the
592 Spectrum Writer Reference Manual

READ
READKEY value (or the WHERE clause). So now, each time a primary input file record is
read, all of the qualifying auxiliary input file records must be read and, one at a time,
combined with the primary input record to form multiple logical input records. Only after
all of the qualifying auxiliary input file records have been processed can the next primary
input file record be read.

You can see that when a MULTI–type READ statement is used, the number of logical input
records processed can be far greater than the number of primary input file records.

When two (or more) READ statements have the MULTI parm, the process is similar to that
just described. But now the number of record combinations that Spectrum Writer must
assemble into logical records increases exponentially. For each primary input file record,
Spectrum Writer must build one logical input record using every possible, unique
combination of auxiliary input file records that are related to that primary input file record.

The program flow can now be described this way:

1. Read a record from the primary input file
2. Build as many logical input records as possible using this primary input record

and all combinations of records read from the auxiliary input file(s)
3. For each logical input record, evaluate the INCLUDEIF statement using the data

from that logical input record
4. If the logical input record passes the INCLUDEIF tests, pass the logical input record

to Spectrum Writer's output phase (where it will be sorted and formatted into the
desired report or PC file)

5. If the logical input record does not pass the INCLUDEIF tests, discard the logical
input record

The above steps are repeated until all records from the primary input file have been read.

Note: You may have a report request that uses some READ statements that have the
MULTI parm and some READ statements that do not have it. In that case, the above
flow is still used. When assembling logical records from the combinations of
qualifying records from each file, the READ statements without the MULTI parm will
always contribute only one qualifying record.

Note: Whenever an auxiliary input file does not have any qualifying records to
contribute to the logical record, a single "missing record" from that file will be used
in building the logical record combinations. This is true whether or not the MULTI
parm is used in the READ statement.

Speed-Up Tip: READ statements with the MULTI parm are less efficient than regular
READ statements. To reduce CPU and I/O usage, do not specify MULTI if you know
that a file contains unique keys. (In other words, do not specify MULTI if you know
the READKEY will only find one matching record in the file.)

Speed-Up Tip: When mixing READ statements with and without the MULTI parm,
put the READ statements without the MULTI parm ahead of the READ statements with
the MULTI parm whenever possible. This improves performance by reducing the
amount of I/O required to assemble all of the possible record combinations.
Chapter 10. Control Statement Syntax 593

READ
Missing Records
Sometimes there will not be any record in an auxiliary file that matches READKEY value (or
the WHERE expression). When this happens, Spectrum Writer assigns a default value to
each of the fields in the missing record. The default value depends on the type of the field,
as shown in the following table:

See page 230 for a method you can use to determine whether a particular record is missing
or not.

VALUE ASSIGNED TO FIELDS IN MISSING RECORDS

FIELD TYPE DEFAULT VALUE

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)

Time Zeros (00:00:00)
Bit OFF
594 Spectrum Writer Reference Manual

SORT Statement
SORT

PURPOSE
This statement specifies how Spectrum Writer should sort the included input file records
before writing the report or PC file. A SORT statement is not required. If no SORT statement
is found, no sort will be performed and the output will be in the original order of the input
file.

Only one SORT statement is allowed, but it may contain as many sort fields as you like.

The SORT statement can also be used to specify control breaks.

FEATURES
Use the SORT statement to:

! specify the sort fields to be used for the report or PC file

! specify whether to sort each field into ascending or descending order

! specify that a control break should occur whenever the contents of a sort field
changes

! specify the control break spacing to use at control breaks

! specify which statistics lines, if any, to print at control breaks

LEARNING MORE
The complete syntax of the SORT statement is shown on the following pages. In addition,
the following parts of the manual relate to the SORT statement:

! a lesson on using the SORT statement in reports begins on page 62

! a lesson on using the SORT statement in PC files begins on page 105

! the use of the SORT statement to request control breaks is discussed beginning on
page 177

! the OPTIONS statement also has several options that affect the sort process. These
are listed on page 601.
Chapter 10. Control Statement Syntax 595

SORT
SYNTAX

Only one or more fieldnames (or the #EQUALS parm) is required. All other parms are
optional.

Note: Use the AUTOSORT option (in an OPTIONS statement) if you want Spectrum
Writer to automatically sort your report or PC file on its first five columns of data.

Specifying any parm other than ASC or DESC for a field makes that field a control break
field. Specifically, the parms that cause a control break are:

! the TOTAL or NOTOTAL parm. (Specifying TOTAL results in a control break with
totals; NOTOTAL results in a control break without totals.)

! a break spacing parm (such as PAGE, NEWSHEET, 3, etc.)

! a statistical parm (such as AVERAGE, MAXIMUM, etc.)

fieldname[(parms)]
Specifies a field on which the output is to be sorted, and optionally specifies additional
processing information about the field. You are not restricted to sorting on fields that
appear in the report. You may sort on a field which does not appear anywhere else in the

SORT STATEMENT SYNTAX

SORT: fieldname[(parms)] fieldname[(parms)] ... [#EQUALS]

where parms can be one or more of the following (separated by commas or blanks):

ASC/DESC
AVERAGE
MAXIMUM
MINIMUM
n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1
NZAVERAGE
NZMINIMUM
TOTAL/NOTOTAL

Standard Alternate
Spelling Spellings
#EQUALS #EQUAL, #EQ
ASC A
AVERAGE AVER, AVG
DESC D
MAXIMUM MAX
MINIMUM MIN
NOTOTAL NOTOTALS, NOTOT, NOTOTS
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
PAGE PG, P
SORT SRT
TOTAL TOTALS, TOT, TOTS
596 Spectrum Writer Reference Manual

SORT
report. Of course, the field must be available to Spectrum Writer at the time the SORT
statement is processed. That is, the field must be one of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)

No parms are required with the fieldname. If desired, specify one or more parms by placing
them in parentheses immediately after the fieldname. (Do not leave a space before the
parenthesis.) Separate the parms with a comma and/or blanks.

Example: SORT: REGION EMPL–NAME

The above example will cause the report to be sorted in REGION order and — within each
region — in EMPL–NAME order.

#EQUALS
This parm can be used only as the last item (or only item) in a SORT statement. It specifies
that, if after sorting on all of the preceding sort fields there are still some ties, the tie records
should be left in the same relative order that they had in the input file. This is useful if the
records in your input file are already in some special order, and you want to preserve that
relative order.

Example: SORT: REGION #EQUALS

The above SORT statement causes the records to be sorted by REGION. However, within
REGION, the records will not be sorted on any additional field. Instead, the #EQUALS parm
specifies that the records within a region will be printed in the same relative order in which
they appeared in the input file.

ASC/DESC
Specifies ascending or descending sort order. The default sort order is ascending.

Example: SORT: REGION(DESC) EMPL–NAME

The above example will cause the report to be sorted in descending REGION order. The last
region (alphabetically) will print first, and the first region will print last. Within a region,
the records will be further sorted on (ascending) employee name.

AVERAGE
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that average values should be printed at the break. At the control break, a line
will print showing each numeric column's average value in the control group just ended.

Example: SORT: REGION(AVERAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In addition
to the totals line (which prints by default), an average line will print at the break.

MAXIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that maximum values should be printed at the break. At the control break, a
Chapter 10. Control Statement Syntax 597

SORT
line will print showing each accumulated column's maximum value in the control group
just ended.

Example: SORT: REGION(MAXIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In addition
to the totals line (which prints by default), a maximum line will print at the break.

MINIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that minimum values should be printed at the break. At the control break, a
line will print showing each accumulated column's minimum value in the control group
just ended.

Example: SORT: REGION(MINIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In addition
to the totals line (which prints by default), a minimum line will print at the break.

n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies the spacing to use at the control break. Unless overridden with the NOTOTAL
parm, a line of totals will also print at the control break. After the totals line, the spacing
specified with this parm will be performed.

A numeric value (n) specifies a number of blank lines to print at the break. All of the other
parms cause the report to skip to a new page after the control break. For a description of
each of these break spacing parms, see "How to Change the Control Break Spacing"
(page 178).

Example: SORT: REGION(PAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. After
printing regions totals at the break, the report will skip to a new page.

NZAVERAGE
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero average values should be printed at the break. At the control
break, a line will print showing each accumulated column's average value (computed
without considering any zero values) in the control group just ended.

Example: SORT: REGION(NZAVERAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In addition
to the totals line (which prints by default), a non–zero average line will print at the break.

NZMINIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero minimum values should be printed at the break. At the control
598 Spectrum Writer Reference Manual

SORT
break, a line will print showing each accumulated column's minimum value
(not considering zero values) in the control group just ended.

Example: SORT: REGION(NZMINIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In addition
to the totals line (which prints by default), a non–zero minimum line will print at the break.

TOTAL/NOTOTAL
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies whether or not to print totals at the control break.

The TOTAL parm specifies that totals are wanted at the control break. After the total line
prints, the break spacing will be performed.

Note: If a break spacing parm or any other statistical parm has been specified
(indicating that a control break is desired), it is not necessary to also specify the
TOTAL parm. The total line prints by default at all control breaks.

The NOTOTAL parm specifies that totals are not wanted at the break–– only the break
spacing is wanted. Unless overridden with a break spacing parm, two blank lines will print
at the control break.

Example: SORT: REGION(TOTAL) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. Totals for
the preceding region will print, followed by two blank lines.

Example: SORT: REGION(NOTOTAL) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. However,
a totals line will not print at the break. Only two blank lines will print.
Chapter 10. Control Statement Syntax 599

SORT
NOTES

How Spectrum Writer Determines Sort Order
All data processed by Spectrum Writer falls into one of five general categories of data. The
following table shows how each type of data is sorted:

HOW DIFFERENT TYPES OF DATA ARE SORTED

DATA TYPE DESCRIPTION

Character

Character fields are sorted into alphabetical order (based on their
EBCDIC values). The letter "A" sorts before the letter "B", etc.
Numerals ("1", "2", etc.) sort after the letter "Z". Special symbols
such as parentheses, commas, dashes, etc. sort before the letter
"A."

Also, all lower case letters ("a" through "z") sort before the first
upper case letter ("A"). If you want to sort on a field which
contains mixed case letters, you may wish to first convert the field
to all upper–case. That way, fields containing the same words will
sort together, even if the words are capitalized differently. Use the
#UCASE built–in function to create an all upper–case version of the
desired field. Then, sort on that computed field.

Note: The full contents of character fields are sorted, not just the
portion that may appear in a report column. In other words, even
if you truncate a character field to make it fit into a report column,
the field's full value will still be used for sorting purposes. The
field's full value is also used to determine when a control break
occurs.

Numeric

The signed algebraic value of numeric fields are sorted. Thus, all
minus numbers will sort before the first positive number.

Note: The true internal value of a field is what is sorted, not the
formatted value that may appear in the report. In other words,
commas, dollar signs, etc. are not considered when sorting
numeric fields. Also, if you rounded out some of the decimal digits
when displaying the field, those decimal digits are still considered
when performing the sort (and when determining breaks, if the
field is a control break field).

Date
Dates are sorted in year, month, and day order, regardless of how
the raw data may have been stored in the input file, and regardless
of how the date may be formatted in the report.

Time
Times are sorted in hours, minutes and seconds order, regardless
of how the raw data may have been stored in the input file, and
regardless of how the time may be formatted in the report.
600 Spectrum Writer Reference Manual

SORT
OPTIONS statement Options that Affect the
Sort

Certain technical aspects of the Sort process can be specified by options in the OPTIONS
statement. For details on these options, see under the OPTIONS statement in this chapter.
The following table lists the OPTIONS statements options related to the Sort.

Bit

Bit fields are sorted as either an OFF or ON. They are not sorted
according to the text used to display them in the report (that is, the
ONTEXT and OFFTEXT values). Bit fields which are OFF ("0") will
sort before bit fields which are ON ("1").

Note: Depending on what ONTEXT and OFFTEXT values are used, a
sorted bit field column may or may not appear in alphabetical
order. You can always reverse the order, if desired, by specifying
the DESC parm when sorting a bit field.

Note: A field which is in error is treated as a very low value when sorting. Thus,
fields containing invalid packed data, for example, and displayed with the ****I****
error indicator, will sort ahead of fields containing valid numeric values.

HOW DIFFERENT TYPES OF DATA ARE SORTED (CONTINUED)

DATA TYPE DESCRIPTION

OPTIONS STATEMENT OPTIONS RELATED TO THE SORT

OPTION DESCRIPTION

AUTOSORT Tells Spectrum Writer to sort on the first 5 fields of the report.

NOSORTSIZE
Prevents Spectrum Writer from passing a sort size parameter
(MAINSIZE) to the Sort program. (May be useful if you want your
shop’s default sort size parm to be used.)

SORTDD
Specifies the 4-byte prefix of the ddnames that the Sort program
should use for its work files.

SORTNAME Specifies the name of the Sort program to call.

SORTOPT
Specifies any special options you want Spectrum Writer to pass
to the Sort program.

SORTSIZE
Specifies the sort size parm (MAINSIZE) that Spectrum Writer
should pass to the Sort program.
Chapter 10. Control Statement Syntax 601

TITLE Statement
TITLE

PURPOSE
This statement specifies a title that should print at the top of each page of the report. You
may have as many TITLE statements as you like. Each TITLE statement results in one title
line at the top of your report.

Another use of TITLE statements is to create your own column headings, when you do not
want the ones automatically created.

TITLE statements are ignored when producing PC files.

FEATURES
Use the TITLE statement to:

! specify the contents of the report titles (which can include literal text, data from
input files, and special items like the current page number, date, time, etc.)

! specify how to left align, center and right align different parts of the same title

! specify the desired width, display format, and justification for data fields that
appear in a title

LEARNING MORE
The complete syntax of the TITLE statement is shown on the following pages. In addition,
the following parts of the manual relate to the TITLE statement:

! a lesson on using the TITLE statement begins on page 53

! advanced examples of using the TITLE statement are shown beginning on
page 161

! the use of TITLE statements to create column headings is discussed in "How to
Produce Multi–Line Reports" (page 151)
602 Spectrum Writer Reference Manual

TITLE
SYNTAX

The TITLE statement consists of from one to three print expressions, separated with slashes.
If a TITLE statement has no slashes, the single print expression will be centered over the
report. If there is one slash, the first print expression will be left aligned and the second
print expression will be right aligned over the report. If there are two slashes, the first print
expression will be left aligned, the second one will be centered, and the third one will be
right aligned. It is okay for one or more of the print expressions to be empty. Examples of
using various combinations of print expressions and slashes is illustrated in the section
beginning on page 168.

You may also use empty TITLE statements. An empty TITLE statement results in one blank
title line.

Note: Any title line that contains only spaces and underscore characters will be
overprinted (that is, printed without advancing to the next line). Use this feature to
underline column headings that you create with TITLE statements.

Note: Use the similar FOOTNOTE statement to print title lines at the bottom of each
page of the report. The print expression syntax on the following pages applies to
both FOOTNOTE and TITLE statements.

TITLE STATEMENT SYNTAX

TITLE: print–expression [/ print–expression] [/ print–expression]

Note: the syntax for the print-expressions is shown on page 604.

Standard Alternate
Spelling Spellings
TITLE TITL, TIT
Chapter 10. Control Statement Syntax 603

TITLE
fieldname
Specifies that the title line should contain the contents of this field. The field's data will be
taken from the first detail record on the new page. (In footnote lines, the field’s data will
be taken from the last detail record on the page.)

The field must be available to Spectrum Writer at the time the TITLE statement is processed.
That is, the field name must be one of the following:

! a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

! a computed field (defined in a preceding COMPUTE statement)

! a built–in field. (See Appendix C, "Built-In Fields" on page 624 for a complete
list of built–in fields.)

Note that in addition to the standard built–in fields, there is one special built–in field that
can be used only in the TITLE and FOOTNOTE statements. That is the #PAGENUM built–in
field, which contains the current page number. By default, #PAGENUM shows four digits, in
this format: ZZZ9. You can override this format by using any numeric display format of your
choice (see page 605). This built-in field can also be abbreviated as #PAGE.

Example: TITLE: #TODAY / 'ABC COMPANY' / 'PAGE' #PAGENUM

PRINT–EXPRESSION SYNTAX (IN TITLE AND FOOTNOTE STATEMENTS)

A print–expression consists of one or more items, optionally separated by numeric
spacing factors:
TITLE: [n] item [n] item [n] item ...

[/ [n] item [n] item [n] item ...]
[/ [n] item [n] item [n] item ...]

Each item can be either a fieldname or a literal text. Each item can optionally be
followed by a parm list in parentheses:

fieldname[([ASCII]
[BIZ]
[display–format]
[LEFT/CENTER/RIGHT]
[width])]

'literal'[(width)]

Standard Alternate
Spelling Spellings
CENTER CJ
LEFT LJ
RIGHT RJ
TITLE TITL, TIT
604 Spectrum Writer Reference Manual

TITLE
The above example contains three print expressions. It will produce a title line which looks
like this:
12/31/99 ABC COMPANY PAGE nnnn

The literal texts ("ABC COMPANY", and "PAGE") print as specified. The contents of the
built–in fields #TODAY and #PAGENUM also print, in default format. The first part of the title
is left aligned; the second part is centered; the third part is right aligned.

'literal'
Specifies that the title line should contain this literal text. Enclose the literal text in either
apostrophes or quotation marks.

Example: See the example above under the fieldname parm.

n
This is a numeric spacing factor. It specifies how many blank spaces to leave between two
items in a title line. A spacing factor of zero is allowed. (It results in two items appearing
in the title with no blank spaces between them.) If no spacing factor is given, the default is
to leave one blank space between items.

Example: TITLE: #TODAY / 'ABC COMPANY' / 'PAGE' 6 #PAGENUM

The above example specifies that six blank spaces should be left between the literal text
"PAGE" and the contents of the #PAGENUM field. The title would now look like this:

12/31/99 ABC COMPANY PAGE nnnn

ASCII
Specifies that the final, formatted field should be translated from EBCDIC to ASCII in the
print line. To specify your own EBCDIC-to-ASCII translation table, use the ASCIITABLE option
in the OPTIONS statement (page 558). Otherwise, Spectrum Writer uses a default translation
table. See page 143 for more information on creating ASCII output files.

Example: TITLE: REGION(ASCII)

The above example causes the REGION field to be printed in ASCII.

BIZ
This “blank if zero” parm specifies that blanks should appear in the title for the field if it
has a value of zero. This parm is allowed only for numeric, date and time fields. A date is
considered to have a zero value if the month, day and last two digits of the year are all zeros
(regardless of the value of the century part of the year).

Example: TITLE: 'EMPLOYEES HIRED ON' HIRE–DATE(BIZ)

The above example causes the HIRE–DATE field in the title to be left blank whenever it
contains a zero date.

display–format
Specifies how the contents of a field should be formatted in the title line. A complete list
of display formats is found in Appendix B, "Display Formats" (page 617). If this parm is
not specified, Spectrum Writer uses the display format from:

! the FIELD or COMPUTE statement that defined the field
Chapter 10. Control Statement Syntax 605

TITLE
! an OPTIONS statement FORMAT parm
! the default display format (page 618)

Example: TITLE: #TODAY(LONG1) / 'ABC COMPANY' / 'PAGE #PAGENUM(PIC'999')

The above example specifies display formats for the #TODAY and the #PAGENUM fields. The
LONG1 display format causes the month name in the date to be spelled out. The PICTURE
display format (for #PAGENUM) specifies that three digits of the page number should be
displayed, and that leading zeros should not be suppressed. The title line would now look
like this:
DECEMBER 31, 1999 ABC COMPANY PAGE 001

LEFT/CENTER/RIGHT
Specifies how a field's data should be justified within the space allocated for it in the title
line. If none of these parms is specified, no justification is performed.

Example: TITLE: #TODAY(LONG1,CENTER)

The above example specifies a title line that simply contains the current date, displayed in
LONG1 format. The LONG1 format causes 18 bytes to be reserved for the date in the title line.
This is to allow enough room to print the biggest possible date (like "SEPTEMBER 31, 1999").
The 18–byte area reserved for the date will automatically be centered over the body of the
report, since no slashes are used. But shorter dates (like "MAY 1, 1990") would not take up
the entire 18–byte area, and thus would not appear to be centered correctly in the title. The
CENTER parm is needed to cause these shorter dates to be centered within the 18–byte area
in the title line. The title line produced by the above statement would look like this:

MAY 1, 1990

A similar situation arises when you want to align a date with the right margin of a report.
By using a slash you can cause the whole 18–byte area to be right aligned. But a small date
("MAY 1, 1990") would not use up the entire 18 bytes, and thus would not be flush with the
right edge of your report. To solve that problem, use the RIGHT justification parm to
right–justify the date within its 18–byte area, like this:

TITLE: 'ABC COMPANY' / #TODAY(LONG1,RIGHT)

The title line produced by the above statement would look like this:
ABC COMPANY MAY 1, 1990

width
This is a numeric parm that specifies the number of characters to reserve for an item in the
title line. Use this parm if the default width is too large or too small.

Example: TITLE: 'PAGE' #PAGENUM(9)

The above example specifies that 9 characters (not digits) should be reserved to display the
#PAGENUM field in the title line. The resulting title would look like this:

PAGE n,nnn,nnn
606 Spectrum Writer Reference Manual

Spectrum Writer Reference ManualAppendices

Appendices Table of Contents

Appendix A. Data Types. 611
Character Data Types . 611
Numeric Data Types . 612
Date Data Types . 613
Time Data Types . 615
Bit Data Types . 618

Appendix B. Display Formats . 619
Default Display Formats . 620
Display Formats for Any Type of Field . 620
Numeric Display Formats . 621
Date Display Formats . 622
Time Display Formats . 624

Appendix C. Built-In Fields . 626
Character Built–In Fields . 627
Numeric Built-In Fields . 628
Date Built-In Fields . 628
Time Built-In Fields . 629

Appendix D. Built-In Functions . 630
Functions that Return a Character Value . 632
Functions that Return a Numeric Value . 637
Functions that Return a Date Value . 640
Functions that Return a Time Value . 642
Functions that Return a Boolean (or Bit) Value . 644

Appendix E. Error Indicators . 646
Suppressing Error Indicators . 648
Propagation of Error Indicators . 649
Determining if a Field Is In Error . 649

Appendix F. Files Used in Examples . 650
 Sample File Definitions . 650
Sample Files’ Raw Data . 652

Appendix G. Speed-Up Tips. 654
INCLUDEIF Statement . 654
Conditional COMPUTE Statements . 657
Compute Statements with RETAIN . 658
Intermediate Computational Expressions . 659
Intermediate Conditional Expressions . 659
Read Statements with the MULTI parm. 660
Appendices 607

Use the STOPWHEN Parm for Non-Keyed Files . 663
Replace an Auxiliary File with a “Table Lookup” . 663
Clearing I/O Areas . 664
Fine-Tuning the Sort . 664
Development Cycle. 665
Using Explicit Literals in Conditional Expressions . 666

Appendix H. Sample Data Exit Programs. 668
Sample Assembler Data Exit Program . 668
Sample Cobol Data Exit Program . 673

Appendix I. I/O Exits . 675
608 Spectrum Writer Reference Manual

Appendix A. Data Types

There are five general categories of data that Spectrum Writer recognizes. They are:

! character
! numeric
! date
! time
! bit

For each of these categories, there is more than one way that the data can actually be
represented in an input record. A data type describes exactly how a particular field's data
is stored within an input record. A field's data type is defined to Spectrum Writer with the
TYPE parm in its FIELD statement.

Here are some examples of TYPE parms in FIELD statements:
FIELD: AMOUNT TYPE(NUM) LENGTH(6) DECIMAL(2)

FIELD: PACKED-SALARY TYPE(PACKED) LENGTH(4) DECIMAL(2)

FIELD: INDEX TYPE(BIN) LENGTH(1)

FIELD: SALES-DATE TYPE(YYMMSS)

FIELD: PACKED-JULIAN-START-DATE TYPE(P-YYDDD)

FIELD: SALES-TIME TYPE(HHMMSS)

The following charts show the data types that Spectrum Writer supports for each category
of data. The charts also show the acceptable abbreviations and alternate spellings for the
data types.

Character Data Types

DATA TYPES FOR CHARACTER FIELDS

DATA TYPE DESCRIPTION LENGTH ALLOWED

CHARACTER
CHAR
CH
C

Character data 1 to 32,767

CHAREXIT
Spectrum Writer will call a user–written exit program to obtain
a character string. 1 to 32,767
Appendix A. Data Types 609

Numeric Data Types

DATA TYPES FOR NUMERIC FIELDS

DATA TYPE DESCRIPTION

PROGRAMMING
 LANGUAGE

EQUIVALENTS

LENGTH
ALLOWED
(See Note 1)

NUMERIC
NUM
DISPLAY
DISP

Display numeric.
Example: C'1234', C'1234.0', C'+1234',
C' 1234 ', C' $1,234' are all 1,234.
Example: C'–1234' is –1,234.

COBOL: USAGE DISPLAY
 PIC 9999
 PIC S9999 SIGN
 IS SEPARATE
PL/1: PIC '9999'
ASM: DS C

1–256

NUMERIC–SLD
NUM–SLD

Numeric with Signed Last Digit.
Example: C'1234' and C'123D' are 1,234.
Example: C'123M' is –1,234.

COBOL: PIC S9999
PL/1: PIC '999T'
ASM: DS Z 1–256

NUMERIC–CD
NUM–CD

Numeric with Comma for Decimal symbol.
Example: C'1.234.567,89' and
C'1 234 567,8' are valid values.

(None) 1–256

PACKED
PACK
P
COMP–3

Packed decimal (signed).
Example: X'01234F', X'01234C' are 1,234.
Example: X'01234D' is –1,234.

COBOL: PIC S9999
 USAGE COMP–3
PL/1: FIXED DECIMAL
ASM: DS P

1–16

PACKEDUN
PACKUN
PU

Packed decimal unsigned (BCD).
Example: X'1234' is 1,234. (None) 1–16

BINARY
BIN
COMP

Binary (signed).
Example: X'04D2' is 1,234.
Example: X'FB2E' is –1,234.
Example: X'FF' is –1.

COBOL: PIC S9999
 USAGE COMP
PL/1: FIXED BINARY
ASM: DS H
 DS F

1–8

BINARYUN
BINUN
BU

Binary unsigned.
Example: X'04D2' is 1,234.
Example: X'FB2E' is 64,302.
Example: X'FF' is 255.

COBOL: PIC 9999 COMP
ASM: DS A 1–8

HALFWORD
HALF

Same as BINARY but defaults to a length of 2
when no length is specified.
Example: X'04D2' is 1,234.
Example: X'FB2E' is –1,234.

COBOL: PIC S9(4) COMP
PL/1: FIXED BIN(15)
ASM: DS H 1–8

FULLWORD
FULL

Same as BINARY but defaults to a length of 4
when no length is specified.
Example: X'000004D2' is 1,234.
Example: X'FFFFFB2E' is –1,234.

COBOL: PIC S9(8) COMP
PL/1: FIXED BIN(31)
ASM: DS F 1–8

NUMEXIT

Spectrum Writer will call a user–written
exit program to obtain a numeric value. The
exit program must return a 16–byte packed
number (optionally containing decimal
digits).

COBOL: CALL
PL/1: CALL
ASM: GOTO

N/A
610 Spectrum Writer Reference Manual

Numeric Data Types
Numeric Data TypesDate Data Types

Notes:
(1) Lengths indicate the number of bytes occupied in the input record, not the number of digits. The maximum

number of digits (including any decimal digits) allowed in any numeric field is 31.

DATA TYPES FOR DATE FIELDS

DATA TYPE DESCRIPTION (See Note 1) LENGTH

MM–DD–YY

MM/DD/YY date in character format (with slashes or other delimiters). (2)

Leading zeros are optional in day and month.
Example: C'12/31/96' and C'12.31.96' are Dec. 31, 1996.
Example: C'1/2/96 ' and C' 1/2/96' are Jan. 2, 1996.

8

MM–DD–YYYY

MM/DD/YYYY date in character format (with slashes or other
delimiters). (2) Leading zeros are optional in day and month.
Example: C'12/31/1996' and C'12.31.1996' are Dec. 31, 1996.
Example: C'1/2/1996 ' and C' 1/2/1996'. are Jan. 2, 1996.

10

MMDDYY
MMDDYY date in character format.
Example: C'123196' is Dec. 31, 1996. 6

MMDDYYYY
MMDDYYYY date in character format.
Example: C'12311996' is Dec. 31, 1996. 8

DD–MM–YY

DD/MM/YY date in character format (with slashes or other delimiters). (2)

Leading zeros are optional in day and month.
Example: C'31/12/96' and C'31.12.96 ' are Dec. 31, 1996.
Example: C'2/1/96 ' and C' 2/1/96' are Jan. 2, 1996.

8

DD–MM–YYYY

DD/MM/YYYY date in character format (with slashes or other
delimiters). (2) Leading zeros are optional in day and month.
Example: C'31/12/1996' and C'31.12.1996' are Dec. 31, 1996.
Example: C'2/1/1996 ' and C' 2/1/1996' are Jan. 2, 1996.

10

DDMMYY
DDMMYY date in character format.
Example: C'311296' is Dec. 31, 1996. 6

DDMMYYYY
DDMMYYYY date in character format.
Example: C'31121996' is Dec. 31, 1996. 8

YYYY–MM–DD

YYYY/MM/DD date in character format (with slashes or other
delimiters). (2)

Example: C'1996/12/31' and C'1996.12.31' are Dec. 31, 1996.
Example: C'1/2/1996 ' and C' 1/2/1996' are Jan. 2, 1996.

10

YYMMDD
YYMMDD date in character format.
Example: C'961231' is Dec. 31, 1996. 6

DATA TYPES FOR NUMERIC FIELDS (CONTINUED)

DATA TYPE DESCRIPTION

PROGRAMMING
 LANGUAGE

EQUIVALENTS

LENGTH
ALLOWED
(See Note 1)
Appendix A. Data Types 611

Date Data Types
YYYYMMDD
YYYYMMDD date in character format.
Example: C'19961231' is Dec. 31, 1996. 8

YYYY–DD–MM

YYYY/DD/MM date in character format (with slashes or other
delimiters). (2)

Example: C'1996/31/12' and C'1996.31.12' are Dec. 31, 1996.
Example: C'1996/2/1 ' and C' 1996/2/1' are Jan. 2, 1996.

10

YYDDD
YYDDD Julian date in character format.
Example: C'96366' is Dec. 31, 1996. 5

YYYYDDD
YYYYDDD Julian date in character format.
Example: C'1996366' is Dec. 31, 1996. 7

H–MMDDYY
MMDDYY date in hexadecimal (BCD) format.
Example: X'123196' is Dec. 31, 1996. 3

H–MMDDYYYY
MMDDYYYY date in hexadecimal (BCD) format.
Example: X'12311996' is Dec. 31, 1996. 4

H–DDMMYY
DDMMYY date in hexadecimal (BCD) format.
Example: X'311296' is Dec. 31, 1996. 3

H–DDMMYYYY
DDMMYYYY date in hexadecimal (BCD) format.
Example: X'31121996' is Dec. 31, 1996. 4

H–YYMMDD
YYMMDD date in hexadecimal (BCD) format.
Example: X'961231' is Dec. 31, 1996. 3

H–YYYYMMDD
YYYYMMDD date in hexadecimal (BCD) format.
Example: X'19961231' is Dec. 31, 1996. 4

H–YYDDD
YYDDD Julian date in hexadecimal (BCD) format.
Example: X'096366' is Dec. 31, 1996. 3

H–YYYYDDD
YYYYDDD Julian date in hexadecimal (BCD) format.
Example: X'01996366' is Dec. 31, 1996. 4

P–MMDDYY
MMDDYY date in packed format.
Example: X'0123196C' is Dec. 31, 1996. 4

P–MMDDYYYY
MMDDYYYY date in packed format.
Example: X'012311996C' is Dec. 31, 1996. 5

P–DDMMYY
DDMMYY date in packed format.
Example: X'0311296C' is Dec. 31, 1996. 4

P–DDMMYYYY
DDMMYYYY date in packed format.
Example: X'031121996C' is Dec. 31, 1996. 5

P–YYMMDD
YYMMDD date in packed format.
Example: X'0961231C' is Dec. 31, 1996. 4

P–YYYYMMDD
YYYYMMDD date in packed format.
Example: X'019961231C' is Dec. 31, 1996. 5

DATA TYPES FOR DATE FIELDS (CONTINUED)

DATA TYPE DESCRIPTION (See Note 1) LENGTH
612 Spectrum Writer Reference Manual

Date Data Types
Date Data TypesTime Data Types

P–YYDDD
YYDDD Julian date in packed format.
Example: X'96366C' is Dec. 31, 1996. 3

P–YYYYDDD
YYYYDDD Julian date in packed format.
Example: X'1996366C' is Dec. 31, 1996. 4

P–CYYDDD
Packed Julian date with century digit (as used in SMF records).
Example: X'0096366C' is Dec. 31, 1996.
Example: X'0196366C' is Dec. 31, 2096.

4

STCKDATE

Spectrum Writer extracts the date portion of the date–time value stored
by the IBM STCK machine instruction (CPU timer units since 00:00:00
1/1/1900 GMT). Spectrum Writer automatically converts the STCK value
from GMT to local time. For more details, see the STCKADJ parm in the
OPTIONS statement (page 575).

8

ABSDATE
Spectrum Writer extracts the date portion of a CICS ABSTIME date–time
value (8-byte packed number of milliseconds since 00:00:00 1/1/1900). 8

DATEEXIT
Spectrum Writer will call a user–written exit program to obtain a date
value. The exit program must return a 4–byte date in X'YYYYMMDD'
format.

N/A

Notes:
(1) The CENTURY parm (in an OPTIONS statement) determines whether YY–type dates are 19YY or 20YY.
(2) Any non–numeric character is accepted as the delimiter character.

DATA TYPES FOR TIME FIELDS

DATA TYPE DESCRIPTION
DEFAULT
LENGTH

LENGTH
ALLOWED
(See Note 1)

HH–MM–SS

HH:MM:SS time in character format (with colons or other
delimiters). (4) Decimal digits are allowed.
Example: C'12:34:56' and C'12.34.56' are 12:34:56
Example: C'12:34:56.7' is 12:34:56.7 (6)

8 8–256 (2)

HHMMSS

HHMMSS time in character format (no delimiters).
Decimal digits are allowed.
Example: C'123456' is 12:34:56
Example: C'1234567' is 12:34:56.7 (6)

6 6–256 (2)

HH–MM
HH:MM time in character format (with a colon or other
delimiter). (4) Decimal digits are not allowed.
Example: C'12:34' and C'12.34' are 12:34

5 5

HHMM
HHMM time in character format.
Decimal digits are not allowed.
Example: C'1234' is 12:34

4 4

DATA TYPES FOR DATE FIELDS (CONTINUED)

DATA TYPE DESCRIPTION (See Note 1) LENGTH
Appendix A. Data Types 613

Time Data Types
H–HHMMSS

HHMMSS time in hexadecimal (BCD) format.
Decimal digits are allowed.
Example: X'123456' is 12:34:56
Example: X'01234567' is 12:34:56.7 (6)

3 3–15 (2)

H–HHMM
HHMM in hexadecimal (BCD) format.
Decimal digits are not allowed.
Example: X'1234' is 12:34

2 2

P–HHMMSS

HHMMSS time in packed format.
Decimal digits are allowed.
Example: X'0123456C' is 12:34:56
Example: X'1234567C' is 12:34:56.7 (6)

4 4–16 (2)

P–HHMM
HHMM time in packed format.
Decimal digits are not allowed.
Example: X'01234C' is 12:34

3 3

SECS
SEC

Seconds since midnight in character format.
Decimal digits are allowed.
Example: C'45296' is 12:34:56
(12*3600 + 34*60 + 56 = 45296.)
Example: C'452967' is 12:34:56.7 (6)

N/A (5) 1–256 (3)

P–SECS

Seconds since midnight in packed format.
Decimal digits are allowed.
Example: X'45296C' is 12:34:56
Example: X'0452967C' is 12:34:56.7 (6)

N/A (5) 1–16 (3)

PU–SECS

Seconds since midnight in packed unsigned (BCD)
format. Decimal digits are allowed.
Example: X'045296' is 12:34:56
Example: X'452967' is 12:34:56.7 (6)

N/A (5) 1–16 (3)

B–SECS

Seconds since midnight in binary format.
Decimal digits are allowed.
Example: X'0000B0F0' is 12:34:56
(X'0000B0F0' = 45296 =12*3600 + 34*60 + 56.)
Example: X'0006E967' is 12:34:56.7 (6)

N/A (5) 1–8 (3)

BU–SECS

Seconds since midnight in unsigned binary format.
Decimal digits are allowed.
Example: X'B0F0' is 12:34:56
Example: X'0006E967' is 12:34:56.7 (6)

N/A (5) 1–8 (3)

MINS

Minutes since midnight in character format.
Decimal digits are allowed.
Example: C'120' is 02:00:00 (2*60 =120)
Example: C'1205' is 02:00:30.0 (6)

N/A (5) 1–256 (3)

DATA TYPES FOR TIME FIELDS (CONTINUED)

DATA TYPE DESCRIPTION
DEFAULT
LENGTH

LENGTH
ALLOWED
(See Note 1)
614 Spectrum Writer Reference Manual

Time Data Types
P–MINS

Minutes since midnight in packed format.
Decimal digits are allowed.
Example: X'120C' is 02:00:00
Example: X'01205C' is 02:00:30.0 (6)

N/A (5) 1–16 (3)

PU–MINS

Minutes since midnight in packed unsigned (BCD)
format. Decimal digits are allowed.
Example: X'0120' is 02:00:00
Example: X'1205' is 02:00:30.0 (6)

N/A (5) 1–16 (3)

B–MINS
Minutes since midnight in binary format.
Example: X'0078' is 02:00:00 (X'0078' = 120 = 2 * 60)
Example: X'04B5' is 02:00:30.0 (6)

N/A (5) 1–8 (3)

BU–MINS

Minutes since midnight in binary unsigned format.
Decimal digits are allowed.
Example: X'0078' is 02:00:00
Example: X'04B5' is 02:00:30.0 (6)

N/A (5) 1–8 (3)

HOURS
HOUR
HRS

Hours since midnight in character format.
Decimal digits are allowed.
Example: C'11' is 11:00:00
Example: C'1175' is 11:45:00.00 (7)

N/A (5) 1–256 (3)

P–HOURS

Hours since midnight in packed format.
Decimal digits are allowed.
Example: X'011C' is 11:00:00
Example: X'01175C' is 11:45:00.00 (7)

N/A (5) 1–16 (3)

PU–HOURS

Hours since midnight in packed unsigned (BCD) format.
Decimal digits are allowed.
Example: X'11' is 11:00:00
Example: X'1175' is 11:45:00.00 (7)

N/A (5) 1–16 (3)

B–HOURS

Hours since midnight in binary format.
Decimal digits are allowed.
Example: X'000B' is 11:00:00
Example: X'0497' is 11:45:00.00 (7)

N/A (5) 1–8 (3)

BU–HOURS

Hours since midnight in binary unsigned format.
Decimal digits are allowed.
Example: X'000B' is 11:00:00
Example: X'0497' is 11:45:00.00 (7)

N/A (5) 1–8 (3)

DATA TYPES FOR TIME FIELDS (CONTINUED)

DATA TYPE DESCRIPTION
DEFAULT
LENGTH

LENGTH
ALLOWED
(See Note 1)
Appendix A. Data Types 615

Time Data Types
Time Data TypesBit Data Types

STCKTIME

Spectrum Writer extracts the time portion of the
date–time value stored by the IBM STCK machine
instruction (CPU timer units since 00:00:00 1/1/1900 GMT).
Spectrum Writer automatically converts the STCK value
from GMT to local time. For more details, see the
STCKADJ parm in the OPTIONS statement (page 575).
STCKTIME fields always have 6 decimal digits.

8 8

ABSTIME
Spectrum Writer extracts the time portion of a CICS
ABSTIME date–time value (8-byte packed number of
milliseconds since 00:00:00 1/1/1900).

8 8

TIMEEXIT

Spectrum Writer will call a user–written exit program to
obtain a time value. The exit program must return a 16-
byte packed number of seconds since midnight
(optionally including decimal digits).

N/A N/A

Notes:
(1) Lengths refer to the number of bytes occupied in the input record.
(2) Field may contain no more than 15 numeric digits.
(3) Field may contain no more than 27 numeric digits.
(4) Any non–numeric character is accepted as the delimiter character.
(5) This data type has no default length. A LENGTH parm is always required for it in the FIELD statement.
(6) The FIELD statement would also need a DECIMAL(1) parm.
(7) The FIELD statement would also need a DECIMAL(2) parm.

DATA TYPES FOR BIT FIELDS

DATA TYPE DESCRIPTION LENGTH

BIT A single bit within a byte. N/A

BITEXIT
Spectrum Writer will call a user–written exit program to obtain a bit
value. The exit program must return either C'0' or C'1'. N/A

DATA TYPES FOR TIME FIELDS (CONTINUED)

DATA TYPE DESCRIPTION
DEFAULT
LENGTH

LENGTH
ALLOWED
(See Note 1)
616 Spectrum Writer Reference Manual

Appendix B. Display Formats

Display formats can be used in various control statements to indicate how data should be
formatted in a report or output file. When no display format is specified, Spectrum Writer
formats data using a default display format (page 618). To override Spectrum Writer's
default, use one of the display formats found in the following pages.

For example, you can specify a display format in the FORMAT parm of the FIELD statement:
FIELD: SOCIAL–SEC–NUM TYPE(PACKED) LENGTH(5) FORMAT(PIC'999–99–9999')

The FIELD statement above includes a picture type of numeric display format. Specifying a
FORMAT parm in the FIELD statement assigns a default format to use for that field whenever
it appears in a report or output file.

You can also assign a default display format to computed fields in the COMPUTE statement:

COMPUTE: PERCENT-GROWTH(PIC’ZZ9%’) = (NEW - OLD) * 100 / OLD

You can also specify an override display format in any statement that describes a print line
(such as the COLUMNS, TITLE, FOOTNOTE and BREAK statements.) For example:

COLUMNS: HIRE–DATE(DD–MM–YYYY)

The above COLUMNS statement tells Spectrum Writer to format the HIRE–DATE field in
"DD/MM/YYYY" format in the current report.

To change the default display format for all fields in a report, use the FORMAT parm of the
OPTIONS statement:

OPTIONS: FORMAT(DOTSEP)

The above statement causes Spectrum Writer to format all numeric fields in the report with
the DOTSEP format (e.g.: 1.234.567,89). You can still override any particular numeric field
by using an override display format (for example, in the COLUMNS statement.)

For more information on exactly where and how to use a display format, see under the
appropriate statement's description in Chapter 10, "Control Statement Syntax."

The display formats allowed for a particular field depend on the field's data type. For
example, only numeric display formats may be used with numeric fields. You can not use
a date or time display format with a numeric field.

The boxes on the following pages show the display formats available for each type of data.

Note: There are no display formats for bit fields. A similar function is provided by
the ONTEXT and OFFTEXT parms in the FIELD statement.
Appendix B. Display Formats 617

Default Display Formats

The following table shows Spectrum Writer's standard default display format for each type
of data.

Note: The default display formats are changed by certain OPTIONS statement
options, including the FORMAT option, PC file options (such as EXCEL or LOTUS) and
the MAINFRAME option.

Display Formats for Any Type of Field

DEFAULT DISPLAY FORMATS

KIND OF
DATA

DEFAULT
DISPLAY
FORMAT DESCRIPTION EXAMPLE

Character CHARACTER Data is displayed "as is," without any formatting ABC

Numeric NUMERIC
Leading zeros are suppressed; commas are used as
separators; a floating negative sign precedes
negative numbers.

–1,234.56

Date MM–DD–YY MM/DD/YY 12/31/96

Time HH–MM–SS
HH:MM:SS (Decimal portions of seconds, if any, are
also shown.)

13:45:59
17:30:00.12

Bit none
There are no display formats for bit fields. Bit fields
are always displayed using their ONTEXT or OFFTEXT
value. See page 347.

FIELDNAME
NOT FIELDNAME

DISPLAY FORMATS ALLOWED FOR ANY FIELD

DISPLAY FORMAT DESCRIPTION EXAMPLE

CHARACTER
CHAR

No formatting is done–– data is printed "as is". This is normally used
only for character fields, but is allowed for any type of field. This is
the default display format for character fields.

ABC

QCHAR

The data is enclosed within quotation marks. Other than that, the data
is not reformatted at all. This format is useful for formatting character
fields for use in PC files. (You can use the QCHAR parm of the
OPTIONS statement to choose a character other than the double
quotation mark to use as the delimiter with this display format. See
page 573.)

"ABC"

HEX
Each byte of data is expanded into two bytes to show the hexadecimal
representation of the data. This format is useful when investigating
fields that contain invalid data, such as hex zeros.

C1C2C3

BITS
Each byte of data is expanded into an 8-byte character string (of 0’s
and 1’s) showing the individual bits within the data. 11000001
618 Spectrum Writer Reference Manual

Numeric Display Formats

DISPLAY FORMATS FOR NUMERIC FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

Formats Normally Used in Reports

NUMERIC
NUM

This is the default display format for all numeric fields,
regardless of their data type. Formatting includes
suppression of leading zeros and the use of commas as
separators. A floating negative sign precedes negative
numbers.

 1,234.56
–1,234.56

BARGRAPH
BAR

A bar graph is printed. A number of asterisks equal to the
rounded value of the numeric field will print (up to the total
width of the column). Bar graphs are discussed on page 154.

DISPLAY
DISP

Numbers are displayed without any punctuation (other than
a decimal point, if necessary). Leading zeros are not
suppressed. The "zone" portion of the last digit contains the
sign.

0001234.567
0001234.56P

DOLLAR
Same as NUMERIC, but a floating dollar sign will precede the
first significant digit.

 $1,234.56
–$1,234.56

DOTSEP

Same as NUMERIC, but uses dots rather than commas as
separators. Also uses a comma as the decimal indicator,
rather than a dot. This format is widely used outside the
USA.

 1.234,56
 –1.234,56
12.345.678,9

NOCOMMAS
NOCOMMA

Same as NUMERIC, except that commas are not inserted
among the digits. This format is useful for formatting
numeric fields for use in PC files.

 1234.56
–1234.56

PICTURE'...'
PICT'...'
PIC'...'
P'...

A "picture" is used to describe how the numeric value should
be formatted. This is useful for formatting special purpose
numbers, such as telephone numbers and social security
numbers. The rules governing PICTUREs are given on
page 451.

(800) 555–1212
123–45–6789

Formats Normally Used in Output Files

BINARY
BIN
COMP

Numbers are converted into binary representation (called
COMP in COBOL, and FIXED BINARY in PL/I). The default width
for data in BINARY format is 4 bytes.

X'0001E240'
X'FFFF1DC0'

FULLWORD
FULL Same as BINARY, with an implied width of 4 bytes. X'0001E240'

HALFWORD
HALF Same as BINARY, but with an implied width of 2 bytes. X'04D2'
Appendix B. Display Formats 619

Numeric Display Formats
Numeric Display FormatsDate Display Formats

BINARYUN
BINUN
BU

Numbers are converted into an unsigned binary format
(which has no equivalent in COBOL or in PL/I). It is similar to
BINARY, except that the high order bit is not used as a sign,
but as another binary digit. The default width for data in the
BINARYUN format is 4 bytes. Negative numbers can not be
formatted with this display format.

X'0001E240'

PACKED
PACK
COMP–3

Numbers are converted into packed decimal format (called
COMP–3 in COBOL, and FIXED DECIMAL in PL/I). The default
width for data in PACKED format is 8 bytes.

X'000000000123456C'
X'000000000123456D'

PACKEDUN
PACKUN
PU

Numbers are converted into an unsigned packed decimal
format, sometimes called BCD. (There is no equivalent in
COBOL or in
PL/I.) It is similar to PACKED, except that the last byte contains
two numeric digits (like the other bytes), rather than a single
digit and a sign. The default width for data in the PACKEDUN
format is 8 bytes. Negative numbers can not be formatted
with this display format.

X'0000000000123456'

DISPLAY FORMATS FOR DATE FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

Formats Normally Used in Reports

MM–DD–YY
MM/DD/YY This is the default display format for all date fields,
regardless of their data type. (1)

12/31/96
12–31–96
12.31.96

MM–DD–YYYY MM/DD/YYYY (1)
12/31/1996
12–31–1996
12.31.1996

MMDDYY MMDDYY 123196

MMDDYYYY MMDDYYYY 12311996

DD–MM–YY DD/MM/YY (1)
31/12/96
31–12–96
31.12.96

DD–MM–YYYY DD–MM–YYYY (1)
31/12/1996
31–12–1996
31.12.1996

DDMMYY DDMMYY 311296

DDMMYYYY DDMMYYYY 31121996

YYYY–MM–DD YYYY-MM-DD (1)
1996/12/31
1996–12–31
1996.12.31

DISPLAY FORMATS FOR NUMERIC FIELDS (CONTINUED)

DISPLAY FORMAT DESCRIPTION EXAMPLE
620 Spectrum Writer Reference Manual

Date Display Formats
YYMMDD YYMMDD 961231

YYYYMMDD YYYYMMDD 19961231

YYDDD YYDDD (Julian date) 96366

YYYYDDD YYYYDDD (Julian date) 1996366

SHORT1 MMM DD, YYYY DEC 31, 1996

SHORT2 DD MMM YYYY 31 DEC 1996

SHORT3 DD MMM YY 31 DEC 96

LONG1 MMMMMMMMMMM DD, YYYY DECEMBER 31, 1996

LONG2 DD MMMMMMMMMMM YYYY 31 DECEMBER 1996

LONG3 DD MMMMMMMMMMM YY 31 DECEMBER 96

Formats Normally Used in Output Files

Q–MM–DD–YY "MM/DD/YY" date in quotation marks. (1) (2) "12/31/96"

Q–MM–DD–YYYY "MM/DD/YYYY" date in quotation marks. (1) (2) "12/31/1996"

Q–MMDDYYYY "MMDDYYYY" date in quotation marks. (2) "12311996"

Q–DD–MM–YYYY "DD/MM/YYYY" date in quotation marks. (1) (2) "31/12/1996"

Q–DDMMYYYY "DDMMYYYY" date in quotation marks. (2) "31121996"

Q–YYMMDD "YYMMDD" date in quotation marks. (2) "961231"

Q–YYYY–MM–DD "YYYY/MM/DD" date in quotation marks. (1) (2) "1996/12/31"

Q–YYYYMMDD "YYYYMMDD" date in quotation marks. (2) "19961231"

H–MMDDYY MMDDYY (hex) X'123196'

H–MMDDYYYY MMDDYYYY (hex) X'12311996'

H–DDMMYY DDMMYY (hex) X'311296'

H–DDMMYYYY DDMMYYYY (hex) X'31121996'

H–YYMMDD YYMMDD (hex) X'961231'

H–YYYYMMDD YYYYMMDD (hex) X'19961231'

H–YYDDD YYDDD (hex, Julian date) X'096366'

H–YYYYDDD YYYYDDD (hex, Julian date) X'01996366'

P–MMDDYY MMDDYY (packed) X'0123196C'

P–MMDDYYYY MMDDYYYY (packed) X'012311996C'

P–DDMMYY DDMMYY (packed) X'0311296C'

P–DDMMYYYY DDMMYYYY (packed) X'031121996C'

P–YYMMDD YYMMDD (packed) X'0961231C'

DISPLAY FORMATS FOR DATE FIELDS (CONTINUED)

DISPLAY FORMAT DESCRIPTION EXAMPLE
Appendix B. Display Formats 621

Date Display Formats
Date Display FormatsTime Display Formats

P–YYYYMMDD YYYYMMDD (packed) X'019961231C'

P–YYDDD YYDDD (packed, Julian date) X'96366C'

P–YYYYDDD YYYYDDD (packed, Julian date) X'1996366C'

P–CYYDDD
Packed CYYDDD date (Julian date with century indicator, as used
in SMF records)

X'096366C'
X'196366C'

Notes::
(1) Use the DATEDELIM parm in the OPTIONS statement (page 560) to specify a delimiter other than the slash (/).
(2) Use the QCHAR parm in the OPTIONS statement (page 573) to specify a delimiter other than the double

quotation mark (").

DISPLAY FORMATS FOR TIME FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

Formats Normally Used in Reports

HH–MM–SS
HH:MM:SS[.NNN...] This is the default display format for all time
fields that include seconds. (1)

13:30:45
13:30:45.5
13.30.45

HH–MM–SS–AMPM HH:MM:SS[.NNN...] AM/PM (1) The time is shown in 12-hour format
including either AM or PM

1:30:45 AM
1:30:45.5 AM
1.30.45 PM

HHMMSS HHMMSS 133045

HH–MM
HH:MM This is the default display format for all time fields that
do not include seconds. (1)

13:31
13.31

HH–MM–AMPM
HH:MM AM/PM (1) The time is shown in 12-hour format including
either AM or PM. Seconds are not shown and the time is rounded
to the nearest minutes.

1:31 AM
1.31 PM

HHMM HHMM 1331

TPICTURE'...'
TPICT'...'
TPIC'...'
TP'...'

User defined "time picture." (Time pictures are discussed on
page 458.) Example: TPIC'Z9–99–99' might result in " 8–25–59". 8–25–59

SECS
SEC

Number of seconds since midnight. (13 hours, 30 minutes and 45
seconds is 48,645 seconds.) 48,645

MINS
Number of minutes since midnight. (13 hours, 30 minutes and 45
seconds is 810.75 minutes.) 810.75

HOURS
HOUR
HRS

Number of hours since midnight. (13 hours, 30 minutes and 45
seconds is 13.513 hours.) 13.513

DISPLAY FORMATS FOR DATE FIELDS (CONTINUED)

DISPLAY FORMAT DESCRIPTION EXAMPLE
622 Spectrum Writer Reference Manual

Time Display Formats
Formats Normally Used in Output Files

Q–HH–MM–SS
"HH:MM:SS" time in double quotation marks. This format is
useful for formatting time fields for use in PC files. (1) (2) "13:30:45"

Q–HH–MM "HH:MM" time in double quotation marks. (1) (2) "13:31"

H–HHMMSS HHMMSS (hex) X'133045'

H–HHMM HHMM (hex) X'1331'

P–HHMMSS HHMMSS (packed) X'0133045C'

P–HHMM HHMM (packed) X'01331C'

SECS–NC
SEC–NC

Number of seconds since midnight, formatted with "no commas"
(for use in PC files). 48645

MINS–NC
Number of minutes since midnight, formatted with "no commas"
(for use in PC files). 810.75

HOURS–NC
HOUR–NC
HRS–NC

Number of hours since midnight, formatted with "no commas"
(for use in PC files). 13.513

Notes:
(1) Use the TIMEDELIM parm in the OPTIONS statement (page 576) to specify a delimiter other than the

colon (:).
(2) Use the QCHAR parm in the OPTIONS statement (page 573) to specify a delimiter other than the double

quotation mark (").

DISPLAY FORMATS FOR TIME FIELDS (CONTINUED)

DISPLAY FORMAT DESCRIPTION EXAMPLE
Appendix B. Display Formats 623

Appendix C. Built-In Fields

Spectrum Writer has a number of "built–in" fields that are available for use. You may refer
to these fields regardless of what input file(s) you use. Built–in fields are easily
distinguished from most other fields because all built–in field names begin with the pound
character (#).

The following table lists the Spectrum Writer built–in fields. Following the table, each
field is discussed in more detail.

SPECTRUM WRITER BUILT-IN FIELDS

FIELD NAME DESCRIPTION

Character Built-In Fields

#DAYNAME Name of the current day of the week ("MONDAY")

#ITEM–ENDING
The correct plural or singular ending for the word "item(s)" at a control break.
(Allowed only in the BREAK statement.)

#JOBNAME Jobname under which Spectrum Writer is currently executing.

#TIME
Character field containing the formatted system time (when program began
execution). Format uses AM or PM ("12:45 PM").

#TIME24
Character field containing the formatted system time (when program began
execution). Formatted in 24–hour format ("13:45").

Numeric Built-In Fields

#COUNTER
#COUNT The cumulative number of items in the report. (Allowed only in the BREAK statement.)

#ITEMS
#ITEM

The number of items in the current control group. (Allowed only in the BREAK
statement.)

#ITEM1
through
#ITEM9

The item number currently being printed. The 9 different built–in fields are reset at 9
different levels of control breaks. (Allowed only in the COLUMNS statement.)

#PAGENUM
#PAGE

The current page number of the report. (Allowed only in the TITLE and FOOTNOTE
statements.)

Date Built-In Fields

#COMDATE (VSE only) The date set by the // DATE JCL statement.

#TODAY The system date (at the time program began execution).
624 Spectrum Writer Reference Manual

Built-In Fields
Character Built–In Fields

#DAYNAME
Allowed in any control statement. A 9–byte field containing the name of the day of the
week in which the program began execution. The value of this built–in field does not
change during the run. The use of this field is discussed on page 163.

Sample value: WEDNESDAY

#ITEM–ENDING
Allowed only in the BREAK statement. A 1–byte character field that contains either the letter
"S" or a blank, depending on the value of the built–in field #ITEMS.

When #ITEMS is equal to 1 (that is, when the current control group contains only a single
record), #ITEM–ENDING will contain a blank space. Otherwise (when the control group
contains more than one record) #ITEM–ENDING will contain an "S". Append this field to
words like "ITEM" to form the proper plural or singular ending. (For example, "1 ITEM "
versus "2 ITEMS".) The use of this field is discussed on page 198.

#JOBNAME
Allowed in any control statement. An 8–byte character field containing the name of the job
that is executing Spectrum Writer.

#TIME
Allowed in any control statement. An 8–byte character field containing the system time
(when the program began execution). The value of this built–in field does not change
during the run. The time is in 12–hour format and includes either AM or PM. The use of this
field is discussed on page 163.

Sample value: 12:31 PM

#TIME24
Allowed in any control statement. A 5–byte character field containing the system time
(when the program began execution). The value of this built–in field does not change
during the run. The time is in 24 hour format. The use of this field is discussed on page 198.

Sample value: 14:55

Time Built-In Fields

#HHMMSS The system time (when program began execution).

SPECTRUM WRITER BUILT-IN FIELDS (CONTINUED)

FIELD NAME DESCRIPTION
Appendix C. Built-In Fields 625

Built-In Fields
Numeric Built-In Fields

#COUNTER
#COUNT

Allowed only in the BREAK statement. A numeric field that contains the number of items
processed in the report through the current break. Similar to #ITEMS but is not reset to zero
at each control break. By default it displays with a ZZZ,ZZ9 picture format. The use of this
field is discussed on page 198.

#ITEMS
#ITEM

Allowed only in the BREAK statement. A numeric field that contains the number of items in
the control group being processed. By default it displays with a ZZZ,ZZ9 picture format. The
use of this field is discussed on page 198.

#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/
#ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9

Allowed only in the COLUMNS statement. These nine built–in fields all show the item
number (within a given level of control group) of the line currently being printed. #ITEM1
contains the item number within the lowest level control group. #ITEM1 is reset to zero at
every control break. (#ITEM1 can also be abbreviated #ITEM.) #ITEM2 contains the item
number within the second lowest level control group. #ITEM2 is not reset to zero at the
lowest level control break, but is reset at the second lowest level control break. #ITEM3
through #ITEM9 work similarly for the third through ninth lowest level control breaks. All
are numeric fields which display by default with a ZZ,ZZ9 picture format. The use of these
fields is discussed on page 211. For a discussion of "control group levels", see page 204.

#PAGENUM
#PAGE

Allowed only in TITLE and FOOTNOTE statements. A numeric field containing the current
page number. By default, it displays with a ZZZ9 picture format. The use of this field is
discussed on page 163.

Date Built-In Fields

#COMDATE
Allowed in any control statement–– VSE only. Contains the "comm area" date. This is the
date set by the // DATE JCL statement. If not set in the JCL, or if used under OS/390, #COMDATE
will be the same as #TODAY. By default, it is formatted using the default date display format
that is in effect (normally MM–DD–YY).

Sample value: 12/01/99

#TODAY
Allowed in any control statement. Contains the system date on which the job began. The
value of this built–in field does not change during execution. By default, it is formatted
using the run’s default date display format (usually MM–DD–YY). The use of this field is
discussed on page 163.

Sample value: 12/01/99
626 Spectrum Writer Reference Manual

Built-In Fields
Time Built-In Fields

#HHMMSS
Allowed in any control statement. Contains the system time (when the program began
execution). The value of this built–in field does not change during the run. By default, it is
formatted using the run’s default time display format (normally HH-MM-SS).

Sample value: 12:34:56
Appendix C. Built-In Fields 627

Appendix D. Built-In Functions

A number of built–in functions are available for use within computational expressions.
Computational expressions are used in COMPUTE statements. These built–in functions are
listed on the following pages, according to the type of data returned by the function
(character, numeric, date, time or boolean).

The arguments to a function will not necessarily be of the same data type as the result. The
data type expected for each argument is indicated in a function’s syntax. For example,
"char" means that a character argument is expected. Except where otherwise indicated, an
argument may be any of the following:

! a literal value
! the name of a field from any input file
! the name of a computed field (from any previous COMPUTE statement)
! a computational expression (which may itself involve other built–in functions)

Separate the arguments with blanks and/or commas.

The following table lists the Spectrum Writer built–in functions. After the table, each of
the functions is discussed in more detail.

SPECTRUM WRITER BUILT-IN FUNCTIONS

FUNCTION DESCRIPTION PAGE

Functions that Return a Character Value

#AND returns the result of ANDing two character strings page 630

#ASCII returns the ASCII equivalent of an EBCDIC string page 631

#COMPRESS concatenates multiple fields and compresses out extra blanks page 631

#DAY returns the day of the week for a given date page 631

#EBCDIC returns the EBCDIC equivalent of an ASCII string page 631

#FORMAT converts a numeric, date or time value to a character value page 632

#LCASE returns the lower–case value of a character string page 632

#LEFT returns the leftmost n characters of a character string page 632

#MONTH returns the month name pertaining to a given date page 633

#OR returns the result of ORing two character strings page 633

#PARSE returns one individual word parsed out of a character string page 633

#RIGHT returns the rightmost n characters of a character string page 634

#SUBSTR returns a substring from a character string page 634
628 Spectrum Writer Reference Manual

Built-In Functions
#TRANSLATE
translates one set of characters within a character string to another set
of characters page 634

#UCASE returns the upper–case value of a character string page 634

#XOR returns the result of XORing two character strings page 635

#YEAR returns the 4–byte year pertaining to a given date page 635

Functions that Return a Numeric Value

#ABS returns the absolute value of a number page 635

#DAYNUM returns the day of the month (1–31) for a given date page 635

#DOWNUM returns a number representing the day of the week of a given date page 635

#HOURNUM returns the numeric value of the hours portion of a time page 635

#INDEX returns the starting column of a substring page 635

#INT returns the integer portion of a number page 635

#MAKENUM converts a character, date or time value to a numeric value page 636

#MAX returns the greater of two or more values page 637

#MIN returns the smaller of two or more values page 637

#MINUTENUM returns the numeric value of the minutes portion of a time page 637

#MOD returns the remainder left after division ("modulus") page 637

#MONTHNUM returns the month number (1–12) for a given date page 637

#NUMWORDS returns the number of words within a character string page 638

#ROUND returns the rounded value of a number page 638

#SECONDNUM returns the numeric value of the seconds portion of a time page 638

#YEARNUM returns the 4–digit year for a given date page 638

Functions that Return a Date Value

#BEGMONTH returns the first day of the month in which a date occurs page 638

#BEGWEEK returns the first day of the week in which a date occurs page 638

#BEGYEAR returns the first day of the year in which a date occurs page 639

#ENDMONTH returns the last day of the month in which a date occurs page 639

#ENDWEEK returns the last day of the week in which a date occurs page 639

#ENDYEAR returns the last day of the year in which a date occurs page 639

#INCDATE increments a date by a number of days, weeks, months or years page 639

#INCDATETIME increments a date/time by a number of seconds, minutes or hours page 639

SPECTRUM WRITER BUILT-IN FUNCTIONS (CONTINUED)

FUNCTION DESCRIPTION PAGE
Appendix D. Built-In Functions 629

Built-In Functions
Built-In Functions

.Built-In FunctionsFunctions that Return a Character Value

#AND(char1,char2)
Performs the logical AND operation on the two character arguments and returns the result.
(An AND operation results in a 1 bit if the corresponding bit of both operands is a 1:
otherwise it results in a 0 bit.) If the two operands are not the same size, the shorter operand
will be right-padded with hex zeros before performing the AND operation. The size of the
result is the size of the larger operand.

Example: COMPUTE: A = #AND(X'01FF',X'035E') results in A=X'015E'

Here is an example of using the #AND built–in function to test individual bits within a status
flag. Say that we want to include records in our report if the X'80' and the X'20' bits of the
STATUS field are both on, regardless of the value of the other bits in that byte.

Example: COMPUTE: TEMP = #AND(STATUS, X'A0')
COMPUTE: BOTH–BITS–ARE–ON = WHEN(TEMP = X'A0') ASSIGN(#ON)
INCLUDEIF: BOTH–BITS–ARE–ON

Note: You can use the #AND function to change a packed numeric field’s sign from
the common, but non-standard, F to the standard C. For example, assume that

#MAKEDATE converts a character or numeric value to a date page 640
#YMD
#MDY
#DMY

creates a date from three numeric parms page 640

Functions that Return a Time Value

#INCDURATION increments a time duration by a number of seconds, minutes or hours page 640

#INCTIME increments a time of day by a number of seconds, minutes or hours page 641

#MAKETIME converts a character or numeric value to a time page 641

Functions that Return a Boolean Value

#ERROR returns "true" if the argument field is "in error" page 642

#ISNUM returns "true" if the character argument is numeric page 642

#LEAPYEAR returns "true" if the date argument occurs in a leap year page 642

#MISSING returns "true" if the argument field is "missing" page 642

#OFF returns "false" page 642

#ON returns "true" page 643

#REALDATE returns "true" if the date argument is a valid, calendar date page 643

SPECTRUM WRITER BUILT-IN FUNCTIONS (CONTINUED)

FUNCTION DESCRIPTION PAGE
630 Spectrum Writer Reference Manual

Functions that Return a Character Value
PACKED-NUMBER is a 5-byte packed field that has an F in the zone portion of its last
byte (X’000000123F’)

Example: COMPUTE: PACKED–C = #AND(PACKED-NUMBER,X'FFFFFFFFFC'
 results in PACKED-C = X'000000123C'

#ASCII(char)
Returns the ASCII equivalent of the EBCDIC character argument. The size of the value
returned by this function is the size of the character argument.

Example: COMPUTE: A = #ASCII(X’F1F2F3') results in A=X’313233'

Note: The three characters "123" are represented with X’F1F2F3’ in EBCDIC and with
X’313233’ in ASCII.

Note: If you want to specify your own EBCDIC-to-ASCII translation table, use the
ASCIITABLE option in the OPTIONS statement (page 558). Otherwise, Spectrum
Writer uses a default translation table.

Note: For information on creating ASCII output files, see page 143.

#COMPRESS([n,] char [,n] ,char ...)
Concatenates the char arguments (any number), but compresses out all but 1 of the blanks
between each argument The optional override number "n" specifies how many blanks to
leave between the two char arguments (if a number other than 1 is desired). You may
specify 0 if no blanks are wanted between two arguments. The size of the returned string
is the sum of the sizes of all arguments, plus spacing bytes.

Example: COMPUTE: NAME=#COMPRESS(LAST–NAME, 0, "," , FIRST–NAME)
 might result in NAME="BAKER, VIVIAN "

COMPUTE: ADDR=#COMPRESS(CITY, 0, ",", STATE ZIP–CODE)
 might result in ADDR="DALLAS, TX 75230 "

Note: The #COMPRESS function does not remove any leading blanks that might be
in the character arguments. If your arguments could contain leading (as well as
trailing) blanks, you should first left-justify those arguments to remove the leading
blanks. Like this:

Example: COMPUTE: LJ-LAST-NAME = #FORMAT(LAST-NAME, LEFT)
COMPUTE: LJ-FIRST-NAME = #FORMAT(FIRST-NAME, LEFT)
COMPUTE: NAME = #COMPRESS(LJ-LAST-NAME, 0 "," LJ-FIRST-NAME)

#DAY[(date)]
Returns the day of the week pertaining to the date argument, as a 9–byte character field. If
specified, the date argument must be a valid date in either the twentieth or twenty-first
century. If no date argument is present, the system date is used.

Example: COMPUTE: A = #DAY(HIRE–DATE) might result in A="TUESDAY "

#EBCDIC(char)
Returns the EBCDIC equivalent of the ASCII character argument. The size of the value
returned by this function is the size of the character argument.

Example: COMPUTE: A = #EBCDIC(X’313233') results in A=X’F1F2F3'
Appendix D. Built-In Functions 631

Functions that Return a Character Value
Note: The three characters "123" are represented with X’F1F2F3’ in EBCDIC and with
X’313233’ in ASCII.

Note: If you want to specify your own ASCII-to-EBCDIC translation table, use the
EBCDICTABLE option in the OPTIONS statement (page 562). Otherwise, Spectrum
Writer uses a default translation table.

#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/RIGHT] [ASCII])
Returns a character string containing the contents of the field (any data type) after
formatting it as specified by the other parms. Only fieldname is required. It must be the first
argument. It must also be the name of an actual field-- expressions are not allowed for this
argument. The other parms may appear in any combination and in any order. The display
format, if specified, must be valid for the specified field's data type. For an explanation of
each of the parms, see the syntax of the COLUMNS statement, which uses the same parms
(page 498).

Example: COMPUTE: A = #FORMAT(#TODAY) might result in A='03/31/07

COMPUTE: A = #FORMAT(#TODAY, LONG1, CENTER)
 might result in A=' MARCH 31, 2007 '

COMPUTE: A = #FORMAT(SALES–DATE, BIZ)
 results in A='03/31/07' when SALES–DATE = 03/31/2007
 or A=' ' (when SALES–DATE = 00/00/0000

COMPUTE: A = #FORMAT(TOTAL–SALES) might result in A=' 92,125.89'

COMPUTE: A = #FORMAT(TOTAL–SALES,10) might result in A=' 92,125.89'

COMPUTE: A = #FORMAT(TELEPHONE, PIC'(999) 999–9999'))
 might result in A='(415) 555–1209'

COMPUTE: A = #FORMAT(TOTAL–SALES, BIZ)
 results in A=' 92,125.89' when TOTAL–SALES = 92,125.89
 or A=' ' when TOTAL–SALES = 0

#LCASE(char)
Returns the character argument's value after translating any of its upper–case alphabetic
characters to the corresponding lower–case character. All other printable characters remain
unchanged. (The effect of this function on non-printable characters is not defined.) The size
of the value returned by this function is the size of the character argument.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #LCASE(DESC) results in A="this is a description".

#LEFT(char,num1)
Returns a substring of the char argument, starting with the first column, for a length of
"num1" bytes. Num1 may be either a literal value or a numeric expression. When num1 is
a literal value, the size of the value returned by this function is num1. When num1 is an
expression, the size returned by this function is the size of the character argument (since
that is the maximum possible size of the result).

Example: COMPUTE: A = #LEFT('ABCDEFG',4) results in A='ABCD'
632 Spectrum Writer Reference Manual

Functions that Return a Character Value
#MONTH[(date)]
Returns the name of the month pertaining to the date argument, as a 9–byte character field.
If no date argument is present, the system date is used.

Example: COMPUTE: A = #MONTH(HIRE–DATE) might result in A="MARCH "

#OR(char1,char2)
Performs the logical OR operation on the two character arguments and returns the result.
(An OR operation results in a 1 bit if the corresponding bit of either (or both) operands is a
1: otherwise it results in a 0 bit.) If the two operands are not the same size, the shorter
operand will be right–padded with hex zeros before performing the OR operation. The size
of the result is the size of the larger operand.

Example: COMPUTE: A = #OR(X'8024',X'0756') results in A=X'8776'

Note: You can use the #OR function to create packed numeric fields that have a sign
of F (rather than the standard sign of C). For example, assume that AMOUNT has a
value of 123 (in any format).

Example: COMPUTE: PACKED = #FORMAT(AMOUNT,PACKED,2)
COMPUTE: PACKED–F = #OR(PACKED,X'000F') results in PACKED = X'123C' and
 PACKED–F = X'123F'

#PARSE(char,num)
Returns a single word parsed from the character argument. Internally, the character
argument is first parsed into individual words, each delimited by one or more spaces. The
numeric argument specifies which of the parsed words should be returned by the function.
A numeric argument of 1 indicates that the first word should be returned; an argument of
2 means return the second word, etc. Negative numbers may also be used. A negative
number indicates the word to return counting backwards from the last word parsed. A
numeric argument of –1 means return the last word parsed; an argument of –2 means return
the second to last word, etc. If the word indicated by the numeric argument doesn't exist,
blanks are returned by this function. The size of the value returned by this function is the
size of the character argument.

Note: You can use the related #NUMWORDS built–in function to find out how many
words a character string contains.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #PARSE(DESC,1) results in A="THIS "
COMPUTE: A = #PARSE(DESC,2) results in A="IS "
COMPUTE: A = #PARSE(DESC,–1) results in A="DESCRIPTION "
COMPUTE: A = #PARSE(DESC,5) results in A=" "

Note: To parse a text using a delimiter other than blanks, try using the #TRANSLATE
built-in function to first translate the desired delimiter characters into blanks. For
example, you could parse an IP address (which is delimited with dots) this way:

Example: COMPUTE: A = #PARSE(#TRANSLATE(IPADDR,"."," "),2)

Assume that IPADDR = "12.345.67.8". The above statement results in A = "345 "

Note that using #TRANSLATE with #PARSE may not work if the original string
contains multiple consecutive delimiters.
Appendix D. Built-In Functions 633

Functions that Return a Character Value
#RIGHT(char,num1)
Returns a substring of the char argument consisting of the last "num1" bytes. Num1 may
be either a literal value or a numeric expression. When num1 is a literal value, the size of
the value returned by this function is num1. When num1 is an expression, the size returned
by this function is the size of the character argument (since that is the maximum possible
size of the result).

Example: COMPUTE: A = #RIGHT('ABCDEFG',4) results in A='DEFG'

#SUBSTR(char,num1,num2)
Returns a substring of the char argument, starting at column "num1" for a length of "num2"
bytes. Num1 and num2 may be literal values or numeric expressions. When num2 is a
literal value, the size of the value returned by this function is num2. When num2 is an
expression, the size returned by this function is the size of the character argument (since
that is the maximum possible size of the result).

Example: COMPUTE: A = #SUBSTR('ABCDEFG',2,3) results in A='BCD'

#TRANSLATE(char1,char2,char3)
Returns the char1 string after translating any of its characters found in the char2 argument
into the corresponding character of the char3 argument. (Translated characters in the char1
argument are not then re–evaluated for additional translation.) The size of the value
returned by this function is the size of the char1 argument.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #TRANSLATE(DESC,"TA","XY") would result in
 A="XHIS IS Y DESCRIPXION".

Note: Normally the char2 and char3 arguments are character or hex literals.
However, character fields may also be used for those arguments. If character fields
are used, their contents will be examined only once by Spectrum Writer. This occurs
the first time the results of the #TRANSLATE function are actually required during the
run. (This may or may not correspond to the first input record.) After that,
subsequent executions of the #TRANSLATE function do not re–examine the contents
of the char2 and char3 fields. The contents of those arguments from their first
examination is used for the entire run.

#UCASE(char)
Returns the character argument's value after translating any of its lower–case alphabetic
characters to the corresponding upper–case character. All other printable characters remain
unchanged. (The effect of this function on non-printable characters is not defined.) The size
of the value returned by this function is the size of the character argument.

Example: (Assume that NAME = "Smith ")
COMPUTE: SORT–NAME = #UCASE(NAME) results in SORT–NAME = "SMITH "

Note: This function may be useful when sorting a report on a field that contains
mixed–case text. For example, in order to ensure that the names "SMITH", "Smith", and
"smith" all sort together, you could compute a new field that contains the upper–case
value of the mixed–case name field. By sorting on this new upper–case field, rather
than the original mixed–case field, the three names above would sort together. Of
course, you can still choose to print the original, mixed–case names in your report,
even though sorting on the upper–case names.
634 Spectrum Writer Reference Manual

Functions that Return a Character Value
#XOR(char1,char2)
Performs the logical XOR operation on the two character arguments and returns the result.
(An XOR operation results in a 1 bit if the corresponding bit of either (but not both)
operands is a 1: otherwise it results in a 0 bit.) If the two operands are not the same size,
the shorter operand will be right-padded with hex zeros before performing the XOR
operation. The size of the result is the size of the larger operand.

Example: COMPUTE: A = #XOR(X'5766',X'5744') results in A=X'0022'

#YEAR[(date)]
Returns the year portion of the date argument as a 4–byte character field. Note 2

Example: COMPUTE: A = #YEAR(HIRE–DATE) might result in A="2001"

Functions that Return a Character ValueFunctions that Return a Numeric Value

#ABS(num)
Returns the absolute value of the numeric argument.

Example: COMPUTE: A = #ABS(–4) results in A= 4

#DAYNUM[(date)]
Returns the numeric value of the day portion of the date argument. Note 2

Example: COMPUTE: A = #DAYNUM(3/31/2007) results in A=31

#DOWNUM[(date)]
Returns a number from 1 to 7 representing the day of the week of the argument date.
(1 means Sunday, 2 means Monday, ... 7 means Saturday.) Notes 2, 3

Example: COMPUTE: A = #DOWNUM(3/31/2007) results in A=7

#HOURNUM[(time)]
Returns the numeric value of the hours portion of the time argument. Note 1

Example: COMPUTE: A = #HOURNUM(12:30:59) results in A=12

#INDEX(char1,char2)
If the second argument appears somewhere within the first argument, #INDEX returns the
byte number in char1 where the char2 text begins. If char1 does not contain char2, #INDEX
returns zero.

Example: COMPUTE: A = #INDEX('ABCDEF', 'CDE') results in A=3

#INT(num)
Returns the integer portion of the numeric argument. The argument’s decimal digits, if any,
are simply dropped, regardless of the sign of the argument.

Example: COMPUTE: A = #INT(12.345) results in A= 12
COMPUTE: A = #INT(–12.345) results in A= –12
Appendix D. Built-In Functions 635

Functions that Return a Numeric Value
#MAKENUM(char/date/time)
For character arguments, converts the string of numeric characters into a numeric value.
No decimal point, commas, or any other non–numeric character is allowed in the string.
The only exception is that leading blanks are allowed. An all–blank string returns the value
zero.

Example: COMPUTE: A = #MAKENUM(' 125') results in A=125

Note: You can use the #ISNUM function to determine whether a given character text
can successfully be converted into a number by #MAKENUM.

Example: COMPUTE X-IS-NUMERIC = #ISNUM(X)
COMPUTE: NUMERIC-X = WHEN(X-IS-NUMERIC) ASSIGN(#MAKENUM(X))
 ELSE ASSIGN(99999999)

The above example results in NUMERIC-X being equal to the numeric value in the
character field X, or being 99999999 when the character field X does not contain a valid
numeric value.

For date arguments, #MAKENUM converts the date into a numeric “day in century” value.
January 1, 1900 corresponds to day 1, and December 31, 2099 is day 73,049. The date
argument must be a valid date in either the 20th or 21st century. (You can use the
#MAKEDATE function to convert a numeric day in century back into a date.)

Example: COMPUTE: A = #MAKENUM(12/31/2007) results in A=39446
COMPUTE: A = #MAKENUM(1/1/2008) results in A=39447

Example: (of computing the number of days between two dates):
COMPUTE: NUM–DAYS = #MAKENUM(END–DATE) – #MAKENUM(START–DATE)

If END–DATE = 4/2/2007 and START–DATE = 3/28/2007, then the above example would result in
NUM–DAYS = 5.

For time arguments, #MAKENUM converts the time value into its equivalent number of
seconds since midnight.

Example: COMPUTE: A = #MAKENUM(01:29:59) results in A=5399

(One hour = 3600 seconds; 29 minutes is another 1740 seconds, plus 59 seconds equals
5399.)

Example: (of computing the number of seconds between two times):
COMPUTE: NUM–SECS = #MAKENUM(END–TIME) – #MAKENUM(START–TIME)

If END–TIME = 13:05:07 and START–TIME = 13:04:56, then the above example would result in
NUM–SECS = 11.

If the start and end times might occur on different days, you can convert the starting and
ending dates into seconds as well, and use those in the computation. (There are 86400
seconds in a 24–hour day).

Example: COMPUTE: NUM–SECS = ((#MAKENUM(END–DATE) * 86400) + #MAKENUM(END–TIME))
 – ((#MAKENUM(START–DATE) * 86400) + #MAKENUM(START-TIME))
636 Spectrum Writer Reference Manual

Functions that Return a Numeric Value
To convert the resulting interval (in seconds) back into a time field, you would use this
statement:

Example: COMPUTE: DURATION = #MAKETIME(NUM–SECS)

If NUM–SECS = 11 then the above example would result in DURATION = 00:00:11.

#MAX(num1,num2,num3,...)
Returns the largest of the numeric arguments. Any number of arguments is allowed.

Example: COMPUTE: A = #MAX(12, 25, –3) results in A=25

You can also use this function to determine the largest of several time fields. First convert
the times to numeric values for use with #MAX. Then convert the result back to a time:

Example: COMPUTE: LAST–TIME = #MAKETIME(#MAX(#MAKENUM(TIME1), #MAKENUM(TIME2)))

You can also use this function to determine the largest (latest) of several date fields. First
convert the dates to numeric values for use with #MAX. Then convert the result back to a
date:

Example: COMPUTE: LAST–DATE = #MAKEDATE(#MAX(#MAKENUM(DATE1), #MAKENUM(DATE2)))

#MIN(num1,num2,num3,...)
Returns the smallest of the numeric arguments. Any number of arguments is allowed.

Example: COMPUTE: A = #MIN(12, 25, –3) results in A=–3

You can also use this function to determine the smallest of several time fields. First convert
the times to numeric values for use with #MIN. Then convert the result back to a time:

Example: COMPUTE: FIRST–TIME = #MAKETIME(#MIN(#MAKENUM(TIME1), #MAKENUM(TIME2)))

You can also use this function to determine the smallest (earliest) of several date fields.
First convert the dates to numeric values for use with #MIN. Then convert the result back to
a date:

Example: COMPUTE: FIRST–DATE = #MAKEDATE(#MIN(#MAKENUM(DATE1), #MAKENUM(DATE2)))

#MINUTENUM[(time)]
Returns the numeric value of the minutes portion of the time argument. (May also be
abbreviated #MINNUM.) Note 1

Example: COMPUTE: A = #MINUTENUM(12:30:59) results in A=30

#MOD(num1,num2)
Returns the remainder left when the first argument is divided by the second argument.

Example: COMPUTE: A = #MOD(45, 4) results in A= 1
COMPUTE: A = #MOD(–45, 4) results in A= –1
COMPUTE: A = #MOD(1.5, .2) results in A= .1

#MONTHNUM[(date)]
Returns the numeric value of the month portion of the date argument. If no date argument
is present, the system date is used.

Example: COMPUTE: A = #MONTHNUM(3/31/2007) results in A=3
Appendix D. Built-In Functions 637

Functions that Return a Numeric Value
#NUMWORDS(char)
Returns the number of words found within the character argument. The words are parsed
in the manner described under the #PARSE built–in function (page 633).

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #NUMWORDS(DESC) results in A = 4.

Note: This function may be useful when you want to assign a value to a computed
field differently depending on how many, if any, words are in some other field. For
example, the following example assigns the second word from the DESC field to the
result. However, if the DESC field contains only 1 (or no) words, the text "*NONE*" is
assigned instead:

Example: COMPUTE: A = WHEN(#NUMWORDS(DESC) >= 2) ASSIGN(#PARSE(DESC,2))
 ELSE ASSIGN("*NONE*")

#ROUND(num1,num2)
Returns the first numeric argument, rounded to the precision specified by the second
numeric argument. Num2 is the number of decimal places that num1 should be rounded to.
Rounding of negative numbers is performed as if they were positive. Num2 must be a
literal integer (not an expression). The number of decimal digits returned by this function
is the same as the number of decimal digits in the num1 argument.

Num2 can also be a negative number. Use this feature to round to a digit position on the
left side of the decimal point. Use -1 to round to tens, -2 to round to hundreds, and so on.

Example: COMPUTE: A = #ROUND(12345.678, 2) results in A= 12345.680
COMPUTE: A = #ROUND(–12345.678, 2) results in A=–12345.680
COMPUTE: A = #ROUND(12345.678, 0) results in A= 12346.000
COMPUTE: A = #ROUND(12345.678, –2) results in A= 12300.000

#SECONDNUM[(time)]
Returns the numeric value of the seconds portion of the time argument. (May also be
abbreviated #SECNUM.) Note 1

Example: COMPUTE: A = #SECONDNUM(12:30:59) results in A=59

#YEARNUM[(date)]
Returns the 4-digit numeric value of the year portion of the date argument. If no date
argument is present, the system date is used.

Example: COMPUTE: A = #YEARNUM(3/31/07) results in A=2007

Functions that Return a Numeric ValueFunctions that Return a Date Value

#BEGMONTH[(date)]
Returns the first day of the month in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #BEGMONTH(5/15/2007) results in A=5/1/2007

#BEGWEEK[(date)]
Returns the Sunday of the calendar week in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #BEGWEEK(5/15/2007) results in A=5/13/2007
638 Spectrum Writer Reference Manual

Functions that Return a Date Value
Note: You can also use this function to return any particular day of a given week
(Monday, Tuesday, etc.). Just use it in combination with an #INCDATE function that
adds the appropriate number of days to the result . Add 1 to get Monday, 2 to get
Tuesday, and so on. The following example returns the Wednesday of the week that
SALES-DATE falls within.

Example: WED-SALES-DATE = #INCDATE(#BEGWEEK(SALES-DATE), 3, DAYS)

#BEGYEAR[(date)]
Returns the first day of the year in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #BEGYEAR(5/15/2007) results in A=1/1/2007

#ENDMONTH[(date)]
Returns the last day of the month in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #ENDMONTH(5/15/2007) results in A=5/31/2007

#ENDWEEK[(date)]
Returns the Saturday of the calendar week in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #ENDWEEK(5/15/2007) results in A=5/19/2007

#ENDYEAR[(date)]
Returns the last day of the year in which the date argument occurs. Notes 2, 3

Example: COMPUTE: A = #ENDYEAR(5/15/2007) results in A=12/31/2007

#INCDATE([date,] number, units)
Returns the date obtained by incrementing the argument date by the given number of units.
Units can be any of these keywords or abbreviations: Notes 2, 3

! DAYS, DAY, D
! WEEKS, WEEK, WKS, WK, W
! MONTHS, MONTH, MONS, MON, M
! YEARS, YEAR, YRS, YR, Y

Example: COMPUTE: A = #INCDATE(5/15/2007, 3, WEEKS) results in A = 6/5/2007
COMPUTE: YESTERDAY = #INCDATE(-1, DAYS) results in YESTERDAY being the
 date before the system date.

Note: When incrementing by months or years, the day portion of the resulting date
is sometimes changed to the last day of the month, in order to return a valid calendar
date.

COMPUTE: A = #INCDATE(5/31/2007, 1, MONTH) results in A = 6/30/2007
 (not 6/31/2007 which is not a valid date)
COMPUTE: B = #INCDATE(2/29/2008, 1, YEAR) results in B = 2/28/2009
 (not 2/29/2009 which is not a valid date)

#INCDATETIME([date,] [time,] number, units) or
#INCDATETIME([date,] [time,] time)

Returns the date obtained by incrementing the date and time arguments by the given
number of units, or by a time value. Units can be any of these keywords or abbreviations:
Notes1, 2, 3

! SECONDS, SECOND, SECS, SEC, S
Appendix D. Built-In Functions 639

Functions that Return a Date Value
! MINUTES, MINUTE, MINS, MIN, M
! HOURS, HOUR, HRS, HR, H

Examples:

COMPUTE: A= #INCDATETIME(1/1/2008, 23:45:00, 12, MINUTES) results in A = 1/1/2008
COMPUTE: B= #INCDATETIME(1/1/2008, 23:45:00, 16, MINUTES) results in A = 1/2/2008

Note: This function is often used in conjunction with #INCTIME. Together, they let
you add a time interval to a starting date and time and get the resulting date and time.
For example, to compute an "expiration" date and time that is 12 hours after SALES-
DATE and SALES-TIME, you could use the following:

Example: COMPUTE: EXPIRE-DATE = #INCDATETIME(SALES-DATE, SALES-TIME, 12, HOURS)
COMPUTE: EXPIRE-TIME = #INCTIME(SALES-TIME, 12, HOURS)

Note: Transitions to or from Daylight Savings Time are not taken into account by
this function.

#MAKEDATE(char/num)
For character arguments, converts the YYMMDD or YYYYMMDD character string into the
corresponding date. The character argument must be either 6 or 8 bytes in length. When a
YYMMDD argument is used, Spectrum Writer assigns the century based on the CENTURY
option in effect (page 559):

Example: COMPUTE: A = #MAKEDATE('20070331') results in A=3/31/2007

For numeric arguments, the argument is treated as a "day in century" value. The numeric
argument must between be 1 (corresponding to January 1, 1900) and 73,049
(corresponding to December 31, 2099) inclusive. The function returns the date
corresponding to the numeric day from the start of the 20th century. (Use this function to
change the results of the #MAKENUM(date) function back into a date.)

Example: COMPUTE: A = #MAKEDATE(39446) results in A=12/31/2007

#YMD(num, num, num)
#MDY(num, num, num)
#DMY(num, num, num)

Returns a date value based on the three numeric arguments (representing month, day and
year in the order indicated by the function name.) The resulting date is not validity-checked
to see if it is an actual calendar date. (You can use the #REALDATE function to find out.) The
numeric argument representing the year can be any 1 to 4 digit number, and the month and
day arguments can be any 1 or 2 digit number.

Example: COMPUTE: A = #MDY(12,31,2007) results in A=12/31/2007
COMPUTE: B = #YMD(9999,99,99) results in B=99/99/9999

Functions that Return a Date ValueFunctions that Return a Time Value

#INCDURATION([time,] number, units) or
#INCDURATION([time,] time)

Returns the time duration (not necessarily a time of day) obtained by incrementing the time
argument by the given number of units, or by another time value. The result is treated as a
640 Spectrum Writer Reference Manual

Functions that Return a Time Value
time duration (interval) and is not converted to a proper time of day. Units can be any of
these keywords or abbreviations: Note1

! SECONDS, SECOND, SECS, SEC, S
! MINUTES, MINUTE, MINS, MIN, M
! HOURS, HOUR, HRS, HR, H

Example: COMPUTE: A=#INCDURATION(23:00:00, 2, HOURS) results in A = 25:00:00
COMPUTE: B=#INCDURATION(23:00:00, 05:12:34) results in B = 28:12:34

Note: See also the related #INCTIME built-in function.

#INCTIME([time,] number, units) or
#INCTIME([time,] time)

Returns the time of day obtained by incrementing the time argument by the given number
of units, or by another time value. The result will always be a proper time of day (that is, it
will be in the range 00:00:00 to 23:59:59). Units can be any of these keywords or
abbreviations: Note1

! SECONDS, SECOND, SECS, SEC, S
! MINUTES, MINUTE, MINS, MIN, M
! HOURS, HOUR, HRS, HR, H

Example: COMPUTE: A=#INCTIME(23:00:00, 2, HOURS) results in A = 01:00:00
COMPUTE: B=#INCTIME(23:00:00, 05:12:34) results in B = 04:12:34

Note: See also the related #INCDURATION built-in function.

Note: This function is often used in conjunction with #INCDATETIME. Together,
they let you add a time to a starting date and time and get the resulting date and time.
For example, to compute an "expiration" date and time that is 12 hours after SALES-
DATE and SALES-TIME, you could use the following:

Example: COMPUTE: EXPIRE-DATE = #INCDATETIME(SALES-DATE, SALES-TIME, 12, HOURS)
COMPUTE: EXPIRE-TIME = #INCTIME(SALES-TIME, 12, HOURS)

Note: Transitions to or from Daylight Savings Time are not taken into account by
this function.

Note: You can use this function to convert an improper time-of-day to a proper
time-of-day.

Example: COMPUTE: PROPER-TIME = #INCTIME(29:12:34, 0, SECS) results in
 PROPER-TIME = 05:12:34

#MAKETIME(char/num)
For character arguments, converts the HHMMSS character string into the corresponding
time. The character argument must be exactly 6 bytes long.

Example: COMPUTE: A = #MAKETIME('135959') results in A = 13:59:59

For numeric arguments, the argument is treated as a number of seconds. The number of
seconds is converted into the corresponding number of hours, minutes and seconds. (Use
this function to change the results of a #MAKENUM(time) function back into a time.)

Example: COMPUTE: A = #MAKETIME(3600) results in A = 01:00:00
Appendix D. Built-In Functions 641

Functions that Return a Time Value
Functions that Return a Time ValueFunctions that Return a Boolean (or Bit) Value

#ERROR(fieldname)
Returns "true" if the argument field is "in error." Otherwise, it returns "false."

Fields which are in error appear in a report with error indicators (like ***I*** , ***Z*** , ***V*** ,
etc.). Examples of fields in error are fields containing invalid packed data and compute
fields where a divide-by-zero or an overflow occurred. (Missing fields are not in error.
Use the #MISSING built-in function (page 642) to check for that.)

Example: COMPUTE: A=#ERROR(AMOUNT) results in A being "true," if the AMOUNT field in
 the input record does not contain a valid numeric
 value; otherwise A will be "false."
COMPUTE: X = 3 / 0
COMPUTE: B=#ERROR(X) results in B being "true"

#ISNUM(char)
Returns "true" if the character argument contains only numeric characters (optionally
preceded by leading blanks.) Otherwise, it returns "false." All-blank fields and fields with
decimal points or commas, etc. return "false."

Example: COMPUTE: A=#ISNUM(’ 123’) results in A being "true"
COMPUTE: B=#ISNUM(’123.45’) results in B being "false"
COMPUTE: C=#ISNUM(’JONES’) results in C being "false"

Note: A character field that returns "true" for this function can be converted to a
numeric field with the #MAKENUM function.

#LEAPYEAR[(date)]
Returns "true" if the year portion of the argument date is a leap year. Otherwise, it returns
"false." (The month and day portions of the argument date are not examined for validity.)
(This function may also be abbreviated #LEAP.) Note 2

Example: COMPUTE: A=#LEAPYEAR(5/15/2007) results in A being "false"
COMPUTE: B=#LEAPYEAR(5/15/2008) results in B being "true"

#MISSING(fieldname)
Returns "true" if the argument field is in a "missing" auxiliary input record. Otherwise, it
returns "false."

Fields in the primary input file (specified by the INPUT statement) are never missing. Fields
in records read from an auxiliary input file (specified in a READ statement) are missing
when no record is found that matches a particular "read key." Fields from DB2 tables used
as auxiliary inputs are missing when no row meets the conditions specified in the WHERE
parm.

Example: INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
COMPUTE: A=#MISSING(FIRST-NAME)

Since FIRST-NAME is a field in the EMPL-FILE, the example above results in A being "true"
if there is no record in the EMPL-FILE whose key matches the EMPL-NUM in the current
SALES-FILE record. If such a record does exist, A will be "false."

#OFF
Always returns a "false" value.
642 Spectrum Writer Reference Manual

Functions that Return a Boolean (or Bit) Value
Example: COMPUTE: A = #OFF results in A being "false"
COMPUTE: SALES–AWARD = WHEN(TOTAL–SALES > 50000) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

The second example above results in SALES–AWARD being "true" if total sales are greater
than 50,000; otherwise, it results in SALES–AWARD being "false".

#ON
Always returns a "true" value.

Example: COMPUTE: A = #ON results in A being "true"
COMPUTE: SALES–AWARD = WHEN(TOTAL–SALES > 50000) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

The second example above results in SALES–AWARD being "true" if total sales are greater
than 50,000; otherwise, SALES–AWARD will be "false".

#REALDATE(date)
Returns "true" if the date argument contains a real calendar date. Otherwise, it returns
"false."

Example: COMPUTE: A=#REALDATE(6/30/2007) results in A being "true"
COMPUTE: B=#REALDATE(6/31/2007) results in B being "false"
COMPUTE: C=#REALDATE(2/29/2007) results in C being "false"
COMPUTE: D=#REALDATE(99/99/9999) results in D being "false"

Function Notes:
1. If the time argument is omitted, the system time is used.
2. If the date argument is omitted, the system date is used.
3. If the date argument is not a valid calendar date, the function returns an
"invalid data" error (***I***).

Note: You can use #REALDATE to determine whether a given date is valid
or not.

Example: COMPUTE X-IS-REALDATE = #REALDATE(X)
COMPUTE: BEGIN-X-MONTH =
 WHEN(X-IS-REALDATE) ASSIGN(#BEGMONTH(X))
 ELSE ASSIGN(99/99/9999)

The above example results in BEGIN-X-MONTH being the first day of the
month in which X occurs if X is a valid calendar date. Otherwise, BEGIN-X-
MONTH will contain 99/99/9999.
Appendix D. Built-In Functions 643

Appendix E. Error Indicators

Sometimes an error prevents Spectrum Writer from displaying the desired data in a report
or PC file. When that happens a number of asterisks are printed where that data should have
appeared. A single letter is imbedded within the asterisks. That letter is an error code
which tells you exactly what kind of error has occurred. The following table lists the error
codes:

Error Indicators

MEANING OF ERROR INDICATORS

ERROR CODE MEANING

****A****
Ambiguous reference. You asked to print a certain field here, but there is more than one
field by that name in the input file(s). Use a record name to indicate exactly which field
you mean (page 228).

****E****
Error in definition. You asked to print a certain field here, but that field was defined in
error. Look for error messages concerning the FIELD or COMPUTE statement used to
define the field. Correct those errors.

****F****

Offset error occurred. You asked to print a field here, but an error occurred while
trying to compute the field's location within the input record. Offset errors occur when
the sum of the OFFSET value and the COLUMN/DISP value (or the default value used) are
not within the I/O area reserved for the input record. (The size of this I/O area is
determined by the record size specified in the FILE, INPUT or READ statement.) Offset
errors also occur when a computation error arises while computing the OFFSET value.
This includes division by zero, overflow, or any reference to another field that is in error.

If desired, you can use the MISSOFFSET option to ignore this error condition (page 566).

****I****

Invalid data. You asked to print a certain field here, but that field contained invalid data.
For example, the field was supposed to contain packed data and instead it contained
spaces. Or, a field that was supposed to contain a date actually contained alphabetic
characters. Correct the data in the input file.

To help you identify the problem, Spectrum Writer prints a hex listing of the record
containing the invalid data and identifies the field that is in error. Look for this in the
Spectrum Writer control listing.

If desired, you can use the ZEROINVDATA (or just ZEROINV) option to ignore this error
condition. (page 577) A MAXINVSHOW option is also available to let you control how
many records with invalid data are printed in the control listing (page 566).
644 Spectrum Writer Reference Manual

Error Indicators
****S****

Size error. You asked to print a numeric field here, but there was not enough room to
show all of its significant digits (and a minus sign, if the number was negative). Use a
width parm to increase the number of characters reserved to print this field. (See "How
to Change the Width of a Column" on page 135.) As an example, the following
statement reserves 20 characters to print the TOTAL–SALES field:

COLUMNS: EMPL–NAME TOTAL–SALES(20)

****U****

Undefined field. You asked to print a certain field here, but that field is not defined in
any input file for the current run. You may have just misspelled the field name. Or, the
field may belong to a file that is not an input file to the current report.

Tip: To see a list of all field names available for a file, add the SHOWFLDS(YES) parm to
your INPUT and READ statements.

****V****

Overflow occurred. You asked to print a computed numeric field here, but an overflow
error occurred while trying to compute its value. This may happen when two very large
numbers are multiplied together. It can also happen when a very large number is divided
by a very small number (like .000000001). Try requesting that fewer decimal places be
kept in the computed result. Also try splitting complex COMPUTE statements into several
simpler COMPUTE statements. Spectrum Writer can maintain a maximum of 31 digits
(including decimal digits) in computed fields. (This also applies to any intermediate
results used to compute the final result.)

If desired, you can use the ZEROOVERFLOW (or just ZEROOVER) option to ignore this
error condition (page 577).

****Z****

Divide by zero occurred. You asked to print a computed numeric field here, but a
division by zero was attempted while trying to compute its value. You may be able to
use a conditional COMPUTE statement to prevent division by zero, like this:

COMPUTE: RATIO = WHEN(B ¬= 0) ASSIGN(A/B)
 ELSE ASSIGN(0)

If desired, you can use the ZERODIVZERO (or just ZERODIVZ) option to ignore this error
condition (page 577).

MEANING OF ERROR INDICATORS

ERROR CODE MEANING
Appendix E. Error Indicators 645

Suppressing Error Indicators

In some situations, certain error conditions may not be critical to your report. In such cases,
you can suppress the asterisk error indicators by using one or more of the following
OPTIONS statement options.

The above options tell Spectrum Writer to treat fields that have the specified error as if they
contained a zero (or missing) value. This means you'll see zeros in your output, rather than
the asterisk error indicators. (For character fields with the offset error, you'll see blanks
instead of the error indicator.) It also prevents fields from propagating their error
conditions to other fields that reference them. (See discussion below.)

If you want invalid numeric items (along with other zero values) to appear as blanks (rather
than zeros) in your output, use a PICTURE that specifies suppression of all leading zeros,
like this:

OPTIONS: ZEROINVDATA
COLUMNS: AMOUNT(PIC'ZZZ,ZZZ’)

Alternatively, you could use the BIZ ("blank if zero) parm:
OPTIONS: ZEROINVDATA
COLUMNS: AMOUNT(BIZ)

OPTIONS THAT SUPPRESS ERROR INDICATORS

OPTION MEANING

ZEROINVDATA
Treat fields containing invalid data as if they contained zeros
instead. This suppresses the ***I*** indicator. May also be
abbreviated ZEROINV.

ZEROOVERFLOW
Assign a value of zero to COMPUTE fields that have overflow
errors. This suppresses the ***V*** indicator. May also be
abbreviated ZEROOVER.

ZERODIVBYZERO
Assign a value of zero to COMPUTE fields when a division by
zero is attempted. This suppresses the ***Z*** indicator. May
also be abbreviated ZERODIVZERO and ZERODIVZ.

 MISSOFFSET

Treat fields that have OFFSET parm errors as if the field was
"missing." (Missing fields are assigned zeros for numeric, date
and time fields, blanks for character fields, and OFF for bit
fields.) This suppresses the ***F*** indicator.
646 Spectrum Writer Reference Manual

Propagation of Error Indicators

When a field which has an error is used as an operand in a COMPUTE statement, its error
code is normally passed on to the result field. Consider the following statement:

COMPUTE: B = A + 1

Assume that A is defined as a packed field. If a certain record contains invalid packed data
for field A, then **I** will appear in the report where the contents of A should have appeared.
In addition, you will also see **I** anywhere that field B should have printed. That is because
field A, which is needed to compute field B, passes its error condition on to field B.

Propagation of Error Indicators\Determining if a Field Is In Error

You may want to determine if a field is in error before trying to use its value. That allows
you to use alternate processing for invalid fields to avoid propagating the error further.

You can use the #ERROR built-in function (page 642) to do that. That function accepts any
fieldname as a parm and returnd "true" or "false" whether the field is in error. Examples of
fields in error are fields containing invalid packed data and compute fields where a divide-
by-zero or an overflow occurred. (Missing fields are not in error. Use the #MISSING built-
in function (page 642) to check for that.)

Example: COMPUTE: INV–AMOUNT = #ERROR(AMOUNT)
COMPUTE: TAX–PERCENT = WHEN(INV–AMOUNT) ASSIGN(0.08) /* DEFAULT */
 ELSE ASSIGN(TAX / AMOUNT) /* ACTUAL */
Appendix E. Error Indicators 647

Appendix F. Files Used in Examples

The sample reports used in this manual were created using actual files. The boxes on the
following pages show the definition statements (that is the FILE and FIELD statements) that
were used to define these files. The contents of the SWALIAS member of the sample copy
library is also shown. Finally, each file’s raw unformatted data is also shown.

 Sample File Definitions

STATEMENTS STORED IN SWALIAS MEMBER OF COPY LIBRARY

SALES–FILE = SALES
EMPL–FILE = EMPLFILE
PRODUCT–FILE = PRODFILE
STATE–FILE = STATE

DEFINITION STATEMENTS FOR SALES–FILE

* *
* SPECTRUM WRITER FILE DEFINITION FOR SALES-FILE *
* *

FILE: SALES-FILE DDNAME(SALEFILE) LRECL(80)
*
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: BACKUP-EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)
FIELD: AMOUNT LENGTH(6) TYPE(NUM) DECIMAL(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DECIMAL(2)
FIELD: COMMISSION-RATE LENGTH(4) TYPE(NUM) DECIMAL(3)
FIELD: SALES-DATE TYPE(YYMMDD)
FIELD: SALES-TIME TYPE(HHMMSS)
FIELD: CUSTOMER LENGTH(15)
FIELD: TELEPHONE LENGTH(10) TYPE(NUM)
FIELD: TIME-ON-PHONE LENGTH(4) TYPE(SECS) DECIMAL(1)
FIELD: PRODUCT-CODE LENGTH(3)

Remarks:
• these statements are stored in the SALES member of the copy library
• for VSE, the following FILE statement is used instead:
 FILE: SALES–FILE ATTR(DASD,'SALEFIL',80,160)
648 Spectrum Writer Reference Manual

Sample File Definitions
DEFINITION STATEMENTS FOR EMPL–FILE

**
* *
* SPECTRUM WRITER FILE DEFINITION FOR EMPL-FILE *
* *
**
FILE: EMPL-FILE TYPE(VSAM) DDNAME(EMPLFILE) LRECL(150)
*
FIELD: EMPL-NUM LEN(3)
FIELD: LAST-NAME LEN(15)
FIELD: FIRST-NAME LEN(15)
FIELD: HIRE-DATE TYPE(YYMMDD)
FIELD: DEPT-NUM LEN(1) TYPE(NUM) NOACCUM
FIELD: SEX LEN(1)
FIELD: STATUS-BYTE LEN(1)
FIELD: FULL-TIME COL(STATUS-BYTE) BIT(1)
FIELD: SOCIAL-SEC-NUM COL(*+1) LEN(9) TYPE(NUM)
 FORMAT(PIC'999-99-9999')
FIELD: NUM-ACCOUNTS LEN(4) TYPE(NUM)
FIELD: TOTAL-SALES LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR1 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR2 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR3 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR4 LEN(7) TYPE(NUM) DEC(2)
FIELD: ADDRESS LEN(20)
FIELD: CITY LEN(15)
FIELD: STATE LEN(2)
FIELD: ZIP LEN(5)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
 FORMAT(PIC'(999) 999-9999')

Remarks:
• these statements are stored in the EMPLFILE member of the copy library
• for VSE, the following FILE statement is used instead:
 FILE: EMPL–FILE ATTR(VSAM,'EMPLFIL',150)

DEFINITION STATEMENTS FOR PRODUCT–FILE

**
* *
* SPECTRUM WRITER FILE DEFINITION FOR PRODUCT-FILE *
* *
**
FILE: PRODUCT-FILE DDNAME(PRODFILE) TYPE(VSAM) LRECL(22)
*
FIELD: PRODUCT-STATUS LEN(3)
FIELD: PRODUCT-KEY LEN(4)
FIELD: PRODUCT-DESC LEN(15)

Remarks:
• these statements are stored in the PRODFILE member of the copy library
• For VSE, the following FILE statement is used instead:
 FILE: PROD–FILE ATTR(VSAM,'PRODFIL',22)
Appendix F. Files Used in Examples 649

Sample File Definitions
Sample File DefinitionsSample Files’ Raw Data

DEFINITION STATEMENTS FOR STATE–FILE

**
* *
* SPECTRUM WRITER FILE DEFINITION FOR STATE-FILE *
* *
**
FILE: STATE–FILE TYPE(VSAM) DDNAME(STATFILE) LRECL(20)
*
FIELD: STATE–CODE LEN(2)
FIELD: STATE–NAME LEN(10)

Remarks:
• these statements are stored in the STATE member of the copy library
• for VSE, the following FILE statement is used instead:
 FILE: STATE–FILE ATTR(VSAM,'STATFIL',20)

CONTENTS OF SALES–FILE (UNFORMATTED)

JOHNSON 037041SOUTH01013806090350950312102500ACE ELECTRICAL 21355598710079952
BAKER 044045WEST 01370008220360950326120909JACKS CAFE 21455511240102978
MORRISON 042036EAST 00443502660360950329153022STAR MARKET 40855576540599907
MORRISON 042045EAST 00296501780360950330190541A1 PHOTOGRAPHY 40855577860600919
SIMPSON 041039EAST 00149900900360950401081757EUROPEAN DELI 40855565430150916
JOHNSON 039036NORTH02344514070370950401170247VILLA HOTEL 41555576300929926
JOHNSON 039044NORTH00099800600370950405143310MARYS ANTIQUES 41555512560000997
BAKER 044037WEST 01357508150360950412143112JACKS CAFE 21455511240231916
THOMAS 045037WEST 00099800600360950414154138YOGURT CITY 21455517895421997
JONES 036042NORTH00102500620370950415075832EZ GROCERY 41555548720810977
JONES 036039NORTH01217607310370950415080159TOY TOWN 41555515001200907
JONES 036039NORTH00102500620370950415135241TOY TOWN 41555515000523977
JOHNSON 037042SOUTH05000030000350950416114833ACME BUILDING 21355521211025976
SIMPSON 041042EAST 00238701430360950430153021J & S LUMBER 40855523212451916
650 Spectrum Writer Reference Manual

Sample Files’ Raw Data
CONTENTS OF EMPL–FILE (UNFORMATTED)

036JONES JERRY 8001312MA012098765007842509890995601105115608698071333425125 MAIN S
TREET SAN FRANCISCO CA940124155557653
037JOHNSON THOMAS 7506211MA9120403340128869992421560152135021199701024118784000 LINDA
 VISTA SCOTTSDALE AZ900126025556654
039JOHNSON LINDA 7911252FA00477998101047502355145903417220102010008231131212 LINCOLN
 DRIVE SANTA ROSA CA954124155556785
040MACDONALD RICHARD 8207042M 889790013000602560980054850006871300599250072610525 FOOTHI
LL DRIVE PLEASANTON CA945684155559887
041SIMPSON TIMOTHY 8212013MA11205045600160872388012875805109030099812013291589876 WEST
 53 STREETARCADIA CA910068185551887
042MORRISON MICHAEL 7911303MA90012055601549805499250141926112212801009189185098 SOUTH L
AKESIDE DRGLENDALE CA912028185554748
043CHRISTOPHERSON MELISSA 8108151FA41509076100654766531138072216549010805007092590161752 TIMB
ERIDGE RD PHOENIX AZ905026025554556
044BAKER VIVIAN 8206044FA878190156014792125892133610249990224001332178944667 CRESTH
AVEN BLVD WALNUT CREEK CA945984155551209
045THOMAS MARTIN 8206044MA77683822101186019349148890718045051425012130092577812 S. H
UNTINGTON CONCORD CA945194155551152

CONTENTS OF PRODUCT–FILE (UNFORMATTED)

NEWP907INKPADS
NEWP916RED PENS
NEWP919GREEN PENS
OLDP926DESK CALENDARS
NEWP952PENCILS (NO. 1)
OLDP976CHAIRS
OLDP977PAPER CLIPS
NEWP978HOLE PUNCHERS
OLDP997MAILING LABELS

CONTENTS OF STATE–FILE (UNFORMATTED)

AZARIZONA
CACALIFORNIA
OROREGON
WAWASHINGTON
Appendix F. Files Used in Examples 651

Appendix G. Speed-Up Tips

Because Spectrum Writer is written entirely in fast, efficient Assembly language, it runs
faster than any other 4GL report writer we know of. This Appendix lists some techniques
you can use when writing your queries to allow Spectrum Writer to run at its fastest. You
may want to review these items if you have large, long–running jobs where minimizing
CPU use is especially important.

Speed-Up Tips

INCLUDEIF Statement

The INCLUDEIF statement is perhaps the single most important factor that affects how long
your job will run. By considering the following suggestions when writing your INCLUDEIF
statements, you can help Spectrum Writer run at its fastest.

The INCLUDEIF statement simply consists of a conditional expression. Spectrum Writer
always stops processing a conditional expression as soon as it knows that the entire
expression is either definitely true or definitely false. That means that Spectrum Writer
may not always need to perform every test in a conditional expression. By writing your
conditional expressions so that Spectrum Writer can make a definite determination as soon
as possible, you can help eliminate unnecessary processing. That reduces CPU usage.

Speed-Up Tip: Put tests that definitely include or definitely exclude the majority
of input file records early in your INCLUDEIF statement.

We will now illustrate this tip in detail, both for conditional expressions that use AND and
for conditional expressions that use OR.

Order of ANDed Tests
As an example, assume that we are processing a large database of people. We want to
include all records where both of the following conditions are true:

! SEX = 'F'

! NAME = 'JOSEPHSON'

Note that one of these conditions (SEX = 'F') should be true in about half of the input records.
(We are assuming that the database is representative of the population at large.) The other
condition (NAME = 'JOSEPHSON') will probably be true for only a tiny fraction of the
database–– far less than 1%.

We could write the necessary INCLUDEIF statement either of two ways.:
1. INCLUDEIF: SEX = ’F’ AND NAME = ’JOSEPHSON’
2. INCLUDEIF: NAME = ’JOSEPHSON’ AND SEX = ’F’

If we use the first statement above, Spectrum Writer will have to perform both tests on
approximately 50% of the input records. That is because the first test (SEX = 'F') will be true
for about half of the input file. For that half of the file, the second test will then have to be
performed as well (NAME = 'JOSEPHSON'). (When this second test is performed, most of the
records will fail it and will thus fail the entire INCLUDEIF statement.)
652 Spectrum Writer Reference Manual

Speed-Up Tips
Now consider the second (and much better) way that we would write our INCLUDEIF
statement:

INCLUDEIF: NAME = 'JOSEPHSON' AND SEX = 'F' <--best choice

The above statement results in exactly the same records being included in the report, but it
is much more efficient in terms of CPU use. In this case, 99% of the input file records will
fail the first test. For those records, the second test will not need to be performed at all.
Spectrum Writer can definitely exclude the input record with just a single test 99% of the
time. It will only need to perform the second test (SEX = 'F') on less than 1% of the input
records.

To compare the two methods, let's assume that our database contains one million people.
Using the first INCLUDEIF statement discussed above, Spectrum Writer would have to
perform about 1,500,000 tests to evaluate the INCLUDEIF statement for the entire file.
(1,000,000 SEX tests, plus 500,000 NAME tests.) Using the second INCLUDEIF statement
discussed above, Spectrum Writer would have to perform less than 1,010,000 tests.
(1,000,000 NAME tests, plus less than 10,000 SEX tests.) You can see that the second
INCLUDEIF statement would use almost 33% less CPU than the first one.

Speed-Up Rule: When using multiple tests separated with AND, put the most
difficult test to pass first. Put the next–most–difficult test second, and so on. By
"most difficult test," we mean the test that the most input file records will fail. By
"next–most–difficult test," we mean the test that will be failed most often by those
records that have passed the first test.

Order of ORed Tests
Now let's consider conditional expressions that use OR. Assume now that we want to
include all the people in our database where either of the following conditions are true:

! SEX = 'F'

! NAME = 'JOSEPHSON'

Again, we can assume that about 50% of the records will pass the first test shown above,
and less than 1% will pass the second test.

Here is the best way to write the INCLUDEIF statement:

INCLUDEIF: SEX = 'F' OR NAME = 'JOSEPHSON' <--best choice

By using the above statement, Spectrum Writer will definitely include about 50% of the
file after evaluating only the first test. It will only have to perform the second test on the
other 50% of the file.

On the other hand, consider if we had written the statement this way:
INCLUDEIF: NAME='JOSEPHSON' OR SEX='F'

If we used the above statement, the first test would not be true over 99% of the time. That
means that Spectrum Writer would have to go on to perform the second test on 99% of the
input file. While both statements would include the same records in your report, the above
statement would require almost twice as much CPU time to process as the earlier statement.

As you can see, the rule is reversed when using multiple conditions that are separated with
OR.
Appendix G. Speed-Up Tips 653

Speed-Up Tips
Speed-Up Rule: When using multiple tests separated with OR, put the easiest test
to pass first. Put the next–easiest test second, and so on. By "easiest test," we mean
the test that the most input file records will pass. By "next–easiest test," we mean
the test that will be passed most often by those records which did not pass the first
test.

One common way that this rule comes up is when you are including records where a certain
field is equal to any one of a number of values.

Example
INCLUDEIF: DEPT–NUM = 2 OR 3 OR 4

You will improve performance in such a case if you put the most common value first. For
example, if more people in the input file are in department 4 than are in department 2 or 3,
you should put 4 first:

INCLUDEIF: DEPT–NUM = 4 OR 2 OR 3

Fields from Auxiliary Input Files
So far, we have assumed that all fields referred to in an INCLUDEIF statement come from
one file. When the INCLUDEIF statement refers to fields from two or more files, there is
another factor to consider. As we mentioned earlier, Spectrum Writer stops processing a
conditional expression as soon as it knows that the entire expression is either definitely true
or definitely false. That means that if Spectrum Writer can definitely exclude a record
based only on tests from the primary input file, it will not have to perform any subsequent
tests that involve the auxiliary input file(s). In most cases, Spectrum Writer does not read
an auxiliary input record until data from that record is actually needed for processing. Thus,
if you can exclude a large percentage of records based solely on primary input file tests,
Spectrum Writer will not have to read their auxiliary records at all and you will save a large
amount of I/O. Since I/O is relatively slow, it is always desirable to avoid unnecessary I/O
whenever possible.

Let's consider an example using our large database of people. Assume that it contains an
ID number for each person that can be used as the key to another file that contains birth
date information. Assume that we want to include people in our report if both of the
following conditions are true:

! NAME = 'JOSEPHSON'

! BIRTHDATE = 1/1/1965

The best way to write the INCLUDEIF statement is:
INCLUDEIF: NAME='JOSEPHSON' AND BIRTHDATE = 1/1/1965

In the above statement, 99% of the input file will be definitely excluded based on the first
test alone. That means that 99% of the time the "read" to the auxiliary input file containing
the BIRTHDATE field will not be necessary. This method reduces the amount of I/O
performed by almost half (compared with writing the statement with the BIRTHDATE test
first). When the BIRTHDATE test is written first, the auxiliary record has to be read 100% of
the time.
654 Spectrum Writer Reference Manual

Speed-Up Tips
If we had an OR–type INCLUDEIF statement, we would probably still want to put the
primary input file test first:

INCLUDEIF: NAME='JOSEPHSON' OR BIRTHDATE = 1/1/1965

In the above case, only a small percentage of the input records would pass the first test,
meaning that the auxiliary record would then have to be read in order to perform the second
test. Still, reading the second file 99% of the time is slightly better than reading it 100% of
the time, as would be the case if the BIRTHDATE test were the first test.

Speed–Up Tip: When the INCLUDEIF statement involves tests using fields from
auxiliary input files, try to make the auxiliary file tests the last ones.

Of course, there will be times when your inclusion requirements prevent you from doing
this. Or, you may have a conflict between the rules specified earlier (involving
easy–to–pass and difficult–to–pass tests) and the rule regarding tests from auxiliary input
files. In such cases, you may want to experiment with the INCLUDEIF statement on test runs
until you find the most efficient way to write it for your situation. For regularly scheduled,
long running jobs, it may be worth the effort to do that.

Intermediate Conditional Expressions
If your INCLUDEIF statement uses the same tests in multiple places, you may be able to
improve performance by assigning the result of those tests to an intermediate bit field. This
technique is discussed on page 657.

Conditional COMPUTE Statements

When writing conditional COMPUTE statements, there are two considerations that affect
performance:

! the order of the tests within each WHEN parm
! the order of the WHEN parms themselves

The contents of a WHEN parm is simply a conditional expression. The INCLUDEIF statement
also consists of a conditional expression. Therefore, carefully read the above tips regarding
the INCLUDEIF statement. Follow those same suggestions when writing the conditional
expressions within your WHEN parms.

For example, consider the following WHEN parm:

COMPUTE: A = WHEN(SEX='F' OR NAME='JOSEPHSON') ASSIGN(...) <--best choice

The above WHEN parm is more efficient than writing it the following way (even though
both ways yield the same final result):

COMPUTE: A = WHEN(NAME='JOSEPHSON' OR SEX='F') ASSIGN(...)

If you don't know why the first statement above is better, read the earlier section titled
"INCLUDEIF Statement" (page 652).

The second consideration when writing conditional COMPUTE statements is the order of the
WHEN parms themselves. Remember that when evaluating a conditional COMPUTE
statement, Spectrum Writer stops evaluating the WHEN parms as soon as it finds a WHEN
expression that is true. Thus, you will want to put the WHEN parms that are most likely to
Appendix G. Speed-Up Tips 655

Speed-Up Tips
be true as early as possible. That lets Spectrum Writer stop its WHEN parm processing as
early as possible in the maximum number of cases.

Speed–Up Tip: Put the WHEN parm that is most likely to be true first. Next, put the
WHEN parm that is most likely to be true (considering only those records that failed
the first WHEN parm), and so on.

Consider the following statement:
COMPUTE: STATE=NAME = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')

Notice that the WHEN parms are not in alphabetical state order like you might expect.
Instead, they appear in order of decreasing state population. Thus (again assuming that our
database is representative of the US population as a whole) the WHEN parm most likely to
be true for the entire file (STATE = 'CA') comes first. For about 12% of the input records,
Spectrum Writer will only have to evaluate this one WHEN parm (since about 12% of the
population live in California).

Next, considering only those records that are not in California, the most records will be in
New York. Therefore, we checked for STATE='NY' second. This allows another 7% of the
input file to have only two WHEN parms evaluated. And so on through the rest of the states.
Spectrum Writer would only have to evaluate all 50 WHEN parms for 0.2% of the input
records (for Wyoming).

Putting the WHEN parms in the above order ensures that Spectrum Writer performs the
fewest total number of WHEN parm evaluations, thus ensuring the best performance.

Of course, your COMPUTE statements will involve different conditions. It may be hard for
you to guess which of your WHEN parms are the most likely to be true. But, even if you can
only identify the one or two most common WHEN parms, just putting those first can result
in a significant benefit.

Compute Statements with RETAIN

COMPUTE statements that use the RETAIN keyword can be much slower than COMPUTE
statements that do not use it. The reason is this: if an input record will not be included in
the run (because it fails the INCLUDEIF tests), Spectrum Writer does not normally have to
compute the value of all the COMPUTE statements for that record. However, it does have to
compute the value of all RETAIN–type COMPUTE statements for those records. This is
because, even though a specific record may not be included in the report, the value assigned
to the COMPUTE field for that record might need to be retained and then used in conjunction
with later input records.

RETAIN–type COMPUTEs are especially slow when they refer to fields from auxiliary input
records. The reason: since RETAIN–type COMPUTEs must be computed for every input file
record, that means that the auxiliary input file record needed for the COMPUTE must also be
read for every input file record–– even those records that won't be included in the report.
That can add a lot of I/O time to a run, since direct reads to auxiliary input files are
relatively slow.
656 Spectrum Writer Reference Manual

Speed-Up Tips
Tip: If you have a RETAIN–type COMPUTE statement that refers to a field from an
auxiliary input file, see if you can replace it with a non–RETAIN–type COMPUTE
statement. Sometimes you can accomplish this by using a RETAIN–type COMPUTE
statement to retain just the key needed to read the auxiliary input file record. Then
the COMPUTE statement that actually refers to fields in the auxiliary input file should
not need to use RETAIN. When the COMPUTE field is actually needed, the retained key
will be enough to cause the correct record to be read for the COMPUTE statement.

Intermediate Computational Expressions

If your request uses a common computational expression in multiple statements, you may
be able to improve performance by using an intermediate computation. Assign the value of
the common part of the expression to an intermediate field. Then refer to that intermediate
field name in each place where the common expression is needed. That way Spectrum
Writer only has to compute the value of that expression once. It can then use that one result
as many times as needed.

For example, assume that your request contains these three COMPUTE statements:
COMPUTE: X = ((B – C) * 100) / C + 0.02
COMPUTE: Y = ((B – C) * 100) / C + 0.09
COMPUTE: Z = ((B – C) * 100) / C + 1.57

You may be able to improve performance by computing the common part of the
expressions just once and saving the result in an intermediate field, like this:

COMPUTE: TEMP = ((B – C) * 100) / C
COMPUTE: X = TEMP + 0.02
COMPUTE: Y = TEMP + 0.09
COMPUTE: Z = TEMP + 1.57

Intermediate Conditional Expressions

If your request uses a common conditional expression in multiple places, you may be able
to improve performance by using an intermediate expression. Assign the value of the
common part of the expression to an intermediate bit field. Then use that intermediate field
name in each place where the expression is needed. That way Spectrum Writer only has to
compute the value of that expression once. It can then use that one result as many times as
needed.

For example, assume that your request contains this conditional COMPUTE statement:
COMPUTE: X = WHEN((A = B OR C > D) AND E = 1) ASSIGN(1.23)
 WHEN((A = B OR C > D) AND E = 2) ASSIGN(8.45)
 WHEN((A = B OR C > D) AND E = 3) ASSIGN(0.29)

You may be able to improve performance by evaluating the common part of the conditional
expressions (in the WHEN parms) just once and saving the result in an intermediate bit field,
like this:

COMPUTE: TEMP = WHEN(A = B OR C > D) ASSIGN(#ON)
COMPUTE: X = WHEN(TEMP AND E = 1) ASSIGN(1.23)
 WHEN(TEMP AND E = 2) ASSIGN(8.45)
 WHEN(TEMP AND E = 3) ASSIGN(0.29)
Appendix G. Speed-Up Tips 657

Speed-Up Tips
Read Statements with the MULTI parm

In other parts of this manual, we discussed two speed–up tips involving READ statements
that use the MULTI parm. We repeat them here:

Speed-Up Tip: If you know that there will only be one qualifying record in an
auxiliary input file for each READKEY value, do not specify the MULTI parm in your
READ statement. Runs that use the MULTI parm are slower than runs that do not use it.

Speed-Up Tip: If you have some READ statements that use the MULTI parm and
some that do not, put the READ statement(s) without the MULTI parm ahead of the
other READ statements (when possible). This may reduce the overall amount of I/O
that Spectrum Writer has to perform.

For a detailed description of the program flow when MULTI-type READ statements are used,
see page 592.

VSAM I/O
Direct (random) reads to VSAM files are inherently slow. A single random read may involve
multiple EXCPs (to read different levels of index blocks and then data blocks). Since many
4GL report writers do not support direct reads to VSAM files at all, many users do not have
a good standard to compare Spectrum Writer's VSAM I/O performance with.

When you write a Spectrum Writer job that does perform extensive random reads, it will
run slower than a similar job that does not perform direct VSAM I/O. The inherent slowness
of direct VSAM I/O is the cause, however, and not any additional overhead added by
Spectrum Writer.

Here are some tips to make your VSAM jobs run as quickly as possible.

VSAM Buffers
When reading from VSAM files, you may be able to improve performance by increasing the
number of VSAM buffers. This can increase the chances that VSAM will find a needed record
already in one of its buffers, thus eliminating the need for a disk access.

Spectrum Writer provides parms that let you specify VSAM buffers right in your control
statements (thus saving you from having to modify the execution JCL). Use the BUFND and
BUFNI parms in your INPUT and READ statements to specify the number of buffers that VSAM
should use.

The BUFND parm specifies the number of "data buffers" that the VSAM access method
should maintain when processing the file. The BUFNI parm specifies the number of "index
buffers" that the VSAM access method should maintain when processing the file. When
these parms are not specified for a VSAM file, Spectrum Writer chooses a default number
of data and index buffers for VSAM to maintain.

Different values for these parms are recommended for use in the INPUT statement and the
READ statement. You may wish to experiment with these parms if you have long–running,
VSAM–intensive jobs.
658 Spectrum Writer Reference Manual

Speed-Up Tips
READ Statement Buffers
According to IBM's VSAM manual:

! Increasing the number of data buffers by 1 or 2 (from VSAM's default of 2) may
improve performance for random reads. After that, more benefit is obtained by
increasing the number of index buffers.

! Increasing the number of index buffers (from VSAM's default of 1) should
improve performance for random reads up to a certain point. At some point,
excessive paging may cancel any benefit. Optimal performance is sometimes
achieved by having one index buffer for each level of the file's index.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3) BUFNI(6)

The above statement specifies that VSAM should allocate buffers for 3 data control intervals
and 6 index control intervals when processing the EMPL–FILE.

INPUT Statement Buffers
According to IBM's VSAM manual:

! Increasing the number of data buffers to 4 or 5 (from VSAM's default of 2) may
improve performance for sequential reads. At some point after that, excessive
paging may cancel any benefit.

! Increasing the number of index buffers (from VSAM's default of 1) does not
normally improve performance for sequential reads.

Example
INPUT: EMPL–FILE BUFND(5)

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

Pre–Sorting the Input File
Sometimes a vast improvement in performance can be achieved by pre–sorting the primary
input file to Spectrum Writer. For example, assume we have a job that uses the SALES–FILE
as the primary input file. Its records are in chronological order. Assume that we also use a
READ statement to read an auxiliary input record from the EMPL–FILE. The READKEY is the
EMPL–NUM from the SALES–FILE:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)

Since the SALES–FILE is in chronological order, the EMPL–NUMs within it are presumably
distributed randomly. Thus, Spectrum Writer may first have to read the EMPL–FILE record
for key 036, then read a record for key 044, then read another record for key 036, etc. Since
the reads are in random order, the odds are not good that VSAM will have the desired record
already sitting in one of its buffers. Thus, it will have to perform real EXCP I/O to the VSAM
file to get the desired record each time.

Now consider what would happen if we pre–sorted the SALES–FILE into EMPL–NUM order
before having Spectrum Writer process it. The first SALES–FILE record might be for
EMPL-NUM 036, for example. Spectrum Writer would then perform a read for key 036 to the
EMPL–FILE. Then, the next SALES–FILE record would also be for key 036. That means VSAM
Appendix G. Speed-Up Tips 659

Speed-Up Tips
would find that record already in its buffer and would not have to perform any EXCPs to
obtain it. All of the SALES–FILE records for EMPL–NUM 036 could be processed without any
additional I/O to the EMPL–FILE. Then, when the SALES–FILE record for the next EMPL–NUM
is read, the same thing would happen for it. VSAM might have to perform one I/O to get the
correct EMPL–FILE record the first time, but then would not need to perform any more I/O
for all the other SALES–FILE records with that same EMPL–NUM. The total number of slow,
direct VSAM reads would be dramatically decreased.

Of course, pre–sorting the input file does add overhead to the overall job. Various factors,
including the sizes of the primary input file and the auxiliary input file will determine
whether the pre–sort saves you net execution time in the end. In many cases, it is worth the
pre–sort. By the way, you can use a separate Spectrum Writer step to perform the pre–sort,
if you like. This is explained on page 283.

KEYRANGE Parm
If the primary input file is a KSDS (keyed) VSAM file, you may be able to use the KEYRANGE
parm in your INPUT statement to reduce the I/O required for the run. The KEYRANGE parm
tells Spectrum Writer to read only those records within a certain range of keys, rather than
reading through the entire VSAM file.

For example, assume that the input file for a run is a large KSDS customer file. The key for
this file is a 2-byte state code followed by a 10-byte customer number. Assume we want a
report that lists all of the male customers in New York. Normally, we might write:

INPUT: CUSTOMER
INCLUDEIF: STATE = ‘NY’ AND SEX = ‘M’

In the above example, Spectrum Writer must read through the entire CUSTOMER file, testing
the STATE field and the SEX field in each record to determine which records to include in
the report.

However, since the key to this file begins with the state code, we could write the following
instead:

INPUT: CUSTOMER KEYRANGE(‘NY’)
INCLUDEIF: SEX=’M’

The above statements result in the very same report, but run much faster. Instead of having
to read every record in the CUSTOMER file, Spectrum Writer can now jump in right at the
first record whose key begins with NY. It then starts reading records sequentially from that
point. And, after reading the last record whose key begins with NY, it stops reading the file
altogether. This run is much faster because Spectrum Writer does not have to read the
CUSTOMER records for all of the other states and perform the INCLUDEIF tests on them.

Notice that in the second run we also dropped the STATE=’NY’ test from the INCLUDEIF
statement. Since the KEYRANGE parm guarantees that only records with NY in the STATE
field are read, there is no need to test for that in the INCLUDEIF statement. Dropping this test
provides an additional improvement in performance.

The syntax of the KEYRANGE parm is shown on page 547.
660 Spectrum Writer Reference Manual

Speed-Up Tips
Use the STOPWHEN Parm for Non-Keyed Files

If your input file is not keyed, the KEYRANGE parm just discussed can’t be used. In some
cases, however, you may still be able to reduce unnecessary I/O by using the STOPWHEN
parm. As long as your input file is sorted in a specific order, the STOPWHEN parm may be
useful.

For example, assume that we have the same customer file described in the previous section,
except that it is a sequential tape file (not a KSDS VSAM file). Assume that this tape file is
already sorted by state code and customer number. To produce the same report described
in the previous section, you could use these statements:

INPUT: CUSTOMER STOPWHEN(STATE > ’NY’)
INCLUDEIF: SEX = ‘M’

In the above example, Spectrum Writer knows that it can stop reading the input file as soon
as it gets to a record whose state is greater than ’NY’. It will not have to read through the
remainder of the input file. (Unlike with the KEYRANGE parm, however, Spectrum Writer
will still have to read through all the records before ’NY’.)

The syntax of the STOPWHEN parm is discussed on page 551.

Replace an Auxiliary File with a “Table Lookup”

Since random I/O to auxiliary input files is slow, consider whether you can use a "table
lookup" instead of reading a file. For example, assume that your primary input file contains
2–byte state codes. You want to print the entire state name in your report. One approach
may be to write a READ statement that uses the state code as the read key for a STATE–FILE:

INPUT: EMPL–FILE
READ: STATE–FILE READKEY(STATE)
COLUMNS: LAST–NAME ADDR CITY STATE–FILE.STATE–NAME ZIP

However, it will often be much faster to use a conditional COMPUTE statement to "look up"
the state name (instead of reading a VSAM file):

INPUT: EMPL–FILE
COMPUTE: NAME–OF–STATE =WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')
 ELSE ASSIGN(STATE)
COLUMNS: LAST–NAME ADDR CITY NAME–OF–STATE ZIP

The conditional COMPUTE statement above functions as a table lookup routine and
eliminates the need for a READ statement.

In some cases, there will be too many potential lookup values for such a COMPUTE
statement to be practical. Or, the number of entries may be constantly changing. In that
case, you might still consider a combination of 1) a COMPUTE statement (to efficiently
satisfy the most common cases), and 2) a READ statement to cover any cases missed by the
COMPUTE statement:

INPUT: EMPL–FILE
READ: STATE–FILE READKEY(STATE)
COMPUTE: NAME–OF–STATE = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
Appendix G. Speed-Up Tips 661

Speed-Up Tips
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')
 ELSE ASSIGN(STATE–FILE.STATE–NAME)
COLUMNS: LAST–NAME ADDR CITY NAME–OF–STATE ZIP

In the above example, whenever the STATE value is one that is covered by a WHEN
condition, no read will be performed on the STATE–FILE. (That is because, even though a
READ statement exists, no data from that file would actually be needed, and Spectrum
Writer would not perform the read.) However, if a STATE is encountered which is not
covered by any of the WHEN parms, the ELSE clause would assign the STATE–NAME field
from the STATE–FILE. In that case (and only in that case) Spectrum Writer would need to
perform the read to the VSAM file.

Clearing I/O Areas

When processing certain types of files, Spectrum Writer normally clears the entire I/O area
to blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts, such
leftover data could cause misleading results. Specifying CLEAR(NO) (in the INPUT or READ
statement) suppresses this clearing, which results in improved performance. You might
want to specify CLEAR(NO) if you are certain that any leftover data in the I/O area will not
affect your run.

Example
INPUT: PAYROLL–FILE CLEAR(NO)

The above statement names the PAYROLL–FILE as the primary input file for the run.
Spectrum Writer will not clear its I/O area each time it reads a record from that file.

Note: You can also specify the CLEAR parm in the FILE statement to avoid having to
put it in the INPUT and READ statements each time. The NOCLEARIO parm in the
OPTIONS statement can be used to prevent clearing of all files in a run.

Fine-Tuning the Sort

For runs that involve sorting a large number of records, the sort process itself may account
for a significant portion of the CPU usage. In such cases, you may be able to speed up your
run by "fine-tuning" the sort process.

Spectrum Writer does not perform the sort logic itself. It simply calls your shop's standard
Sort program (or the program named with the optional SORTNAME option). Check the
manual for your Sort program to see if there are optional parms that you can specify to
speed up the sort.

Here is a specific example. Large sorts run faster when the sort program knows ahead of
time the approximate number of records it will be sorting. If you know the approximate
number of records normally sorted in a particular run, try passing that information to the
662 Spectrum Writer Reference Manual

Speed-Up Tips
sort program. Under OS/390, you can pass this information to programs like Syncsort by
providing a special $ORTPARM DD in your JCL, like this:

//$ORTPARM DD *
FILSZ=E100000

The above parm tells Syncsort that it will be sorting approximately 100,000 records. (The
"E" stands for estimated, and should be used unless you happen to know the exact number
of records that will be sorted.)

Verify that your parm is being successfully processed by the Sort program by scanning the
SYSOUT output. (Verify that your parm is listed and does not have any error messages
associated with it.)

Note: Another way to pass options to most sort programs is with Spectrum Writer’s
SORTOPT parm (in an OPTIONS statement, see page 574):

OPTIONS: SORTOPT(’FILSZ=E100000’)

Another factor that can affect sort time involves the temporary work datasets used by the
Sort program. You may be able to speed up large sorts by specifying more and/or larger
work datasets in your JCL. In OS/390, this is usually done via SORTWKnn DD statements (see
page 412). Again, check the manual for your Sort program for the specifics on how to do
this.

Development Cycle

The process of developing new requests often entails making minor changes and
re–running the request many times. If the input file you are using contains a million
records, this can obviously take some time. The following options are available to help
speed up your development runs. Once you are satisfied with your request, just remove the
option to obtain your full production results.

OPTIONS TO SPEED UP DEVELOPMENT

OPTION DESCRIPTION

MAXINPUT(nnnn)

Tells Spectrum Writer to read only the specified number
of records from the input file. After reading that many
records, Spectrum Writer acts as if it has hit EOF (end of
file) on the input file and produces the final report or PC
file. For example:

OPTIONS: MAXINPUT(500)
Appendix G. Speed-Up Tips 663

Speed-Up Tips
Using Explicit Literals in Conditional Expressions

Caution: We do not recommend routine use of this technique. It sacrifices
ease–of–use for improved performance. Therefore it makes it easier to introduce
errors into your queries. It also makes them more difficult to maintain. Use this
technique only if runtime speed is of paramount importance for a particular job.

Using explicit literals in your INCLUDEIF statement (or in your WHEN parm expressions)
when testing non–character type fields may improve performance. That is because it saves
Spectrum Writer from having to perform data conversion. Here are some drawbacks to this
technique:

! You must know both the length and the exact format in which a field is stored in
your input record in order to correctly write the explicit literal.

! If a subsequent modification to the record layout changes the field's length or
type and you fail to correctly update the INCLUDEIF statement, you might
unknowingly obtain wrong results.

MAXINCLUDE(nnnn)

Tells Spectrum Writer to include only the specified
number of records in the run. Here is how this option
differs from the MAXINPUT option just described. You
might specify MAXINPUT(500) and find that your report has
no records in it at all. That may be because the records that
pass your INCLUDEIF statement are not among the first 500
records in the file –– they occur further along in the file.
The MAXINCLUDE option tells Spectrum Writer to read as
many records as necessary until it finds the specified
number of records that can be included in the report. For
example:

OPTIONS: MAXINCLUDE(500)

MAXPAGES(nnnn)
MAXPRINT(nnnn)

Tells Spectrum Writer to print only the specified number
of pages or lines in the report and then stop. This option
prevents you from getting a million page report by
accident as you develop your report. For example:

OPTIONS: MAXPAGES(500)

If you use either of these options, also see the NOCHECK
option (page 567).

DETAIL(nnnn)

Tells Spectrum Writer to print only the specified number
of detail records per control break. Use this option to
limit the size of your output, while still letting you verify
the control break processing. For example:

OPTIONS: DETAIL(10)

OPTIONS TO SPEED UP DEVELOPMENT (CONTINUED)

OPTION DESCRIPTION
664 Spectrum Writer Reference Manual

Speed-Up Tips
! You may not be able to use the "greater than" and "less than" comparisons (as
opposed to "equal" and "not equal" comparisons). That is because Spectrum
Writer performs a byte–by–byte comparison of the EBCDIC contents of a field
whenever it is compared to an explicit literal. Thus, a negative packed number
(X'123D') would be considered greater than the hex literal X'123C', which is a
positive packed number. Had the two fields been compared as packed fields, the
opposite would be true (X'123C' would be greater than X'123D').

Consider the following INCLUDEIF statement:
INCLUDEIF: SALARY = 2000 AND BIRTHDATE = 12/31/1975 AND BEGIN–TIME = 14:00:00

If you use the above statement, you do not need to know how long each field is or how it
is stored in the input record. Spectrum Writer automatically performs all conversions
necessary to make the literals compatible with the data fields.

If you want to write the same INCLUDEIF statement using explicit literals, you would need
to know that information. Let's assume the following:

! SALARY is a 4–byte packed field

! BIRTHDATE is a 3–byte packed Julian date

! BEGIN–TIME is stored as a fullword containing hundredths of seconds since
midnight in binary format

Given the above, you could write the same INCLUDEIF statement using explicit literals as
follows:

INCLUDEIF: SALARY = X'0002000C' AND BIRTHDATE = X'75365C' AND BEGIN–TIME = X'004CE780'

The above statement would execute more efficiently than the earlier INCLUDEIF statement
that did not use explicit literals.

Again, using explicit literals like these defeats a prime feature of Spectrum Writer–– it's
ease of use. Thus, we don't recommend using this technique in routine cases.
Appendix G. Speed-Up Tips 665

Appendix H. Sample Data Exit Programs

Spectrum Writer has an exit "hook" available for calling user–written routines for fields
that require specialized processing. Using these routines, called "data exit programs," is
discussed in "How to Define a Field Created by a Data Exit" on page 357.

Data exit programs can written in Cobol, PL/1 or Assembler (or any other language that
allows you to pass parms to Spectrum Writer in the manner it expects).

Following are two sample data exit programs, one written in Assembler and one in
Cobol-II.

Note: Spectrum Writer always runs in 24-bit addressing mode. Therefore, your
data exit program will be called in 24-bit address mode and must return to Spectrum
Writer in the same mode. Generally, that means that you should link-edit your exit
program with the AMODE=24 and RMODE=24 parms.

Sample Assembler Data Exit Program

A sample data exit program written in Assembly language appears in Figure 73
(page 668). This sample program performs five simple functions in order to illustrate data
exit calls for each of the five types of data. The DXPARM value (from the FIELD statement)
tells the exit program which function is desired when it is called. Use this sample program
as a model for writing your own Assembler data exit programs.

Note: If you would like a copy of this sample exit program, just call or e-mail us
with your request. We will be happy to e-mail you a copy.

Note the $DX DSECT located near the end of the program. That DSECT shows the complete
parm list that Spectrum Writer passes to all data exit programs. Specifically, when a data
exit program is called by Spectrum Writer, register 1 will point to a fullword. That fullword
will contain the address of the $DX DSECT parm list.

Figure 72 shows an actual run that uses this sample data exit program. In that run, five
fields are defined as data exit fields. Notice the FIELD statements used to define those fields.
Each statement has a TYPE parm that defines the field as a data exit type field (NUMEXIT, for
example.) In each case, the name of the data exit program (the DXPROG parm) is the same.
It is SWDEXIT, the name we chose for this sample exit program.

When processing a report request, Spectrum Writer will call SWDEXIT each time that it
needs to process any of the 5 fields defined as data exit fields. Notice that each field has a
different DXPARM value. The appropriate DXPARM value is passed to the exit program as
part of the parm list whenever it is called (see $DXFLDPA.) That parm value tells SWDEXIT
what function to perform, and thus, what value to return to Spectrum Writer.

Note: there is no guarantee as to precisely when, in what order, or even if, Spectrum
Writer will call the data exit for a given field in an input record. For example, if
Spectrum Writer determines that a record will not be included in the report (and
666 Spectrum Writer Reference Manual

Sample Assembler Data Exit Program
Figure 72. A report that uses a data exit program

Remarks:
• This report uses five fields that are created by the data exit program named SWDEXIT.

These Control Statements:

INPUT: EMPL-FILE

* FOLLOWING STMTS DEFINE ADDITIONAL "EXIT" TYPE FIELDS FOR EMPL-FILE

FIELD: TESTNUM TYPE(NUMEXIT) DXPROG('SWDEXIT') DXPARM('N') DXRETDEC(0)
FIELD: TESTDATE TYPE(DATEEXIT) DXPROG('SWDEXIT') DXPARM('D')
FIELD: TESTTIME TYPE(TIMEEXIT) DXPROG('SWDEXIT') DXPARM('T') DXRETDEC(0)
FIELD: TESTCHAR TYPE(CHAREXIT) DXPROG('SWDEXIT') DXPARM('R')
 COLUMN(LAST-NAME) LENGTH(15) DXRETLEN(15)
FIELD: TESTBIT TYPE(BITEXIT) DXPROG('SWDEXIT') DXPARM('B')
 COLUMN(DEPT-NUM)

COLUMNS: EMPL-NUM LAST-NAME TESTCHAR
 TESTNUM(7) TESTDATE TESTTIME DEPT-NUM(4) TESTBIT

Produce this Report:
THU 09/21/95 8:21 AM DATA FROM EMPL-FILE PAGE 1

EMPL LAST DEPT
NUM NAME TESTCHAR TESTNUM TESTDATE TESTTIME NUM TESTBIT

036 JONES SENOJ 0 12/31/96 12:34:56 2 NOT TESTBIT
037 JOHNSON NOSNHOJ 1 12/31/96 12:34:56 1 TESTBIT
039 JOHNSON NOSNHOJ 2 12/31/96 12:34:56 2 NOT TESTBIT
040 MACDONALD DLANODCAM 3 12/31/96 12:34:56 2 NOT TESTBIT
041 SIMPSON NOSPMIS 4 12/31/96 12:34:56 3 TESTBIT
042 MORRISON NOSIRROM 5 12/31/96 12:34:56 3 TESTBIT
043 CHRISTOPHERSON NOSREHPOTSIRHC 6 12/31/96 12:34:56 1 TESTBIT
044 BAKER REKAB 7 12/31/96 12:34:56 4 NOT TESTBIT
045 THOMAS SAMOHT 8 12/31/96 12:34:56 4 NOT TESTBIT

*** GRAND TOTAL (9 ITEMS) 36
Appendix H. Sample Data Exit Programs 667

Sample Assembler Data Exit Program
determines this without testing the data exit field), it may not call the data exit
program at all for that particular record.

Note: In this example, we chose to write a single data exit program to support five
different functions (and thus five different fields.) We could also have written five
separate data exit programs–– one for each field. Then, each FIELD statement would
have named a different exit program (in the DXPROG parm). In that case, the DXPARM
parm in the FIELD statement would not be needed. Each program would always
perform its one single function. You can use whichever of these approaches you
prefer.

.

SWDEXIT TITLE '- SAMPLE SPECTRUM WRITER DATA EXIT'

* SAMPLE DATAEXIT PROGRAM *
* *
* ENTRY: R1 -- POINTS TO A FULLWORD WHICH CONTAINS THE ADDRESS *
* OF THE $DX DSECT *
* ENTRY: R13 -- POINTS TO A 18-FULLWORD SAVEAREA IN CALLERS PROGRAM *
* ENTRY: R14 -- RETURN ADDRESS WITHIN CALLER'S PROGRAM *
* ENTRY: R15 -- CONTAINS THE STARTING ADDRESS OF THIS EXIT PROGRAM *
* *
* THE VALUE OF THE FIELD STATEMENT'S DXPARM() PARM DETERMINES WHAT *
* VALUE THIS PROGRAM RETURNS WHEN IT IS CALLED. *
* *
* DXPARM: N = RETURN A NUMERIC COUNTER VALUE *
* B = RETURN BIT VALUE OF THE LOW-ORDER BIT IN RECORD FIELD*
* D = RETURN A CONSTANT DATE (12/31/1996) *
* R = RETURN THE "REVERSED" CONTENTS OF A CHARACTER FIELD *
* T = RETURN A CONSTANT TIME (12:34:56) *
* *

SWDEXIT START 0
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 STM R14,R12,12(R13) SAVE CALLERS REGS
 LR R10,R15 USE R10 AS BASE REGISTER FOR EXIT
 USING SWDEXIT,R10 SET ADDRESSIBILITY FOR THIS EXIT
*
 ST R13,OURSAVE+4 POINT OUR SAVE AREA TO CALLER'S SA
 LA R15,OURSAVE POINT TO OUR SAVEAREA
 ST R15,8(R13) POINT CALLER'S SAVEAREA TO OURS
 LR R13,R15 LEAVE R13 POINTING TO OUR SAVEAREA
*
 L R1,0(R1) L R1 WITH ADDR OF PARM DSECT
 USING $DX,R1 ADDRESS CALLER'S PARM DSECT
*
 L R2,$DXFLDPA R2 -> DXPARM VALUE FROM FIELD STMT

Figure 73. Sample Data Exit Program Written in Assembly Language
668 Spectrum Writer Reference Manual

Sample Assembler Data Exit Program
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('N'), SUCH AS:
*
* FIELD: TESTNUM TYPE(NUMEXIT) DXPROG('SWDEXIT') DXPARM('N')
* DXRETDEC(0)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS AN ASCENDING COUNTER VALUE.

*
 CLI 0(R2),C'N' IS DXPARM 'N'? (NUMERIC EXAMPLE)
 BNE NOTNUM B IF NOT 'N'
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 ZAP 0(16,R2),COUNTER RETURN THIS 16-BYTE PACKED NUMBER
 AP COUNTER,=P'1' INCREMENT COUNTER FOR NEXT CALL
 B RETURN FUNCTION 'N' HAS BEEN PERFORMED
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('D'), SUCH AS:
*
* FIELD: TESTDATE TYPE(DATEEXIT) DXPROG('SWDEXIT') DXPARM('D')
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE CONSTANT DATE 12/31/1996

NOTNUM EQU *
 CLI 0(R2),C'D' IS DXPARM 'D'? (DATE EXAMPLE)
 BNE NOTDATE B IF NOT DXPARM('D')
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 MVC 0(4,R2),=X'19961231' RETURN THIS 4-BYTE X'YYYYMMDD' DATE
 B RETURN
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('B'), SUCH AS:
*
* FIELD: TESTBIT TYPE(BITEXIT) DXPROG('SWDEXIT') DXPARM('B')
* COLUMN(14)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE VALUE OF THE LAST BIT
* IN THE BYTE IDENTIFIED BY THE FIELD STATEMENT'S COLUMN() PARM.
* (IN THIS EXAMPLE, THAT'S THE LAST BIT OF THE BYTE IN COLUMN 14.)

NOTDATE EQU *
 CLI 0(R2),C'B' IS DXPARM 'B'? (BIT EXAMPLE)
 BNE NOTBIT
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 L R3,$DXFLDAD POINT R3 TO RAW DATA IN INPUT RECORD
 TM 0(R3),X'01' IS THE LOWORDER BIT ON?
 BZ BITOFF NO - RETURN AN "OFF" VALUE
 MVI 0(R2),C'1' YES - RETURN AN "ON" VALUE
 B RETURN
BITOFF EQU *
 MVI 0(R2),C'0' RETURN AN "OFF" VALUE TO SPECTRUM
 B RETURN
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('R'), SUCH AS:
*
* FIELD: TESTCHAR TYPE(CHAREXIT) DXPROG('SWDEXIT') DXPARM('R')
* COLUMN(1) LENGTH(10) DXRETLEN(10)
*
* THIS SAMPLE EXIT PROGRAM REVERSES THE CHARACTERS IN A CHARACTER FIELD
* IN THE RECORD. IT USES THE FIELD STATEMENT'S LENGTH(NNN) PARM
* TO KNOW HOW MANY BYTES TO REVERSE.

NOTBIT EQU *
 CLI 0(R2),C'R' IS DXPARM 'R' (REVERSE CHAR EXAMPLE)
 BNE NOTREVER
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 L R3,$DXFLDAD POINT R3 TO RAW DATA IN INPUT RECORD
 LH R4,$DXFLDLN LENGTH OF FIELD TO REVERSE.
 AR R3,R4 POINT R3 PAST CHAR FIELD IN RECORD
*
REVLOOP EQU * LOOP THRU FIELD BACKWARDS
 BCTR R3,0 BACKUP 1 BYTE (POINTER TO REC FIELD)
 MVC 0(1,R2),0(R3) MOVE 1 REVERSED BYTE TO RESULT AREA
 LA R2,1(R2) INCREMENT POINTER IN RESULT AREA
 BCT R4,REVLOOP CONTINUE THROUGH ALL BYTES
*
 B RETURN
NOTREVER EQU *

Sample Data Exit Program Written in Assembly Language (Continued)
Appendix H. Sample Data Exit Programs 669

Sample Assembler Data Exit Program

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('T'), SUCH AS:
*
* FIELD: TESTTIME TYPE(TIMEEXIT) DXPROG('SWDEXIT') DXPARM('T')
* DXRETDEC(0)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE CONSTANT TIME 12:34:56
* (12*3600 PLUS 34*60 PLUS 56 = 45296 SECONDS)

 CLI 0(R2),C'T' IS DXPARM 'T'? (TIME EXAMPLE)
 BNE NOTTIME
 L R2,$DXRESAD -> RESULT AREA
 ZAP 0(16,R2),=P'45296' RETURN 12:34:56 AS PL16'SECONDS'
 B RETURN
*
NOTTIME EQU *
*

* NOW RETURN TO SPECTRUM WRITER *

RETURN EQU *
 L R13,OURSAVE+4 RESTORE CALLER'S R13 (SAVE AREA PTR)
 LM R14,R12,12(R13) RESTORE CALLER'S REGS FROM HIS SA
 BR R14 RETURN TO report WRITER
*
*
OURSAVE DC 18F'0' OUR SAVE AREA
COUNTER DC PL4'0' COUNTER IS 0 ON FIRST CALL.
*

* *
* $DX -- PARM DSECT FOR CALLING USER DATA EXITS. *
* *

$DX DSECT , DATA EXIT PARM DSECT
*
$DXNAME DC CL4'DATA' NAME OF EXIT
$DXLEVEL DC CL4'0001' LEVEL NUMBER
$DXFUNC DC CL4'CONV' FUNCTION
$DXFLDNM DS CL50 FIELDNAME BEING PROCESSED
$DXFILNM DS CL50 FILENAME OF FIELD BEING PROC'ED
$DXFLDAD DS A ADDR OF FIELD'S DATA IN INPUT RECRD
$DXRECAD DS A ADDR OF BEGINNING OF INPUT RECORD
$DXFLDPA DS A ADDR OF FIELD'S DXPARM() TEXT
$DXFILPA DS A ADDR OF FILE'S EXITPARM() TEXT
$DXRESAD DS A ADDR WHERE EXIT SHOULD PUT RESULT
$DXFLDLN DS AL2 VALUE OF FIELD'S LENGTH(NNN) PARM
$DXFLDDP DS AL2 VALUE OF FIELD'S DEC(NNN) PARM
$DXFLDPL DS AL2 LENGTH OF $DXFLDPA PARM'S TEXT
$DXFILPL DS AL2 LENGTH OF $DXFILPA PARM'S TEXT
$DXRESLN DS AL2 VALUE OF FIELD'S DXRETLEN(NNN) PARM
$DXRESDP DS AL2 VALUE OF FIELD'S DXRETDEC(NN) PARM
*
*
*
 END SWDEXIT

Sample Data Exit Program Written in Assembly Language (Continued)
670 Spectrum Writer Reference Manual

Sample Cobol Data Exit Program

A sample data exit program written in Cobol-II appears below. This sample program
performs a single function — it reverses the order of the bytes of a 5-byte field passed to it.

Note: If you would like a copy of this sample exit program, just call or e-mail us
with your request. We will be happy to e-mail you a copy.

.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBDEXIT.
 AUTHOR.

 * *
 * SAMPLE SPECTRUM WRITER DATA EXIT PROGRAM IN COBOL-II. *
 * THIS EXIT REVERSES THE BYTES OF A 5-BYTE CHARACTER FIELD IN*
 * THE INPUT RECORD. IT PASSES THE RESULT BACK TO SPECTRUM *
 * WRITER IN ITS RESULT AREA. *
 * *
 * NOTE: THIS PROGRAM MUST BE LKED'ED IN 24-BIT ADDRESS MODE *
 * AND LOADED BELOW THE 16-MEG LINE TO WORK WITH *
 * SPECTRUM WRITER. *
 * *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-370.
 OBJECT-COMPUTER. IBM-370.
 INPUT-OUTPUT SECTION.
 *
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * THIS IS THE WORKING STORAGE FOR THIS PARTICULAR SAMPLE *
 * PROGRAM. YOUR PROGRAM WILL PROBABLY USE DIFFERENT ITEMS. *

 77 J PIC S9(4) COMP.
 77 DATA-INDEX PIC S9(4) COMP.
 77 RESULT-INDEX PIC S9(4) COMP.

 LINKAGE SECTION.

 * COPY THIS STRUCTURE EXACTLY AS IT APPEARS BELOW. *
 * THIS SHOULD BE THE FIRST ITEM IN THE LINKAGE SECTION. *

 01 DXPARMS.
 05 DXNAME PIC X(4).
 05 DXLEVEL PIC X(4).
 05 DXFUNC PIC X(4).
 05 DXFLDNM PIC X(50).
 05 DXFILNM PIC X(50).
 05 DXFLDAD POINTER.
 05 DXRECAD POINTER.
 05 DXFLDPA POINTER.
 05 DXFILPA POINTER.
 05 DXRESAD POINTER.
 05 DXFLDLN PIC S9(4) COMP.
 05 DXFLDDP PIC S9(4) COMP.
 05 DXFLDPL PIC S9(4) COMP.
 05 DXFILPL PIC S9(4) COMP.
 05 DXRESLN PIC S9(4) COMP.
 05 DXRESDP PIC S9(4) COMP.

Appendix H. Sample Data Exit Programs 671

Sample Cobol Data Exit Program

 * FOR THIS SAMPLE PROGRAM, WE NEED TO ADDRESS THE FIELD IN *
 * THE INPUT RECORD AND THE RESULT AREA THAT SPECTRUM WILL *
 * LOOK IN TO FIND THE DATA WE PREPARE. *

 01 INPUT-FIELD PIC X(5).
 01 RESULT-AREA PIC X(5).

 * IF DESIRED, YOU CAN ALSO PUT CHARACTER FIELDS HERE *
 * REPRESENTING: THE INPUT RECORD, THE FIELD'S EXITPARM TEXT, *
 * AND THE FILE'S EXITPARM TEXT. USE DXRECAD, DXFLDPA, AND *
 * DXFILPA TO ADDRESS THEM (IN THE PROCEDURE DIVISION.) *
 *01 INPUT-RECORD PIC X(100). *
 *01 FIELD-EXITPARM PIC X(10). *
 *01 FILE-EXITPARM PIC X(10). *

 PROCEDURE DIVISION USING DXPARMS.

 * ADDRESS THE 5-BYTE CHARACTER FIELD IN THE INPUT RECORD. *

 SET ADDRESS OF INPUT-FIELD TO DXFLDAD.

 * ADDRESS THE AREA WHERE SPECTRUM EXPECTS THE 5-BYTE RESULT. *

 SET ADDRESS OF RESULT-AREA TO DXRESAD.

 * NOW BUILD THE RESULT BY REVERSING THE BYTES OF THE FIELD. *

 MOVE 0 TO J.
 PERFORM 5 TIMES
 COMPUTE DATA-INDEX = 5 - J
 COMPUTE RESULT-INDEX = 1 + J
 MOVE INPUT-FIELD (DATA-INDEX:1) TO
 RESULT-AREA (RESULT-INDEX:1)
 ADD +1 TO J
 END-PERFORM.

 * THE RESULT IS READY FOR SPECTRUM WRITER TO USE. *
 * NOW EXIT BACK TO SPECTRUM WRITER. *

 GOBACK.
672 Spectrum Writer Reference Manual

Appendix I. I/O Exits

Spectrum Writer has an exit “hook” available for calling user-written I/O routines. Such “I/O
exits” are useful for input files that require specialized processing. Examples of such files
are:

! files that use a proprietary access method

! files whose records are encrypted

Spectrum Writer passes your I/O exit program all of the information it needs to be able to
handle:

! sequential or keyed reads

! “multiple” (one-to-many) reads

! KGE and/or GENERIC keys

! KEYRANGE values

! DDNAME/DLBL value to use

Thus, if you code your exit program to handle all of these possibilities, your users will be
able to use the exit-type file just like any other file with Spectrum Writer. That is, they can
successfully use the KEYRANGE, MULTI, KGE, GENERIC and DDNAME/DLBL parms in the
normal way within their INPUT and READ statements. To the end-users, your exit-type files
will look just like any other file.

Spectrum Writer also passes your exit program an optional, user-defined parm containing
up to 255 bytes of whatever information you choose. You can use this parm information to
tell your exit program, for example, the kind of special processing it should perform.

I/O Exits

How to Define an I/O Exit File
Use the IOEXIT parm in the FILE statement to define a file that will be handled in an
I/O exit.

FILE: MY-FILE IOEXIT(‘program’ [,’parm’] [,TRACE]) LRECL(750)

Only a program name is required in the IOEXIT parm. The “parm” text is optional. Use it to
pass constant parm information to your I/O exit. Use the TRACE parm when developing new
I/O exits to see useful debug information in the control listing.

Besides the IOEXIT parm, the only other item required to define an I/O exit file is a maximum
record length. In OS/390, you can specify this with a LRECL parm (as shown above) or omit
it and use Spectrum Writer’s default length. In VSE, you must use the ATTR parm, like this:

FILE: MY-FILE IOEXIT(‘program’ [,’parm’] [,TRACE]) ATTR(EXIT,750)

When Is the I/O Exit Loaded?
The I/O exit for an input is loaded the first time that Spectrum Writer needs a record from
that input. That same copy of the program is then called for all subsequent requests for that
Appendix I. I/O Exits 673

I/O Exits
input record. If Spectrum Writer never needs a record from a given input, the I/O exit for that
input will not be loaded at all.

A separate copy of the exit program is loaded for each input. That means that if you use the
same exit program for more than one input in a run (for example, in the INPUT statement
and in a READ statement), Spectrum Writer loads two copies of the exit program.

When Is the I/O Exit Called?
The I/O exit for an input is called each time Spectrum Writer needs to obtain a record from
that input. In other words, the exit is called at the same times that Spectrum Writer would,
for a non-exit type input, issue its own I/O request. In addition, Spectrum Writer calls the
I/O exit once at end-of-job time to allow the exit to perform any close processing it desires.
Note that there is no separate call to the exit to perform “open file” processing. The exit
should perform any required open logic the first time that Spectrum Writer calls it to obtain
a record.

Note: There is no guarantee as to precisely when, in what order, or even if,
Spectrum Writer will call the I/O exit for a given input. For example, if Spectrum
Writer determines that a record will not be included in the report (and determines
this without requiring data from a given auxiliary input file), it may not call the
auxiliary input file’s I/O exit program at all (for that primary input record).

Following is a more detailed explanation of when Spectrum Writer reads records from
different kinds of inputs.

For the primary input (named in the INPUT statement), Spectrum Writer simply calls the
I/O exit repeatedly until the I/O exit indicates that there are no more records in the file. The I/O
exit indicates this by setting the $IXRETCD field to H'4' when it has no more records to return
to Spectrum Writer. For primary input files, Spectrum Writer always calls the I/O exit with
the SEQ function (in $IXFUNC).

Auxiliary input files (those named in READ statements) are handled differently depending
on whether or not the MULTI parm was also specified in the READ statement.

For non-MULTI auxiliary inputs, Spectrum Writer calls the I/O exit the first time it needs a
field from a new auxiliary input. When subsequent fields from the same input record are
needed, Spectrum Writer will not call the I/O exit again, since the record is already available
for it to use. For non-MULTI inputs, Spectrum Writer calls the I/O exit a maximum of one
time per primary input file record. (Spectrum Writer may call the I/O exit zero times if it does
not need any fields from that auxiliary input for a particular primary input file record.) For
non-MULTI auxiliary inputs, Spectrum Writer always calls the I/O exit with the KEY function
(in $IXFUNC).

Processing is different for MULTI-type auxiliary inputs. In this case, each time Spectrum
Writer reads a primary input file record, it calls the I/O exit repeatedly (with the same read
key) until the exit indicates that there are no more records for that read key. The first call
(for a given primary input record) will have a function of FRST. Subsequent calls (for the
same primary input record) will have a function of NEXT. The I/O exit should indicate that
there are no matching records (for FRST), or no more matching records (for NEXT), by
setting $IXRETCD to H'4'. Once Spectrum Writer sees the return code of 4, it moves on to the
next primary input file record.
674 Spectrum Writer Reference Manual

I/O Exits
Note: For simplicity, we have described the case of a request with a primary input
file and a single MULTI-type auxiliary file. In cases where multiple MULTI-type
auxiliary files are used, the exit is actually called repeatedly for each logical
combination of primary input record and lower ranked auxiliary record(s).

Error Return Codes from the I/O Exit
For any type of input, the I/O exit can indicate to Spectrum Writer that an error condition
exists which prevents the exit from "reading" records from the input file. The exit indicates
this by setting $IXRETCD to H'12'. When Spectrum Writer sees a return code of 12 from an
exit, it prints a file error message in the control listing (along with any message the I/O exit
may have placed in the $IXERR field). Once a return code of 12 has been received from an
I/O exit for an input, Spectrum Writer stops processing that input and does not call that I/O
exit any more.

What Does Spectrum Writer Pass to the I/O Exit?
When the I/O exit is called, register 1 will point to a fullword containing the address of the
$IX DSECT parm list. (The $IX DSECT is shown near the end of the sample program that
begins on page 681.) The contents of the $IX DSECT will have been set correctly by
Spectrum Writer, as described below. Register 13 points to an 18-fullword save area within
Spectrum Writer which the I/O exit should use to save Spectrum Writer's registers. Register
14 contains the return address within Spectrum Writer. Register 15 contains the entry point
address of the I/O exit.

Note: Spectrum Writer always runs in 24-bit addressing mode. Therefore, your I/O
exit program will be called in 24-bit address mode and must return to Spectrum
Writer in the same mode. Generally, that means you will link-edit your exit program
with the AMODE=24 and RMODE=24 parms.

Note the $IX DSECT located near the end of the sample program. That DSECT shows the
complete parm list that Spectrum Writer passes to all I/O exit programs. Following is a
description of each item in that $IX DSECT.

CONTENTS OF SPECTRUM WRITER’S $IX DSECT

ITEM DESCRIPTION

$IXNAME
This 4-byte character field always contains the constant value "READ"
to identify the type of exit program being called.

$IXLEVEL
This 4-byte character field contains the constant value "0001" to
identify the version level of this exit interface.

$IXFUNC
This 4-byte character field tells the exit program what function
Spectrum Writer is requesting of it. The values for this field are:

SEQ Read the next (or first) sequential record from the file. This
function is used for any exit-type file used in an INPUT
statement.

KEY Read the record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields). This
function is used for any exit-type file used in a non-MULTI
READ statement.
Appendix I. I/O Exits 675

I/O Exits
FRST Read the first record, if any, that corresponds to the key
value (identified by the $IXKEYAD and $IXKEYLN fields).
This function is used (in conjunction with NEXT) for exit-
type files that have the MULTI parm in their READ statement.

NEXT Read the next record, if any, that corresponds to the key
value (identified by the $IXKEYAD and $IXKEYLN fields).
This function is used (in conjunction with FRST) for exit-
type files that have the MULTI parm in their READ statement.

CLOS Perform any close processing that may be required.
Spectrum Writer itself does not require any particular
action for this call. This wrap-up call is provided in case
your access method does require some type of close
processing. Note that no CLOS call is made to files when
either of these conditions exists:

! no read requests were made to the file

! the exit returned an error return code (12) to
Spectrum Writer.

$IXRECNM

This 70-byte character field contains the record name of the input
being processed. The record name is taken from the RECNAME parm of
the INPUT or READ statement. If no RECNAME parm is specified, the
record name defaults to the filename.

$IXFILNM
This 70-byte character field contains the filename of the file being
processed.

$IXKEYAD
For requests that involve a read key (functions KEY, FRST and NEXT),
this fullword contains the address of the key value to be used. The
length of the key value is contained in the halfword field $IXKEYLN.

$IXPRMAD

This fullword contains the address of the parm text, if any, specified in
the IOEXIT parm in the FILE statement. If no parm text was specified,
this field contains hex zeros. The length of the parm text is contained
in the halfword field $IXPRMLN.

$IXRECAD

This fullword contains the address of the I/O area that Spectrum Writer
has reserved for the exit program to place the records that it reads for
this file. The exit program should place its records here. The length of
the area reserved for these records is contained in the halfword value
$IXRECLN (and is determined by the LRECL parm in the FILE statement.)
You can use the CLEARIO parm in the INPUT or READ statement to
specify that this I/O area always be cleared (to hex zeros or to spaces)
before each call to the I/O exit, or that it not be cleared at all.

$IXKRBAD

For primary input file requests (SEQ function) where a KEYRANGE
parm was specified, this fullword contains the address of the beginning
keyrange value to be used. The length of this value is contained in the
halfword field $IXKRBLN.

CONTENTS OF SPECTRUM WRITER’S $IX DSECT (CONTINUED)

ITEM DESCRIPTION
676 Spectrum Writer Reference Manual

I/O Exits
$IXKREAD

For primary input file requests (SEQ function) where a KEYRANGE
parm was specified, this fullword contains the address of the ending
keyrange value to be used. The length of this value is contained in the
halfword field $IXKRELN.

If the user specified only a single value in the KEYRANGE parm, that
value is used as both the beginning and the ending keyrange value.
That is, $IXKRBAD and $IXKREAD will both contain the same address,
and $IXKRBLN and $IXKRELN will both contain the same length.

$IXKEYLN

For requests that involve a read key (functions KEY, FRST and NEXT),
this halfword contains the length of the read key value that is present
at the address contained in $IXKEYAD.

Note that Spectrum Writer does not perform any validity-checking on
the readkey's length (since Spectrum Writer knows nothing about your
file's structure). This length is simply the length of whatever read key
field the user specified in the READ statement. Your exit program
should determine whether the key length is a full key, a partial
(generic) key, or an invalid key (too long) and should execute
accordingly. If the key length is something that your exit program
cannot handle, you should place an error message to that effect in
$IXERR, set the return code ($IXRETCD) to 12 and return to Spectrum
Writer. Spectrum Writer will print your error message for the user and
stop processing the file.

$IXPRMLN
This halfword contains the length of the parm text, if any, (from the
IOEXIT parm in the FILE statement) that appears at the address contained
in $IXPRMAD.

$IXRECLN
This halfword contains the length of the I/O area reserved for the exit
program at the address contained in $IXRECAD. This length is
determined by the LRECL parm in the FILE statement.

$IXKRBLN

For primary input file requests (SEQ function) where a KEYRANGE
parm was specified, this halfword contains the length of the beginning
keyrange value that is present at the address contained in $IXKRBAD.

Note that Spectrum Writer does not perform any sort of validity-
checking on the length of the beginning keyrange value (since
Spectrum Writer knows nothing about your file's structure).

$IXKRELN

For primary input file requests (SEQ function) where a KEYRANGE
parm was specified, this halfword contains the length of the ending
keyrange value that is present at the address contained in $IXKREAD.

Note that Spectrum Writer does not perform any sort of validity-
checking on the length of the ending keyrange value (since Spectrum
Writer knows nothing about your file's structure).

CONTENTS OF SPECTRUM WRITER’S $IX DSECT (CONTINUED)

ITEM DESCRIPTION
Appendix I. I/O Exits 677

I/O Exits
$IXRETCD

This halfword must be set by the I/O exit program before it returns to
Spectrum Writer after each call. The following list shows the valid
values for $IXRETCD. If $IXRETCD contains any other value upon return
to Spectrum Writer, an error message will print and no further access
to the file will be attempted.

0 Record read. A record has been placed in the I/O area. (Or,
for CLOS requests, the close processing, if any, has been
performed.)

4 No record is being returned. Use return code 4 to indicate
end-of-file (for SEQ requests) or record-not-found (for KEY,
FRST and NEXT requests).

12 Error. Use this return code if you cannot process the file
for any reason. Examples of this are: file is not available,
key is wrong length, an I/O error occurred trying to process
the file, parm information is invalid, etc. You should also
place an error message indicating the exact error in $IXERR.
That message will be printed in the control listing for the
user to see. Once Spectrum Writer sees a return code of 12
for an input file, it does not attempt any further processing
of that input.

$IXDDN

For OS/390, this 8-byte character fields contains the value of the
DDNAME parm, if any, specified in the FILE, INPUT or READ statement
for this file. For VSE, this field contains the DLBL/TLBL value (from the
ATTR parm), if any, specified in the FILE, INPUT or READ statement for
this file.

$IXMULTI
This 1-byte character field contains a Y if the user specified the MULTI
("multiple records per key") parm in the READ statement for this input.

$IXGEN
This 1-byte character field contains a Y if the user specified the
GENERIC parm in the READ statement for this input.

$IXKGE
This 1-byte character field contains a Y if the user specified the KGE
("key greater or equal") parm in the READ statement for this input.

$IXUSER

This 50-byte, doubleword aligned area is available for the exit
program to use any way it wishes. The area is initialized by Spectrum
Writer to hex zeros before the first call. Thereafter, Spectrum Writer
does not alter the contents of this field.

$IXERR

The I/O exit program should use this 60-byte character field for any
messages it wishes to print in the control listing. Use this field to print
error messages, warning messages, debug messages, etc. for the user.
Spectrum Writer initializes this field to all blanks. Upon return to
Spectrum Writer, if the first byte of this field is non-blank, Spectrum
Writer prints the contents of this field as a Warning-level message in
the control listing and blanks the field out again.

CONTENTS OF SPECTRUM WRITER’S $IX DSECT (CONTINUED)

ITEM DESCRIPTION
678 Spectrum Writer Reference Manual

I/O Exits
Most of the $IX fields are guaranteed to contain the same information on each call to the
exit program. (A list of exceptions is shown below.) Knowing this can simplify the code
you write. For example, the $IXRECAD value (that is, the address where your exit should put
its record) will be the same for all calls to a particular input's I/O exit program. Thus, in the
sample exit program, we used the $IXRECAD value on the first call to modify our RPL (to tell
the RPL where to put the VSAM record during later GETs). We did not need to check on
subsequent calls to see if the $IXRECAD value had changed.

For a given input's I/O exit, the only items in the $IX DSECT that might change from call to
call are:

! the function code in $IXFUNC

! the return code, which is initialized to -1 (X’FFFF’) by Spectrum Writer before
each call.

! the error message area ($IXERR) is reset to blanks each time it is used.

What Does the I/O Exit Pass Back to Spectrum Writer?
Before returning to Spectrum Writer, the I/O exit program should do the following:

! set a valid return code in $IXRETCD. (The valid return codes are listed under the
description of $IXRETCD in the section above.)

! when a return code of 0 is set (for any request other than CLOS), the exit must
also place a record in the I/O area (pointed to by $IXRECAD, and for a length of
$IXRECLN). Be careful not to move more than $IXRECLN number of bytes to this
location. Doing so may cause unpredictable results or an ABEND. If you need a
larger I/O area, re-run the job using a larger LRECL parm (OS/390) or ATTR parm
record size (VSE).

! optionally, any message can be placed in $IXERR. This message will be printed
in the control listing with a severity level of WARNING. The message must begin
with a non-blank in the first byte.

! optionally, any information can be placed in $IXUSER and will be preserved
between calls.

The I/O exit must not alter any other part of the $IX DSECT or memory areas pointed to by
items in the $IX DSECT. The I/O exit must especially be careful not to write beyond the I/O
area reserved for it (at $IXRECAD).

Warning: If your exit program never indicates EOF (via return code 4), Spectrum
Writer will continue calling your exit program endlessly until the CPU time is

$IXUNUSD
This 50-byte area is reserved for future use and must not be used by
the I/O exit program.

CONTENTS OF SPECTRUM WRITER’S $IX DSECT (CONTINUED)

ITEM DESCRIPTION
Appendix I. I/O Exits 679

I/O Exits
exceeded or the run ABENDs. To avoid this while developing new I/O exit programs,
you may want to use the following option as a safeguard:

OPTION: MAXINPUT(1000)

The above statement tells Spectrum Writer to stop the run after 1000 primary
records have been read (even if EOF has not yet been reached).

Sample I/O Exit Program
A sample I/O exit program written in Assembly language appears on the following pages.
This sample program simply reads records from a normal KSDS VSAM file (our sample
EMPL-FILE, as a matter of fact). Its purpose is to help illustrate how the exit program linkage
and logical flow work. You can use this sample program as a model for writing your own
I/O exit programs.

Note: If you would like a copy of this sample exit program, just call or e-mail us
with your request. We will be happy to e-mail you a copy.

Here are some ideas that may help you when developing your own I/O exit.

! to prevent run-away jobs (caused by forgetting to return an EOF return code),
start off using a MAXINPUT option, like this:

OPTION: MAXINPUT(1000)

! specify TRACE in the IOEXIT parm, like this:

FILE: MY-FILE IOEXIT(‘myprogram',TRACE) LRECL(500)

The TRACE information in the control listing will help you see what is being passed
to and from the IOEXIT, as well as the return code for each call. Once you have the
basic flow working correctly, you can remove the TRACE parm since it produces a
lot of output.

! you can have your exit put debug messages in the $IXERR field and they will
appear in the control listing. Doing this instead of using TRACE may reduce the
amount of output you have to wade through.

! by moving important "working storage" variables to the $IXUSER area at critical
times, you can see (in the TRACE output) what values they had. If you need more
room than this for debug information, request a larger I/O area (via the LRECL
parm in the FILE statement). Then use the excess portion of the I/O area (beyond
the actual record) to hold your debug values. The entire I/O area is printed in the
TRACE output.
680 Spectrum Writer Reference Manual

I/O Exits
IOEXITA TITLE '- SAMPLE SPECTRUM WRITER I/O EXIT'
**
* *
* SAMPLE I/O EXIT PROGRAM -- ASSEMBLY LANGUAGE *
* *
* THIS SAMPLE ASSEMBLER I/O EXIT READS RECORDS FROM A VSAM EMPLOYEE *
* FILE AND PASSES THE RECORDS BACK TO SPECTRUM WRITER. IT CAN READ *
* THE FILE EITHER SEQUENTIALLY OR RANDOMLY (USING KEYS). *
* *
* THIS SAMPLE EXIT PROGRAM IGNORES THE "GENERIC" AND "KGE" PARMS *
* IN THE CALLING PARM INFO. *
* *
* ON ENTRY TO THIS EXIT: *
* R1 -- POINTS TO A FULLWORD WHICH CONTAINS THE ADDRESS *
* OF THE $IX DSECT *
* R13 -- POINTS TO A 18-FULLWORD SAVEAREA IN CALLERS PROGRAM *
* R14 -- RETURN ADDRESS WITHIN CALLER'S PROGRAM *
* R15 -- CONTAINS THE STARTING ADDRESS OF THIS EXIT PROGRAM *
* *
* ON EXIT, THIS ROUTINE WILL HAVE SET: *
* -THE RECORD TO BE PROCESSED (IF ANY) AT THE LOCATION SPECIFIED *
* BY $IXRECAD (FOR A MAXIMUM LENGTH OF $IXRECLN). *
* -A RETURN CODE (IN $IXRETCD) AS FOLLOWS: *
* 0 -- NORMAL (WE RETURNED A RECORD TO BE PROCESSED) *
* 4 -- EOF OR "KEY NOT FOUND" *
* 12 -- ERROR CONDITION (FILE I/O ERROR, LOGICAL ERROR, *
* INVALID PARM, ETC.) *
* -OPTIONALLY (ON ERRORS) A MESSAGE IN $IXERR TO BE PRINTED IN *
* THE SPECTRUM WRITER CONTROL LISTING. *
* *
**
IOEXITA START 0
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 STM R14,R12,12(R13) SAVE CALLERS REGS
 LR R10,R15 USE R10 AS BASE REGISTER FOR EXIT
 USING IOEXITA,R10 SET ADDRESSIBILITY FOR THIS EXIT
*
 ST R13,OURSAVE+4 POINT OUR SAVE AREA TO CALLER'S SA
 LA R15,OURSAVE POINT TO OUR SAVEAREA
 ST R15,8(R13) POINT CALLER'S SAVEAREA TO OURS
 LR R13,R15 LEAVE R13 POINTING TO OUR SAVEAREA
*
 L R7,0(R1) LOAD R7 WITH ADDR OF PARM DSECT
 USING $IX,R7 ADDRESS CALLER'S PARM DSECT
*
 CLC $IXFUNC,=CL4'SEQ ' DOES CALLER WANT A SEQUENTIAL READ?
 BE DOSEQ YES - DO SEQUENTIAL IO LOGIC

Sample I/O exit program written in Assembly language
Appendix I. I/O Exits 681

I/O Exits
*
 CLC $IXFUNC,=CL4'KEY ' DOES CALLER WANT A KEYED READ?
 BE DOKEY YES - DO KEYED IO LOGIC
*
 CLC $IXFUNC,=CL4'FRST' DOES CALLER WANT 1ST MATCHING KEY?
 BE DOFIRST YES - DO "FIRST" IO LOGIC
*
 CLC $IXFUNC,=CL4'NEXT' DOES CALLER WANT NEXT MACTHING KEY?
 BE DONEXT YES - DO "NEXT" IO LOGIC
*
 CLC $IXFUNC,=CL4'CLOS' DOES CALLER WANT TO CLOSE A FILE?
 BE DOCLOSE YES - DO CLOSE LOGIC
*
 MVC $IXERR(22),=CL22'UNSUPPORTED FUNCTION: '
 MVC $IXERR+22(4),$IXFUNC SHOW THE FUNCTION
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* DO SEQUENTIAL READ OF EMPLOYEE FILE *
**
DOSEQ EQU *
 CLI SEQOPEN,C'Y' HAVE WE OPENED THE SEQ ACB YET?
 BE SEQISOPN B IF YES - DON'T OPEN IT AGAIN
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI SEQOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC SEQNAME,$IXRECNM SAVE NAME OF SEQ INPUT (FOR CLOSE)
*
 OPEN SEQACB OPEN THE ACB FOR SEQ I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH SEQDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(25),=CL25'VSAM ERROR OPENING ACBSEQ'
 B RETERROR RETURN WITH ERROR RETCODE
*
SEQDORPL EQU * SEQSCB IS OPENED. MODIFY RPL ONCE
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 MODCB RPL=SEQRPL,AREA=(R2),AREALEN=(R3)
*
 LTR R15,R15 MODCB OK?
 BZ SEQISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(32),=CL32'VSAM ERROR DOING MODCB OF SEQRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*
**
* ONE-TIME STUFF HAS BEEN DONE. GET NEXT SEQUENTIAL RECORD. *
**
SEQISOPN EQU * ONETIME STUFF DONE - DO GET
 GET RPL=SEQRPL READ RECORD INTO REC AREA
*
 LTR R15,R15
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=SEQRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4

Sample I/O exit program written in Assembly language (Continued)
682 Spectrum Writer Reference Manual

I/O Exits
*
 CLC FEEDBACK,=F'4' END-OF-FILE CODE ?
 BE RETEOF YES - RETURN INDICATING EOF
*
 MVC $IXERR(26),=CL26'VSAM ERROR GETTING SEQRPL '
 MVC $IXERR+26(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* DO KEYED READ OF EMPLOYEE FILE *
**
DOKEY EQU *
 CLI KEYOPEN,C'Y' HAVE WE OPENED THE KEYED ACB YET?
 BE KEYISOPN B IF YES - DON'T OPEN IT AGAIN
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI KEYOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC KEYNAME,$IXRECNM SAVE NAME OF KEY INPUT (FOR CLOSE)
*
 OPEN KEYACB OPEN THE ACB FOR KEYED (DIRECT) I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH KEYDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(25),=CL25'VSAM ERROR OPENING KEYACB'
 B RETERROR RETURN WITH ERROR RETCODE
*
KEYDORPL EQU * KEYACB IS OPENED -- PREPARE THE RPL
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 MODCB RPL=KEYRPL,AREA=(R2),AREALEN=(R3), X
 ARG=(R4),KEYLEN=(R5)
*
**
* ONE-TIME STUFF HAS BEEN DONE. GET A KEYED RECORD. *
**
KEYISOPN EQU * ONE-TIME STUFF DONE - DO GET
 GET RPL=KEYRPL READ RECORD FOR KEY INTO REC AREA
*
 LTR R15,R15
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=KEYRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(26),=CL26'VSAM ERROR GETTING KEYRPL '
 MVC $IXERR+26(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
**
* DO READ-FIRST OF EMPLOYEE FILE *
**
DOFIRST EQU *
 CLI MULOPEN,C'Y' HAVE WE OPENED THE MULTIACB YET?
 BE MULISOPN B IF YES - DON'T OPEN IT AGAIN

Sample I/O exit program written in Assembly language (Continued)
Appendix I. I/O Exits 683

I/O Exits
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI MULOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC MULNAME,$IXRECNM SAVE NAME OF KEY INPUT (FOR CLOSE)
*
 OPEN MULTIACB OPEN THE ACB FOR MULTI READ I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH MULDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(27),=CL27'VSAM ERROR OPENING MULTIACB'
 B RETERROR RETURN WITH ERROR RETCODE
*
MULDORPL EQU * MULTIACB IS OPEN -- PREPARE THE RPL
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 MODCB RPL=MULTIRPL,AREA=(R2),AREALEN=(R3), X
 ARG=(R4),KEYLEN=(R5)
*
 LTR R15,R15 MODCB OK?
 BZ MULISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(34),=CL34'VSAM ERROR DOING MODCB OF MULTIRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*
**
* ONE-TIME STUFF HAS BEEN DONE. POINT AND GET 1ST RECORD. *
**
MULISOPN EQU * ONE-TIME STUFF DONE - DO POINT/GET
*
 POINT RPL=MULTIRPL SET POINTER FOR DESIRED KEY
 LTR R15,R15 OKAY?
 BZ MULPNTOK B IF POINT WAS OK
*

* I/O ERROR DOING POINT. CHECK IT OUT. (MAY JUST BE NOT FOUND) *

 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(29),=CL29'VSAM ERROR POINTING MULTIRPL '
 MVC $IXERR+29(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
 LTR R15,R15 MODCB OK?
 BZ KEYISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(32),=CL32'VSAM ERROR DOING MODCB OF KEYRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*

Sample I/O exit program written in Assembly language (Continued)
684 Spectrum Writer Reference Manual

I/O Exits
*
MULPNTOK EQU * POINT WAS OK - NOW GET FIRST REC
 GET RPL=MULTIRPL GET FIRST REC FOR CURRENT KEY
*
 LTR R15,R15 GET THE RECORD?
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(28),=CL28'VSAM ERROR GETTING MULTIRPL '
 MVC $IXERR+28(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* WE GOT ANOTHER RECORD. WE COMPARE IT'S KEY TO SEE IF IT IS A *
* MATCH FOR THE DESIRED READKEY. *
**
DONEXT EQU *
*
**
* ONE-TIME STUFF WAS DONE IN A PRIOR "READ FIRST" CALL. *
**
 GET RPL=MULTIRPL GET NEXT SEQUENTIAL RECORD
*
 LTR R15,R15 GET THE RECORD?
 BZ NEXTOK IF WE GOT A RECORD, CHECK IT'S KEY
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(35),=CL35'VSAM ERROR GETTING (NEXT) MULTIRPL '
 MVC $IXERR+35(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
NEXTOK EQU *
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 BCTR R5,0 LENGTH MINUS 1 OF READKEY
 EX R5,COMPKEY SEE IF READKEY MATCHES RECORD KEY
 BE RETGOOD IF RECORD KEY MATCHES - RETURN REC
 B RETNTFND DOESN'T MATCH - RETURN "NOT FOUND"
*
COMPKEY CLC 0(0,R2),0(R4) COMPARE READKEY WITH RECORD KEY
*
*

Sample I/O exit program written in Assembly language (Continued)
Appendix I. I/O Exits 685

I/O Exits

* CLOSE ONE OF SPECTRUM WRITER'S INPUTS *

DOCLOSE EQU *
 CLC $IXRECNM,SEQNAME IS THIS FOR THE SEQ ACB?
 BE CLOSESEQ B IF YES
*
 CLC $IXRECNM,KEYNAME IS THIS FOR THE KEYED ACB?
 BE CLOSEKEY B IF YES
*
 CLC $IXRECNM,MULNAME IS THIS FOR THE MULTI ACB?
 BE CLOSEMUL B IF YES
*
 MVC $IXERR(31),=CL31'CLOSE REQUEST FOR UNKNOWN INPUT'
 B RETERROR RETURN WITH ERROR RETCODE
*
CLOSESEQ EQU *
 CLOSE SEQACB
 B RETGOOD
*
CLOSEKEY EQU *
 CLOSE KEYACB
 B RETGOOD
*
CLOSEMUL EQU *
 CLOSE MULTIACB
 B RETGOOD
*
*
*
*

* RETURN TO SPECTRUM WRITER, AFTER SETTING CORRECT RETURN CODE. *

RETGOOD EQU *
 MVC $IXRETCD,=H'0' INDICATE THE RECORD IS READY
 B RETURN
*
RETNTFND EQU *
RETEOF EQU *
 MVC $IXRETCD,=H'4' INDICATE EOF / KEY-NOT-FOUND
 B RETURN
*
RETERROR EQU *
 MVC $IXRETCD,=H'12' INDICATE LOGICAL/PHYSICAL ERROR
 B RETURN
*
RETURN EQU *
 L R13,OURSAVE+4 RESTORE CALLER'S R13 (SAVE AREA PTR)
 LM R14,R12,12(R13) RESTORE CALLER'S REGS FROM HIS SA
 BR R14 RETURN TO SPECTRUM WRITER
*
*
OURSAVE DC 18F'0' OUR SAVE AREA
*
FEEDBACK DS F HOLDS FEEDBACK INFO FROM RPL
*

Sample I/O exit program written in Assembly language (Continued)
686 Spectrum Writer Reference Manual

I/O Exits
*

* DATA READ FOR SEQUENTIAL FILE I/O *

SEQOPEN DC C'N' FLAG - WHETHER SEQ ACB IS OPEN YET
SEQNAME DC CL70' ' SPECTRUM WRITER NAME OF SEQ INPUT
SEQACB ACB DDNAME=EMPLDD, ACB FOR SEQUENTIAL IO TO EMPL FILE X
 MACRF=(SEQ,KEY)
*
SEQRPL RPL ACB=SEQACB, RPL FOR SEQUENTIAL IO TO EMPL FILE X
 OPTCD=(KEY,SEQ)
*
*

* DATA AREA FOR KEYED FILE I/O *

KEYOPEN DC C'N' FLAG - WHETHER KEY ACB IS OPEN YET
KEYNAME DC CL70' ' SPECTRUM WRITER NAME OF KEYED INPUT
KEYACB ACB DDNAME=EMPLDD, ACB FOR KEYED IO TO EMPL FILE X
 MACRF=(KEY,DIR)
*
KEYRPL RPL ACB=KEYACB, RPL FOR KEYED IO TO EMPL FILE X
 OPTCD=(KEY,DIR)
*
*

* DATA AREA FOR MULTIPLE KEYS FILE I/O *

MULOPEN DC C'N' FLAG - WHETHER MULTIACB IS OPEN YET
MULNAME DC CL70' ' SPECTRUM WRITER NAME OF MULTI INPUT
MULTIACB ACB DDNAME=EMPLDD, ACB FOR MULTI IO TO EMPL FILE X
 MACRF=(KEY,SEQ)
*
MULTIRPL RPL ACB=MULTIACB, RPL FOR MULTI IO TO EMPL FILE X
 OPTCD=(KEY,SEQ,GEN)
*
 EJECT

* *
* $IX -- PARM DSECT FOR CALLING USER I/O EXIT (FOR INPUT) *
* *

$IXDSECT DSECT , IO EXIT (INPUT) PARM DSECT
$IX DS 0D
*
$IXNAME DC CL4'READ' NAME OF EXIT
$IXLEVEL DC CL4'0001' LEVEL NUMBER
$IXFUNC DC CL4' ' FUNCTION (SEQ,KEY,FRST,NEXT,CLOS)
**
* $IXFUNC CAN HAVE THESE VALUES ON ENTRY TO THE USER EXIT: *
* "SEQ " -- RETURN THE NEXT (POSSIBLY FIRST) RECORD SEQUENTIALLY *
* USED WITH EXIT-TYPE FILES NAMED IN THE INPUT: STMT. *
* "KEY " -- RETURN THE RECORD (IF ANY) CORRESPONDING TO THE KEY *
* VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES NOT CONTAIN THE "MULTI" PARM. *
* "FRST" -- RETURN THE FIRST RECORD (IF ANY) CORRESPONDING TO *
* THE KEY VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES CONTAIN THE "MULTI" PARM. *

Sample I/O exit program written in Assembly language (Continued)
Appendix I. I/O Exits 687

I/O Exits
* "NEXT" -- RETURN THE NEXT RECORD (IF ANY) CORRESPONDING TO *
* THE KEY VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES CONTAIN THE "MULTI" PARM. *
* "CLOS" -- SPECTRUM WRITER HAS FINISHED USING THIS FILE. EXIT *
* CAN PERFORM ANY CLOSE-UP LOGIC IT DESIRES, BUT NONE *
* IS REQUIRED BY SPECTURM WRITER. *
* USED WITH ALL EXIT-TYPE FILES USED IN A RUN. *
**
$IXRECNM DS CL70 RECNAME OF INPUT BEING PROCESSED
$IXFILNM DS CL70 FILENAME OF FIELD BEING PROC'ED
 DS 0F ALIGN FOLLOWING TO FULLWORD
$IXKEYAD DS A ADDR OF KEY VALUE (OR ZERO FOR SEQ)
$IXPRMAD DS A ADDR OF PARM TEXT
$IXRECAD DS A ADDR WHERE EXIT SHOULD PUT RECORD
$IXKRBAD DS A ADDR OF KEYRANGE BEGIN KEY TEXT
$IXKREAD DS A ADDR OF KEYRANGE END KEY TEXT
$IXKEYLN DS AL2 LENGTH OF KEY VALUE
$IXPRMLN DS AL2 LENGTH OF PARM TEXT
$IXRECLN DS AL2 LENGTH OF AREA RESERVED FOR RECORD
$IXKRBLN DS AL2 LGTH OF KEYRANGE BEGIN KEY TEXT
$IXKRELN DS AL2 LGTH OF KEYRANGE END KEY TEXT
$IXRETCD DS AL2 RETURN CODE FROM EXIT (TO S/W)

* $IXRETCD SHOULD BE SET TO ONE OF THE FOLLOWING VALUES BY THE EXIT: *
* 0 -- RECORD READ SUCCESSFULLY (FOR SEQ,KEY,FRST AND NEXT). *
* OR ,CLOSE LOGIC PERFORMED (FOR "CLOS" CALLS). *
* 4 -- MEANS "FILE IS OK, BUT NO RECORD IS BEING RETURNED". *
* FOR SEQ CALLS, IT MEANS END-OF-FILE. *
* FOR KEY AND FRST CALLS, MEANS NO RECORD EXISTS FOR THE KEY. *
* FOR NEXT CALLS, MEANS NO MORE RECORDS EXIST FOR THE KEY. *
* 12 -- MEANS THE FILE HAS A PHYSICAL OR LOGICAL ERROR AND IS NOT *
* USABLE. SPECTRUM WRITER SHOULD NOT ATTEMPT TO PROCESS THE *
* FILE FURTHER. *

$IXDDN DS CL8 DDNAME/DLBL NAME
$IXMULTI DS CL1 Y/N "MULTI" PARM
$IXGEN DS CL1 Y/N "GENERIC" PARM
$IXKGE DS CL1 Y/N "KGE" PARM
 DS 0D ALIGN FOLLOWING TO DOUBLEWORD
$IXUSER DS CL50 USER AREA - INIT'ED TO X'00' ONCE
$IXERR DS CL60 ERROR MSG (SET BY USER EXIT)
$IXUNUSD DS XL50 RESERVED
*
*
 END IOEXITA

Sample I/O exit program written in Assembly language (Continued)
688 Spectrum Writer Reference Manual

Spectrum Writer User’s Guide & Reference ManualUpdates to This Manual

To Keep Your Manual Current,

Please File All Updates

Behind This Page.
Updates to This Manual 689

690 Spectrum Writer User’s Guide & Reference Manual

Spectrum Writer User’s Guide & Reference Manual Index

#
#ABS built-in function 475, 635
#AND built-in function 630
#ASCII built-in function 558, 631
#BEGMONTH built-in function 638
#BEGWEEK built-in function 638
#BEGYEAR built-in function 639
#COMDATE built-in field 626
#COMPRESS built-in function 631
#COMPUTES pseudo-record name 159, 501
#COUNTER built-in field 626

use in BREAK statement 198, 200, 489
#DAY built-in function 631
#DAYNAME built-in field 625

use in FOOTNOTE statement 175
use in TITLE statement 55, 163

#DAYNUM built-in function 635
#DMY built-in function 640
#EBCDIC built-in function 562, 631
#EQUALS parm in SORT statement 597
#ERROR built-in function 642
#FORMAT built-in function 340, 463, 589, 632
#GRAND

use in BREAK statement 207
#HHMMSS built-in field 627
#INCDATE built-in function 639

example 266
#INCDATETIME built-in function 639
#INCDURATION built-in function 640
#INCTIME built-in function 641
#INDEX built-in function 635
#INT built-in function 635
#ISNUM built-in function 642

example 257
#ITEM built-in field

in COLUMNS statement 211
#ITEM1 through #ITEM9 built-in fields 626

in COLUMNS statement 212
#ITEM-ENDING built-in field 625

use in BREAK statement 198, 489
#ITEMS built-in field 626

use in BREAK statement 182, 198, 200, 489
#JOBNAME built-in field 625
#LCASE built-in function 632
#LEAPYEAR built-in function 642
#LEFT built-in function 48, 632
#MAKEDATE built-in function 463, 474, 475, 640
#MAKENUM built-in function 274, 340, 463, 474,

475, 636
use of 340

#MAKETIME built-in function 274, 463, 637, 641
#MAX built-in function 514, 637
#MDY built-in function 640
#MIN built-in function 637
#MINUTENUM built-in function 637
#MISSING built-in function 642
#MOD built-in function 637
#MONTH built-in function 633
#MONTHNUM built-in function 222, 637
#NUMWORDS built-in function 638
#OFF built-in function 450, 642
#ON built-in function 450, 643
#OR built-in function 633
#PAGENUM built-in field 626

changing number of digits in page number 174
use in FOOTNOTE statement 175
use in TITLE statement 53, 55–56, 163, 604–??

#PARSE built-in function 633
#REALDATE built-in function 643
#RIGHT built-in function 634
#ROUND built-in function 638
#SECONDNUM built-in function 638
#SUBSTR built-in function 340, 634

example 340
#TIME built-in field 55–56, 163, 175, 625
#TIME24 built-in field 163, 175, 625
#TODAY built-in field 53, 55–58, 163, 175,

604–??, 626
#TRANSLATE built-in function 633, 634
#UCASE built-in function 634
#XOR built-in function 635
#YEAR built-in function 635
#YEARNUM built-in function 222, 638
#YMD built-in function 640

*
A

meaning of 228, 644
E

meaning of 644
F

meaning of 355, 644
suppressing 566, 646

I
meaning of 644
Index 691

suppressing 577, 646
S

in total line at control break 182
meaning of 135, 136, 453, 645
using automatic scaling to suppress 454

U
meaning of 645

V
meaning of 645
suppressing 577, 646

Z
meaning of 645
suppressing 577, 646

S
in total line at control break 454

*PAGE
meaning of 446

? symbol
meaning in PICTURES 454, 456, 458, 573

@ symbol
meaning in PICTURES 454, 456, 458, 573

A
ABEND

for I/O errors 230, 569, 586
for normalization errors 550, 569, 587
in multiple report runs 291

ABS built-in function (see #ABS built-in function)
635

ABSDATE
data type 613
from CICS 613, 616

Absolute value
#ABS built-in function 635

ABSTIME
data type 616

Access method
used for input files (OS/390) 329
used for input files (VSE) 331
used for output file (OS/390) 417
used for output file (VSE) 431

Access, Microsoft
example 94, 99

ACCUM parm
in COLUMNS statement 128, 150, 273, 502
in COMPUTE statement 150, 273, 509
in FIELD statement 150, 273, 338, 346, 523

Accumulating

data for statistics, which columns 148, 502, 509,
523

Across
printing data across the page 219

Addition
adding days, weeks, months or years to a date 639
adding seconds, minutes or hours to a date-time

639
adding seconds, minutes or hours to a time 640,

641
how to perform 47, 473, 506

Address
formatting addresses 631

Addressing mode
of exit programs 666, 675

Alias
member name in copy library 363, 367, 648
use in COPY statement 517, 518

Alignment
of column headings in Web reports 306, 316
of columns in multi-line reports 151
of data in report columns 146, 505
of text and graphics in Web reports 305, 312, 323
of titles (left, center and right) 55, 153, 168, 603,

606
of titles in Web reports 298–300
of titles, default 53
of totals in Web reports 303, 306, 316
title doesn’t look centered 168, 173, 606
title doesn’t look right aligned 173, 606
(see also Justification)

Alphabetical order
of columns for all fields from a file 159

Alphabetizing
columns by field name 159, 503
the report 62, 595

Alternate index 232
AM

showing AM and PM 347, 622
Ambiguous field name

among DB2 column names 403, 405
error indicator (***A***) 644
using record name to resolve 77, 226, 228, 550,

589
Ampersand (&)

meaning in conditional expressions 466
AND built-in function (see #AND built-in function)

630
AND keyword

use in conditional expressions 42, 465, 471
Animation, in Web reports 294
Apostrophes (’) 448
692 Spectrum Writer User’s Guide & Reference Manual

(see also Quotation marks)
Approximate

values, using to save space 454
Arithmetic operations

between different types of numeric fields 337
how to perform 47, 472, 506, 513

Arrays
how to define 243, 355
how to process 237–257
in COBOL record layouts 238, 327, 355, 377,

495
nested 244
normalizing 237–248, 548, 585
only in some record types 247, 549
parallel arrays 245

ASC parm
in DB2 ORDERBY parm 550, 587
in SORT statement 597

Ascending
order, data fetched from DB2 399
order, in SORT statement 62, 597

ASCII
converting to EBCDIC 631
files, fixed format 279
files, how to create 143, 276, 283
instead of EBCDIC 631–632
parm, in #FORMAT function 632
parm, in BREAK statement 191, 490
parm, in COLUMNS statement 128, 143, 283,

502
parm, in TITLE statement 167, 605
spaces between fields 490
(see also #ASCII built-in function)

ASCIITABLE parm
in OPTIONS statement 558

ASM statement 479
how to use 369
scope of 384
syntax 480

ASMLIB DD 382, 517
ASMLIB parm

in OPTIONS statement 383, 518, 559
Assembly language

character versus numeric fields 387
converting to FIELD statements 378
copying from Panvalet or Librarian 383
copying record layouts 382, 517
date and time fields 375, 379
decimal digits 388
default copy library (OS/390) 382
default copy library (VSE) 383, 559
DSECT statement 384, 390, 497

EQU statement 390
expressions supported 388, 389
fields, changing the column heading 381
record layouts, names assigned 377, 390
record layouts, starting column 384
record layouts, using 369, 421, 438, 479
repetition factors 377, 495
sublibrary and member type copied (VSE) 518
SYSLIB library 363, 516
writing a data exit program in 666

ASSIGN parm
in COMPUTE statement 50, 509

Asterisks (*)
S appears in total line 182
S, meaning of 135, 136, 453
in column one for comment lines 445
in total line at control break 71, 181, 206
meaning in COLUMN and DISP parm 352, 524
meaning of ⁄ * and */ 445
meaning of all error indicators (e.g. ***S***) 160,

644
multiplication symbol 47, 473
printing bar graphs 154
suppressing error indicators 646
(see also under ***A***, ***I***, etc.)

ATTR parm
in FILE statement 331–332, 432, 532
in INPUT statement 332, 433, 532, 544
in READ statement 332, 433, 532, 580

AU files 308
Audio clips, putting in report 294, 308
AUTOSORT parm

in OPTIONS statement 62, 559
Auxiliary input files

(see Files and READ statement)
AVERAGE (AVG) parm

in BREAK statement 67, 186, 196, 207, 483
in BREAK statement print expressions 191, 194,

200
in BREAK statement, two different uses 194
in SORT statement 186, 597

Averages
average line (see also Statistical lines) 67, 186,

483, 597
display format used for 140
excluding zero values 186, 485, 491, 598
how many decimal digits 140, 151
how to compute 512
how to print 67, 186, 191, 483, 597
printing at Grand Totals time 207, 483
printing in total line 191, 491
which columns receive 148, 339, 502, 509, 523
Index 693

(see also AVERAGE parm and NZAVERAGE
parm)

AVI files 308

B
Backing up

current location, when defining fields 352, 524
Bar

character (|) (see Vertical bar)
Bar graphs

BARGRAPH display format 619
how to print bar graphs 154

Base
base-2 and base-10 scaling 454, 458

BASIC language
"IF" statement 42, 540
PRINT USING equivalent 451

Batch type files
normalizing 247
processing 234

BCD data
date fields 612
numeric fields 610
time fields 614, 615

Before
report, putting lines 309, 318, 572

Beginning
of control group, printing lines at 200, 484, 486
of report, printing headings once 207
of report, putting lines before 309, 318, 572

BEGMONTH (see #BEGMONTH built-in function)
638

BEGWEEK (see #BEGWEEK built-in function) 638
BEGYEAR (see #BEGYEAR built-in function) 639
Big

biggest of several numbers, dates or times 637
literals, how to write 444
making a column bigger 60, 135, 505
numbers, scaling to fit in small column 454
records in input file 330, 535, 547, 584
report lines, how to produce 432
report width 432
(see also Width)

Billions
rounding to 453, 638

Binary data
comparing to packed data 337
writing to output file 282, 619

BINARY data type

needed in read key 589
numeric field 610
times stored as 614, 615

BINARY display format 619
BINARYUN

data type, for time fields 614, 615
display format 620
numeric data type 610
writing binary unsigned data to output file 620

Bind
DB2 plan name 560

BIT data type 616
Bit fields

bit field conditions 465, 471
bit literals 450
creating your own 450, 506, 514, 642, 643
data type 616
effect on default location in record 352
how bits are numbered 349, 523
how formatted in reports 349, 529, 618
how sorted 601
how to define 347, 521
logical operations 630, 633, 635
testing multiple bits 630
testing value of 465, 471, 514, 630

BIT parm
in FIELD statement 349, 523

BITEXIT
data type 616

BITS display format 618
BIZ parm

for fields printed at control breaks 192, 490
in COLUMNS statement 129, 140, 257, 503
in TITLE statement 167, 605

Blank
ASCII spaces between fields 490
in first column of control statement 444
inserting blank columns in PC files 110
padding 462, 470, 511
removing leading blanks 631
removing trailing blanks 631
spaces between report columns 128, 502
spaces between report columns in Web reports 301
spaces, required around minus sign 473
spaces, where allowed in control statement 443
suppressing blanks between fields in output files

560
Blank lines

between report lines 153, 573
in PC files 110
in report titles 153
printing after the total line 67, 69, 178, 486, 598
694 Spectrum Writer User’s Guide & Reference Manual

printing at control breaks 196, 486, 598
printing before the total line 184
printing in report body 499
suppressing 253, 257, 573
suppressing, before Grand Totals 279, 283, 567

Blanking out
all column headings 133, 134, 175, 567
individual column headings 132, 504
leading zeros 455
numbers, dates and times that are zero 129, 167,

192, 257, 490, 503, 605, 632
repeating values 129, 144, 505
the final "S" to form the singular 198, 489, 625

Blinking font, specifying 294, 322
BLKSIZE 331, 332, 533, 567, 570
Bold

font, specifying 294, 296, 298, 301, 303, 322
Boolean

expressions (see conditional expressions)
fields (see Bit fields)

Both
of two conditions are true 42, 465, 471

Bottom of report
margin 154, 571
printing footnote lines 175, 538
putting lines after 309, 318, 572

BREAK statement 481
break occurs at wrong place 600
built-in fields available 198
control break spacing 67, 69, 178, 486
control break spacing, summary reports 576
customizing the total line at control breaks 182,

198, 487
formatting dates, times and numbers 192, 491
how to use 65, 177
how to use with PC files 108
in Web reports 303, 308–309
justification parm in print expressions 192, 491
order of BREAK statements 204
parms (see under name of parm)
print expressions 189, 488
printing a certain number of detail lines per break

561
printing a field's total or average value 193, 491
printing a total line at control breaks 487
printing averages at control breaks 67
printing custom lines at control breaks 188, 483
printing lines at beginning of a control group 200,

484
printing statistical lines at control breaks 67, 186,

483

printing the number of items in control group 182,
198, 489

printing the number of items included in the report
so far 198, 489

requesting multiple control breaks 69, 204, 210
resetting page number 180
skipping to new page 67, 178, 486
spacing factor in print expressions 191, 490
suppressing the total line at control breaks 185,

487
syntax 482
using a PICTURE to format numeric data 194,

451
using to customize the Grand Totals 207, 483
where to put 204, 445
width of items in lines printed at control breaks

182, 193, 491
(see also Control breaks)

Breaking down
totals 217

Buffer
for input files, specifying in JCL 423, 433
for reading input files 330, 331, 355, 533, 535,

545, 547, 567, 581, 584
speed-up tips 658
with VSAM I/O 544, 581, 658

BUFND parm
in INPUT statement 544, 659
in READ statement 581, 659
speed-up tips 659

BUFNI parm
in INPUT statement 544, 659
in READ statement 581, 659
speed-up tips 659

Built-in fields 624
available in BREAK statement 198, 489
available in TITLE and FOOTNOTE statements

53, 163, 604
(see also under name of built-in field)

Built-in functions 628
use in COMPUTE statement 48, 475, 514
(see also under name of built-in function)

BYCOL parm
in COLUMNS statement 159, 503

BYDEF parm
in COLUMNS statement 159, 503

BYNAME parm
in COLUMNS statement 159, 503

Byte
ASCII versus EBCDIC 558, 562, 631, 632
bits in 349, 523
Index 695

C
Calculations

how to perform 47, 472, 506
using different types of numeric fields 337

Capital letters (see Case)
Carriage control character

allowing for in LRECL parm 431
suppressing 279, 415, 567

Case
lower case 632
sorting mixed case fields 634
upper case 634

Category
totalling a field by 217

CENTER parm
in #FORMAT built-in function 632
in BREAK statement 192
in COLUMNS statement 129, 146
in TITLE statement 168, 173, 606

Centering
CENTER parm needed in centered titles 606
column headings 132
data in report columns 146, 505
data in titles, looks wrong 168, 173, 606
items in control break lines 192, 491
titles 53, 55, 168, 603
titles, in Web reports 298, 322
(see also Alignment and Justification)

Cents
rounding to whole dollars 339, 512, 638

Century
day in century 640
which century for YY dates 269, 559

CENTURY parm
in OPTIONS statement 269, 559

Chaining input files 226
Changing

translating characters 634
CHARACTER

data type 609
display format 618
display format, use in FORMAT option 563

Character fields
ASCII versus EBCDIC 632
changing case 632, 634
comparing 40, 449, 462, 470, 513
comparing to numeric fields 463
converting to date 640
converting to numeric 340, 463, 636, 642
converting to time 274, 641

counting words in 638
creating your own 48, 449, 506, 514
how sorted 600
how to define 333, 521
list of data types 609
maximum size 511
numeric data in 339, 450
parsing words from 633
scanning for a text 462, 471, 635
substrings 634
translating characters 634
which contain numeric data 642
writing character literals 42, 448, 470, 472

Character operations
how to perform 48, 473, 506

Characters
ASCII versus EBCDIC 143, 558, 562, 631
which ones allowed in file and field names 446

CHAREXIT
data type 609

Charts
in Web reports 294, 305

CICS
ABSDATE value 613, 616
downloading from (VSE) 432

CLEAR parm
in INPUT statement 545, 662
in READ statement 581, 662

Clicking mouse, in Web reports 308
COBLIB DD 382, 517
COBLIB parm

in OPTIONS statement 383, 518, 559
COBOL

"IF" statement 42, 459, 540
arrays, how to process 238
ASSIGN clause, FD, and record structure 327
converting to FIELD statements 378
copybook library 363, 516
copying from Panvalet or Librarian 383
copying record layouts 382, 517
date and time fields 375, 379
default copy library (OS/390) 382
default copy library (VSE) 383, 559
EXAMINE (see #TRANSLATE)
fields, changing the column heading 381
FILLER 386
Julian dates 375
level 01 REDEFINES 384, 386, 497
level indicators 385, 386
OCCURS clause 249, 255, 327, 377, 495
record layouts, names assigned 377, 386
record layouts, starting column 384
696 Spectrum Writer User’s Guide & Reference Manual

record layouts, using 369, 421, 438, 493
REDEFINES clause 352, 368, 385, 524
sequence numbers 372, 495
SIGN IS SEPARATE clause 387
slack bytes 243
sublibrary and member type copied 518
SYNCHRONIZED parm 243
UNSTRING (see #PARSE)
writing a data exit program in 671

COBOL statement 493
how to use 369
scope of 384
syntax 494

Codes
completion 230, 425, 439, 549, 569, 586

COLHDGONCE parm
in OPTIONS statement 133, 175, 278, 560

Collating order 600
Colon (:)

after statement name 34, 443
changing delimiter for formatting times 576
use as a relation operator 461

Colors
different colors in one column 315
list of HTML colors 322
specifying 294, 298, 319, 322, 323

COLSEP parm
in OPTIONS statement 156, 278, 560

COLSPACE parm
in OPTIONS statement 128, 282, 315, 560

Column
field’s starting column in record 350, 352, 353,

524
in control statement, when first one blank 444
in control statement, when first one contains aster-

isk 445
in control statement, which ones to use 443
printing titles in a specific column 173
starting, in COBOL and Assembly record layouts

497
COLUMN (COL) parm

in ASM & COBOL statements 381, 494
in FIELD statement 350, 352, 353, 524

Column (in report)
order in which they appear 159
scaling big numbers to fit 454

Column headings
aligning in Web reports 306, 316
blanking out individual ones 132, 504
effect of dash and underscore in name 504
for computed fields 47, 511
for literal columns 133, 501

how to change 60, 129, 130
how to justify (left, center and right) 132
in FIELD statement 326
in multi-line reports 130, 133, 153, 254, 566
in Web reports 301, 306, 316, 564, 565
making shorter 130, 135
one-line headings 133, 279, 564
options, summary 133
parm in COLUMNS statement 504
printing just once 133, 134, 175, 278, 560
running down the page 219
specifying when defining a field 326, 350, 527
specifying with TITLE statements 169
splitting onto multiple lines 130, 133, 350, 504,

527
suppressing all 93, 133, 134, 175, 279, 567
suppressing the underscore line 132–134, 504,

568
truncation of 135
use of vertical bar (|) 130, 132, 133, 563
using field name as 130
when suppressed 566
(see also Titles)

COLUMNS statement 498
#COMPUTES keyword 159, 500, 501
#ITEM built-in field 211
advanced features 125
all blank 153, 499
column headings 60, 129, 130, 133, 153, 504
column headings, suppressing all 567
columns look skewed 151
excluding fields from output 158, 159, 504, 505
formatting dates, times and numbers 58, 129,

137, 503
in Web reports 306
including all fields from a file 158, 501
justification within columns 129, 146, 505
literal columns 126, 133, 153, 448, 501
multiple statements 151, 254, 498, 566, 575
order of all fields from a file 159, 503
parentheses 128
parms allowed in 128, 499
printing certain characters between report columns

560
printing full-page forms 153
printing line numbers 211
printing variable number of lines per input record

249
quotation marks, apostrophes 126, 501
repeating values, suppressing 129, 144
shifting report right 154, 181
spacing between columns 128, 151, 502
Index 697

spacing between report lines 573
syntax 499
truncating a column 135
using a PICTURE to format numeric data

137–139, 451
using record name to resolve ambiguous field

name 77, 226, 228, 550, 589
where to put 445
which columns are totalled 128, 148, 339, 502
width of columns 60, 129, 135, 182, 505
writing all fields to PC file 88

Combining character fields 48
COMDATE built-in field (see #COMDATE built-in

field) 626
Comma (,)

as delimiter in output files 278, 560
in control statements 443
in number, using a different character 452
in numbers, whether to print 139, 278, 339, 452,

619, 623
not allowed in numeric literals 42, 449
unwanted commas in numbers 339
used to separate parms 128, 167, 191
using dot instead of comma for numbers 140, 619

Comma delimited file
converting entire mainframe file into 88

Comments
how to write 445
HTML comments 324
in SWALIAS member 368
within scope of ASM and COBOL statements 385

COMP (see BINARY)
COMP-1 (see BINARY)
COMP-3 (see PACKED)
Comparing

a field to hexadecimal value 464, 472
character fields 40, 340, 449, 450, 462, 470
date fields 42, 341, 449, 462, 470
how to write conditional expressions 459
numeric fields 42, 337, 340, 449, 450, 461, 470
operands of different length 462
operands of different types 340, 450, 463
time fields 44, 344, 450, 462, 470
when to use quotation marks 42, 340, 450, 470

Completion codes 230, 425, 439, 549, 569, 586
for empty/non-empty runs 562, 568
for exception reports 568

Complex
conditional expressions 465

COMPRESS built-in function (see #COMPRESS
built-in function) 631

Computational expressions 472

bit, how to write 476
character, how to write 48, 449, 472
date, how to write 449, 475
examples 474, 513
list of built-in functions 628
numeric, how to write 46, 449, 472
order of evaluation 474
speed-up tips 657
syntax 472
time, how to write 273
use of parentheses in 474
(see also COMPUTE statement)

COMPUTE statement 506
assigning different values based on conditions 50,

508
column headings for computed fields 47, 60, 130,

511
computing an average 512
computing true ratios, percentages 202, 474, 510,

515
concatenation operation 48, 473, 514
conditional 50, 508
conditional, example 214, 217, 234
converting character to numeric data 340
converting data to different type 632, 636,

640–641
converting numeric to character data 340
creating a read key for READ statement 79, 589
creating bit fields 450, 476, 514
creating character fields 48, 449, 474, 513
creating date fields 269, 449, 475, 513
creating numeric fields 46, 449, 474, 513
creating time fields 272, 450
data type of result 508
default value assigned 50, 508
division by zero 577
examples 449–450, 474, 513, 630
hexadecimal values 514
how dates, times and numbers are formatted 510
how many decimal digits 512
how to use 46, 98
in file definitions 159
in Web reports 306
justifying the result (left, right, center) 632
keeping in copy library 159, 363
list of built-in functions 628
math operations 46, 473, 513
order of evaluation 508
overflow error 577
parms (see under name of parm)
propagating errors 647
RETAIN parm 234, 258, 512, 656
698 Spectrum Writer User’s Guide & Reference Manual

size of result field 511
speed-up tips 655, 656
syntax 507
use of built-in functions 48, 100, 475, 514
using to detect invalid data 257
when an operand is in error 647
where to put 46, 363, 445
which computed fields are totalled 150, 509
writing conditional expressions (WHEN parm)

459
(see also Computational expressions)

Concatenation
example 474, 514
how to perform 48
operator 473
removing excess blank spaces 631

Conditional COMPUTE statement 50, 508, 513
Conditional expressions 459

bit field conditions 465, 471
comparing character operands 40, 340, 449, 462,

470
comparing date operands 42, 341, 449, 462, 470
comparing hexadecimal values 449, 464, 472
comparing numeric operands 42, 337, 340, 449,

461, 470
comparing operands of different lengths 462
comparing operands of different types 340, 451,

463
comparing time operands 44, 273, 344, 450,

462, 470
comparing to multiple values 468, 471
how to simplify long expressions 468
how to write 40, 459
in COMPUTE statement 50, 513
in INCLUDEIF statement 40, 541
mixing relation and bit field conditions 466
order of evaluation 467
relation operators allowed 461
searching for a text in a character field 462, 471
selecting fields with invalid data 464
speed-up tips 652, 655, 657
use of ampersand (&) in 466
use of not sign (¬) in 470
use of quotation marks, apostrophes 42, 451, 470
use of the keyword "AND" 42, 465, 471
use of the keyword "NOT" 469, 471
use of the keyword "OR" 42, 466, 471
use of vertical bar (|) in 467
using both "AND" and "OR" in 467, 471
using parentheses in 44, 467, 469, 471
with multiple conditions 42, 50, 465, 471
(see also INCLUDEIF statement)

Conditions
assigning value to field based on 50, 508
which records to include in report 40, 540
(see also Conditional expressions)

Contains operator (:) 461, 462, 471
Continuing

control statements on multiple lines 444
literals across lines 444

Control breaks 65, 108, 177
S appears in lines printed at 182
blanking out repeating values at start of 505
break field must be a sort field 65, 177
breaks at wrong place 600
computing true ratios, percentages 202, 474
counting occurrences of a value 214
definition of 65
determining level of 181, 204
how to format dates, times and numbers 491
in PC files 108
in Web reports 303, 308
multiple 210
number of items in control group 181, 489
printing a certain number of detail lines per break

561
printing a line at control breaks in Web reports

303, 323
printing averages at 186, 191, 483, 491, 597
printing blank lines at 67, 69, 178, 184, 196,

486, 598
printing data from files at 189, 489
printing footing lines at 483
printing lines at beginning of control group 484,

486
printing multiple lines at 196
printing statistics at 186, 191, 484–485, 491,

597–598
printing the current date at 185
printing the number of items included in report so

far 489
resetting page number 180
skipping to new page 598
spacing at 178, 486, 598
spacing at, for summary reports 576
statistical lines, customizing 186, 207, 483–485
statistical lines, order in which printed 188, 196
the Grand Total control break 483
total line (see also Totals and Total line)
total line split onto two lines 181
total line, customizing 196, 207, 487
total line, default 180
total line, multiple 184
total line, suppressing 487, 599
Index 699

using to produce summary reports 73, 209, 216
where total line prints 184
(see also BREAK statement and SORT statement)

Control listing
DD used in JCL 414
logical unit written to (VSE) 427, 433
printing records copied from copy library 364,

519, 547, 584
skipping to new page 446

Control statements
how to write 443
introduction 84
keeping in a copy library 360
list of 86, 477
maximum number allowed 568
order 444
putting comments in 445
syntax (see under name of statement)
that apply to all reports in shop 424
that define files and fields 326
that require more than one line 444
what DD used to read 414, 424
what logical unit read from (VSE) 427
which columns to use 443

Convention
used in control statement syntax 478

Conversion
different types of date fields 269, 341
different types of numeric fields 337
different types of time fields 344
GMT time to local 575
of character to numeric data 340
of character to time data 274
of COBOL and Assembler layouts to FIELD state-

ments 378
of numeric to character data 341
of numeric to time data 274
of one data type to another 463, 632, 636,

640–641
of time to numeric data 274

Copy library
accessed for READ and INPUT statements 363
assigning (VSE) 439, 576
copying records from non-PDS files 364, 519
DB2 file definitions 408
how to use 360, 421, 437, 516
making reports without using 360
preventing automatic copying 364, 545, 582
printing copied records in control listing 364, 519,

547, 584
saving COBOL and ASM record layouts in 377
saving shop-wide options 424

setup (OS/390) 420
setup (VSE) 437
used within ASM statement 383, 559
used within COBOL statement 383, 559
using an alias 363, 367, 648
which DD in JCL used for 414, 423
which member copied 367, 517

COPY parm
in INPUT statement 364, 545
in READ statement 364, 582

COPY statement 516
copying COBOL and Assembler record layouts

382
default copy library 559
how to use 364, 423
listing copied statements 446
parms (see under name of parm)
syntax 517
within scope of ASM and COBOL statements 385

Count
discrepancy in VSAM record count 424, 433
how many times a value occurs 214

Counter
line numbers in report 211

COUNTER built-in field (see #COUNTER built-in
field) 626

CPU
utilization, speed-up tips 652

Creating your own fields 46, 98, 472, 506
(see also COMPUTE statement)

Crosstab reports 217
Cumulative

number of items printed in report 198, 489, 626
Currency

showing currency in PICTURE 140, 456
Current

date, built-in field 626
location, in COBOL and Assembler layouts 384
location, when defining fields 352, 353, 524
time, built-in field 625, 627

Cursor
in DB2 397

Customizing
the total line at control breaks 182

Cutoff
century cutoff year 269

D
DASD files
700 Spectrum Writer User’s Guide & Reference Manual

used as input (VSE) 533
Dash (-)

blanks required around 473
formatting negative numbers, where to put 452
in numeric literals 449
meaning in COLUMN or DISP parm 351, 524
name broken at, for column headings 130, 504
subtraction symbol 47, 473
use in field names 446, 473

Data
character versus numeric data 339, 450
how to format in report 58, 137, 503
including only certain values in report 40, 540
invalid, testing for 464, 472, 647
representation, date fields 341, 611
representation, numeric fields 335, 610
representation, time fields 613
specifying the input file 34, 542
the five types 333, 448

Data exit programs
DD used in JCL 415
decimal digits returned by 525
how to use 357
passing parms to 357, 360, 525, 534, 546, 582,

666
sample program 666
size of character result 526

Data set name (see DSNAME)
Data types

in FIELD statement 529
list of 609
listing of, for each input field 551
of COMPUTE fields 508

Databases 391
Date fields

creating your own 449, 506
default lengths 611
defining so that month name is always spelled out

343, 510, 526, 621
SMF dates 613, 622
stored in hexadecimal format 341, 464, 472
testing for valid data 464, 472, 643, 647
tips for working with 269
(see also Dates)

DATEDELIM parm
in OPTIONS statement 139, 140, 560

DATEEXIT
data type 613

Dates
adding to, subtracting from 221, 475, 640
adding/subtracting days, weeks, months or years

639

calculating first & last days of a week, month or
year 638, 639

comm area date (VSE) 626
comparing 42, 341, 449, 462, 470, 513
converting numeric day, month and year into a date

640
converting to character value 632
converting to numeric value 475, 636
current date, built-in field 626
day of week for a given date 631
DD/MM/YY date literals 561
default display format 139, 618
default display format, changing 562
defining date fields 340, 521
delimiter used 139, 140, 270, 560, 611, 612,

620–622
did time interval cross into next day 639
extracting the day, month and year portions 221,

368, 635, 637–638
formatting in report 58, 137, 167, 192, 343, 503,

620
handling invalid dates 254, 257, 643, 644
how date fields stored in input file 341, 529, 611
how sorted 600
in COBOL and Assembler record layouts 375,

379
in PC files 271
including date in footnotes 175
including date in titles 163, 604–??
including in total line 185
including only certain dates in report 42, 470
Julian 271, 343
month name for a given date 633
non-standard 357
number of days between two dates 636
numeric day of week for a given date 635
printing blanks instead of zero dates 129, 167,

192, 249, 490, 503, 605, 632
range allowed in date literals 449
selecting the earliest/latest of several dates 637
spelling month name out 55, 58, 139, 167, 192,

343, 503, 621, 632
taking into account when computing time intervals

274
testing for leap year 642
which century for 2-digit years 559
writing date literals 449, 560–561, 576
writing julian date to output file 282
zero assigned for missing fields 229, 594
(see also Date fields)

Date-time pairs
adding to, subtracting from 639
Index 701

DAY built-in function (see #DAY built-in function)
631

Day of week
built-in field 625
calculating the date corresponding to any day of a

week 638
computing for a given date 631
including in footnotes 175
including in titles 163
number representing, for a given date 635

Daylight Savings Time 640, 641
DAYNAME built-in field (see #DAYNAME built-in

field) 625
DAYNUM built-in function (see #DAYNUM built-in

function) 635
Days

adding to a date field 475, 640
adding to or subtracting from a date field 639
converting numeric day, month and year into a date

640
day in century 640
day of month, for a given date 635
did time interval cross into next day 639
number of days between two dates 636

DB2 392
ambiguous field names 403, 405
ASC and DESC parms 399, 587
column headings 407
cursor 397
defining input table name 534, 545, 582
digits allowed in numeric fields 410
display formats 407
getting list of columns' data type 397
host variables 405, 406
how to create a PC file 395
how to create a report 393
JCL required 393, 415
list of DB2 columns in table 397, 550, 589
literals, format of 405, 407
missing rows 229, 230, 594
mixing DB2 and non-DB2 data 392
ORDERBY parm 399, 550, 587
plan name 409, 560
qualifiers 406
reading multiple rows 79, 401, 584
saving definitions in copy library 408
SELECT clause 590
setup 409
subsystem 393, 409, 561
table names 393
tables as auxiliary input file 400, 590
using multiple DB2 tables 400, 403

using record names with 403, 405
views 393
WHERE parm 397, 405, 552, 590
which rows to read 552, 590

DB2 tables
testing for missing row 642

DB2NAME parm
in FILE statement 534
in INPUT statement 395, 545
in READ statement 582

DB2PLAN parm
in OPTIONS statement 560

DB2SUBSYS parm
in OPTIONS statement 393, 561

DC and DS statements in Assembler 387
DCB parm in JCL

for output files 415
DD statement in JCL

for report output 414, 419, 571
sort work files 414, 574
which one used to read input files 329, 423, 534,

546, 582
which ones needed 414
writing FIELD statements to 379, 496

DDMMYY
date fields 611, 612, 620–621
DD/MM/YY date literals 141, 561

DDMMYYLIT parm
in OPTIONS statement 141, 561

DDMMYYYY
date fields 611, 612, 620–621

DDNAME parm
in COPY statement 519
in FILE statement 329, 415, 423, 534
in INPUT statement 331, 423, 546
in READ statement 331, 423, 582

Decimal digits
extracting integer value 635
how many in averages 151
how many stored in record 338, 525
how many to print 139, 452, 503
in Assembler layouts 388
in computed fields 512
in time fields 273, 346, 512, 613
returned by data exit programs 358, 525
rounding 512, 638

DECIMALS parm
in FIELD statement 338, 346, 525

Decrypting data 357
Default

alignment of titles 603
column headings for computed fields 511
702 Spectrum Writer User’s Guide & Reference Manual

display format, how to change 562
display formats 618
field location in record 351, 353, 524
justification of data 146
location, effect of defining bit fields 352
record name 589
sort order 559
spacing at control breaks 486
total line at control break 487
value assigned for missing records 229, 594
value assigned in COMPUTE statement 50, 508

Defining
bit fields 347
character fields 333, 339
date fields 340
fields created in exit programs 357, 666
fields in an earlier file 356
files and fields, how to 326, 420, 437, 521, 531
files automatically 363
files without using a copy library 360
how fields will be formatted in reports 335, 338,

343, 347, 349, 526
how to create your own fields 46, 98, 472, 506
numeric fields 335, 339
same part of record multiple times 327, 352, 368,

524
the column heading to use for a field 350, 511
time fields 344
where fields are located in record 350, 352, 353,

524
which fields should be totalled 148, 338, 339,

523
Definition statements 326
Delimited

files, how to create 276
Delimiters

in date fields 270, 611, 612, 620–622
in output files for PC programs 560
in time fields 613, 622–623
used in PC files 278
used to format dates 139, 140, 560
used to format times 139, 140, 576, 622–623
used to parse character strings 633

DEPENDING ON clause in COBOL 255, 266, 378
DESC parm

in DB2 ORDERBY parm 399, 550, 587
in SORT statement 62, 213, 597

DETAIL parm
in OPTIONS statement 211, 212, 561

Detail records
in batch type files 234

Detail report lines

suppressing 73, 209, 216
Different

assigning different values to created field 508
lengths, comparing operands of 462, 470, 472

Digits
calculating how many digits in packed fields 337
decimal, dropping 635
decimal, how many print in averages 151
decimal, how many stored in record 338, 525
decimal, rounding 512, 638
extracting certain digits from a number 340
how many stored in record 337
how many to print 139, 452, 503
in page number, how many 174, 626
maximum number allowed in literals 449
not enough room to display 645
number allowed in DB2 data 410
rounding to thousands, millions 638
(see also Decimal digits)

Dimension
arrays in records 327

Direct reads
auxiliary files read randomly 76, 591

DISP parm
in ASM & COBOL statements 494
in FIELD statement 524

Displacement
fields’ starting displacement in records 350, 352,

353, 524
DISPLACEMENT (DISP) parm

in FIELD statement 263, 350, 353
DISPLAY

data type 610
display format 619

Display formats
changing the default 278, 562
default 139, 618
for PC files 503
formatting numbers with dots instead of commas

140, 619
how to write PICTUREs 451
how to write TPICTUREs 458
in COLUMNS statement 58, 129, 137, 503
in COMPUTE statement 510
in FIELD statement 326, 526
list of 617
of fields in the title 167, 605
of fields printed at control breaks 192, 491
removing excess blank spaces 631
specifying delimiter for dates 560
specifying delimiter for times 576
specifying for output files 278
Index 703

used in total (and average) line 140, 151
using to create a character field 632
which quotation mark used 573

Division
division by zero indicator (***Z***) 645
division by zero, suppressing 577, 646
how to perform 47, 473, 506
performing division at control breaks 202
remainder (#MOD built-in function) 637
results in overflow (**V**) 645

DIVTOTS parm
in COMPUTE statement 202, 510, 515

DLBL statement in JCL
sort work files 434, 435, 574
used for writing output 427, 432, 435, 570
which one used for input files 331, 432, 533
writing FIELD statements to 379

DMY see #DMY built-in function) 640
Dollar sign ($)

how to print 139, 339, 452, 503, 619
meaning in PICTUREs 455

Dollars
DOLLAR display format 619
printing whole dollars 339, 512, 638

Dot (.)
using instead of commas in numbers 619

DOTSEP
display format 140, 619

DOUBLE parm
in OPTIONS statement 153, 249, 573

Downloading
files from POWER queue 429
from CICS (VSE) 432
only selected records 93
small summary files 113

Drawings, in Web reports 305
DSECT statement in Assembler 384, 387, 390
DSNAME

relation to file name 329, 331, 534, 546, 582
Dump

record dump for invalid data
Invalid data

dump of 566
record dump for normalization errors 566

Duplicate
records in file for a key 232

Duration
totalling 150

DXPARM parm
in FIELD statement 525, 666

DXPROG parm
in FIELD statement 358, 525, 666

DXRETDEC parm
in FIELD statement 358, 525, 667

DXRETLEN parm
in FIELD statement 358, 526, 667

Dynamic
HTML 297, 306, 315

E
EBCDIC

built-in function (see #EBCDIC built-in function)
631

converting to ASCII 143, 631–632
EBCDICTABLE parm

in OPTIONS statement 562
Either

of two conditions 42, 466, 471
ELSE parm

in COMPUTE statement 50, 511
Empty

report, completion code for 562
EMPTYCC parm

in OPTIONS statement 562
EMPTYMSG parm

in OPTIONS statement 562
Encrypted data

how to process 357
End of file

forcing EOF early 551, 576
End of report

printing lines after 309, 318, 572
printing lines at 207

Ending
of words (singular or plural) 198, 489, 625

EQU statement in Assembler 387, 390
EQUAL parm (see #EQUAL parm)
Equal to

comparing contents of fields 40, 461, 470
Error indicators

ambiguous reference (***A***) 644
divide by zero (***Z***) 645
error (***E***) 644
invalid data (***I***) 644
list of 160, 644
offset error (***F***) 355, 644
overflow (***V***) 645
propagation of 647
size (***S***) 135, 136, 182, 453, 645
suppressing 646
testing a field for errors 642
704 Spectrum Writer User’s Guide & Reference Manual

undefined field (***U***) 645
(see also under ***A***, ***I***, etc.)

Error messages
changing I/O error severity 569, 586
changing severity of 549, 569, 586
DD used in JCL 414
logical unit written to (VSE) 427, 433
normalization errors 248, 566

ERROR see #ERROR built-in function) 642
ESDS VSAM files

reading 329, 331
writing to 417, 432
writing to (VSE) 432

EXAMINE (see under #TRANSLATE)
Examples

files used in 648
Excel

example 89, 109, 111, 118, 119, 121
producing output file for 572

Exception reports
completion code 568

Excluding
fields from output 158, 159, 504, 505

Exit programs
(see Data exit programs and I/O Exit)

EXITPARM parm
in FILE statement 360, 534
in INPUT statement 546
in READ statement 582

Expressions
computational (see Computational expressions)
conditional (see Conditional expressions)

EXTENT statement in JCL 433, 434

F
False

bit value 642
Features, list of 25
FIELD statement 521

creating from Assembler record layout 378, 479
creating from Cobol record layouts 378, 493
data types, list of 609
defining a field's column (or displacement) 353,

524
defining a field’s column (or displacement)

350–355
defining arrays 243, 355
defining column headings 350
how many decimal digits 338, 525

how to define bit fields 347
how to define character fields 333, 339
how to define date fields 340
how to define fields created in exits 357, 666
how to define numeric fields 335, 339
how to define time fields 344
how to use 333
keeping in a copy library 363
location determined by another field 266, 353,

528
making starting column relocatable 524
multiple fields for same column in record 237
parms (see under name of parm)
purpose 326
redefining part of a record 327, 352, 368, 524
rules for field names 446
syntax 522
where to put 360, 421, 437
with DB2 data 407, 408
(see also Fields)

Fields
built-in (see Built-in fields)
comparing contents of 40, 460, 470
converting character to numeric, and v.v. 340
creating your own 46, 98, 472, 506
defining as character versus numeric 339
defining for an earlier file 356
defining one-time fields 368
defining, how to 326, 333
how date fields stored in files 341, 611
how many decimal digits in 338, 512, 525
how many digits in 337
how numeric fields stored in files 335, 610
how time fields stored in files 613
listing of fields in input file 37, 372, 550, 589
name cannot be split across lines 444
name used as column heading 130
qualifying field name with record name 77, 226,

228, 550, 589
resolving ambiguous field names 77, 226, 228,

447, 550, 589
specifying which to print 498
testing for errors in 642
testing for missing fields 230, 642
used in examples 648
where located in records 350, 352, 353
(see also FIELD statement)

File names
for naming Web reports 296
used as record names 228, 550, 589

FILE parm
in ASM & COBOL statements 372, 374, 495
Index 705

in FIELD statement 356, 369, 526
FILE statement 531

how to use 328
keeping in a copy library 363
maximum record length 533, 535
overriding parms temporarily 331
parms (see under name of parm)
purpose 326
rules for file names 446
syntax 532
use with ASM and COBOL statements 370, 372,

379
variable length files 535
VSE file attributes 532
where to put 360, 421, 437
which DD used for file 423, 534
which DLBL/TLBL used for file 432
with DB2 data 407, 408
(see also Files)

Files
assigning file names 329, 532
auxiliary input files 76, 578, 587, 591
auxiliary input files are keyed 590
chaining (nesting) input files 226
copying statements from 363, 516, 545, 582
DDNAME and DSNAME used 329, 423, 517,

519
defining automatically 363
defining without using a copy library 360
how primary and auxiliary input files are processed

76, 552, 591
how to define (OS/390) 326, 328
how to define (VSE) 326, 331
I/O errors 230, 569, 586
input file attributes (VSE) 532, 544, 580
maximum record length 330, 331, 332, 547, 584
multiple input files 76, 224, 578
overriding file definition 330, 332, 542, 578
primary input file 76, 542, 552
reading a certain number of records 565
reading if key greater than or equal 230
reading multiple records for the same key 232
reading multiple records from same file 224, 589
reading with generic key 230, 547
resolving ambiguous file names 226
sample files used in examples 648
sorting mainframe files 283
specifying the input file 34, 542, 578
stop reading before EOF 551, 576, 660, 661
subsetting mainframe files 283
types of files supported 329, 331, 536
types of files supported (VSE) 533

using PDS files as input 329
using tape files as input 329, 331, 332
using VSAM files as input 329, 331, 551, 590
variable length 352
which DD statement used to read 329, 423, 534,

546, 582
which DLBL statement used to read 331, 432
(see also FILE statement)

FILLER 386
FILSZ parm, of system Sort program 574
First

day of a week, month or year, calculating 638, 639
line of report, putting lines before 309, 318, 572

FIXED BINARY (see BINARY)
FIXED DECIMAL (see PACKED)
Fixed format ASCII 279
Flags (see Bit fields)
Fonts

blinking 294, 322
bold font 294, 296, 298, 301, 303, 322
colored font 298, 315, 319
fontname 322, 323
italics 294, 303, 323
mainframe printers 418, 572
non-proportional 301
proportional 301
size 322–323
specifying 294, 301, 319, 322, 323
subscripts 324
superscripts 324
underlining 294, 303, 324

FOOTING parm
in BREAK statement 110, 184, 188, 207, 286,

483
in BREAK statement, how to use 188
in BREAK statement, multiple 196
in BREAK statement, printing blank lines 184
in BREAK statement, using instead of total line

196
where footing line prints 196

Footings
at bottom of each page (see FOOTNOTE state-

ment)
at end of control breaks (see FOOTING parm)
lines printed at end of report 207

FOOTNOTE statement 538
alignment (left, center and right) 539
how to use 175
including date, time and page number 175
suppressing footnote lines 568
syntax 539
to force full page length 300
706 Spectrum Writer User’s Guide & Reference Manual

where to put 445
Forcing lower level control breaks 206
Format (see Display formats)
FORMAT built-in function (see #FORMAT built-in

function) 632
FORMAT parm

in FIELD statement 326, 335, 338, 343, 347,
526

in OPTIONS statement 140, 271, 278, 562
Forms, how to print 153
Free format

control statements 443
fields, scanning for text in 462, 471

FULLWORD
data type 610
writing fullwords to output file 619

Functions (see Built-in functions)

G
GB (gigabytes)

formatting 454
GENERIC parm

in READ statement 230, 232, 583–588
GETVIS 433
GIF files 305
GMT times 575
GRAND parm (see #GRAND)
Grand totals

aligning in Web reports 303, 306, 316
customizing 207, 483
display format used in 140
how many decimals in 140
in Web reports 303, 309
printing averages at 207, 483
printing statistical lines at 207, 209, 483
prints by default 35
size error in (***S***) 135, 136, 454
spacing at 209, 279, 567
suppressing 209, 279, 567
totalling time fields 150
when put on new page 209
which columns receive 148, 339, 502, 509, 523
(see also Totals and Total line)

Graphics
aligning in Web reports 305, 323
aligning text and graphics 312
at control breaks 308
characters, in literals 448
in report titles 305, 312

in Web reports 294, 305, 306, 323
width of 323

Graphs
bar, how to print 154

Greater than
comparing contents of fields 42, 461, 470
largest of several fields 637
read if key greater than or equal 230

Gregorian dates 269, 272, 343
Grouping

computations 46, 474
report lines 65
rows in PC file 108

H
HALFWORD

data type 610
writing halfwords to output file 619

Harvard Graphics
column headings for 279
producing output file for 564

HDGSEP parm
in OPTIONS statement 132, 133, 350, 563

Header records
in batch type files 234, 289
normalizing batch files 247

HEADING parm
in BREAK statement 200, 207, 484
in FIELD statement 326, 350, 527

Headings
at beginning of a control group 200, 484, 486
column headings (see Column headings)
printing at top of each page 207
printing control break headings on each page 202,

486
printing once at beginning of report 207
row 153, 501
(see also Titles)

HEX display format 618
use in COLUMNS statement 139
use in FORMAT option 563

Hexadecimal representation
dates stored in 341, 612, 621
how to print 139, 335, 618
in computational expressions 449, 514
in conditional expressions 449, 464, 472, 664
times stored in 614, 615, 623
writing literals in 448, 472, 664

HGCOLHDG parm
Index 707

in OPTIONS statement 133, 279, 564
HHMM

time fields 613, 614, 622–623
HHMMSS

built-in field (see #HHMMSS built-in field) 627
time fields 613, 614, 622–623

Higher
level of control break 204

High-values 472
in date field 271

Histograms (see Bar graphs)
Holes, leaving room to punch 154
Host variable

in DB2 expressions 405, 406
Hot links, in Web reports 294, 308, 322
Hours

12-hour format 347, 622
added to STCK fields 575
adding to or subtracting from a date-time 639
adding to or subtracting from a time 640, 641
displaying times as 622, 623
extracting from a given time 635
HOURS data type 615
since midnight 615

HTML
<BODY> tag 319
<HEAD> tag 319
 tag 323
<PRE> tag 319
adding hot links 308, 322
audio and video clips 308
centering text 298, 322
closing tags 318
creating HTML reports 294
dynamic HTML 297, 306, 315
file name extensions 296
for body of report 301
for column headings 301, 316, 564, 565
for control breaks 303, 308, 309
for total lines 301, 303, 309, 564
HTML comments 316, 324
HTML headers 323
HTML labels 309, 322
HTML tables 312, 324
in report titles 298, 305, 308, 312
list of HTML colors 322
list of HTML tags 321
opening tags 318
parm, in OPTIONS statement 294, 301, 316,

319, 320, 564
printing a horizontal line 303, 323
putting graphics in report 305, 306, 323

syntax-checking HTML 297
where to find online specifications 321
writing your own 296

HTMLAID parm
in OPTIONS statement 301, 316, 319, 320, 564

Hundreds
hundredths of seconds in time field 346
rounding to 638

Hypertext links (see Hot links)

I
I/O

errors, changing severity 569, 586
If logic 459

in COMPUTE statement 50, 513
selecting records to include in report 40, 540
(see also INCLUDEIF statement and WHEN

parm)
IF statement

in COBOL, PL/I or BASIC 42
in COLUMNS statement 159, 501
INCDATE (see #INCDATE built-in function) 639
INCDATETIME (see #INCDATETIME built-in func-

tion) 639
INCDURATION (see #INCDURATION built-in func-

tion) 640
INCLUDEIF statement 540

comparing date fields 341
comparing time fields 344
equivalent to DB2 WHERE clause 397
examples 449–451, 470
how to use 40, 93
including a certain number of records in report 565
including only certain dates in report 42, 449, 470
including only certain times in report 44, 450
multiple statements 40
no records included 562
omitting 540
reading a certain number of records 565
selecting certain whole records to output 283
selecting records with invalid data 464, 472
specifying multiple conditions 40, 465, 471
speed-up tips 652
syntax 541
use of the keyword "AND" 42, 465, 471
use of the keyword "NOT" 471
use of the keyword "OR" 42, 466, 471
where to put 40
which fields allowed in 40
708 Spectrum Writer User’s Guide & Reference Manual

writing conditional expressions 40, 459
(see also Conditional expressions)

Including
a certain number of records in report 565
selected records in report 540
(see also INCLUDEIF statement)

INCTIME (see #INCTIME built-in function) 641
INDEX built-in function (see #INDEX built-in func-

tion) 635
Index variables 237
In-line

putting definition statements in-line 360
INNER parm

in COLUMNS statement 158, 505
INPUT statement 542

copies records from copy library 363, 545
how to use 34
I/O errors 569
listing records copied from copy library 364, 547
naming the record 228, 550
overriding file definition parms 330, 332, 542
parms (see under name of parm)
read partial file 551
reading a certain number of records 565
reading DB2 tables 393, 545
specifying more than one input file 76, 578
syntax 543
variable length files 547
where to put 445
which DD used for file 423, 546
which DLBL/TLBL used for file 432

INT built-in function (see #INT built-in function) 635
International formatting options 140
Internet Explorer 294
Internet protocol address (see IP address)
Interval

computing time interval 274
totalling 150

Invalid data
how sorted 601
identifying records that contain 464, 472, 647
indicator (***I***) 644
suppressing error 577, 646
suppressing from report 254, 257
testing for 642, 643

IOEXIT
file type 533, 551
parm, in FILE statement 534, 673
parm, in INPUT statement 546
parm, in READ statement 583

IP address, parsing 633
ISNUM see #ISNUM built-in function) 642

Italic
font, specifying 294, 303, 323

ITEM1-ITEM9 built-in fields (see #ITEM1-ITEM9
built-in fields) 626

ITEM-ENDING built-in field (see #ITEM-ENDING
built-in field) 625

Items
number of, in control group 181, 198, 489, 626
number of, in report so far 198, 489, 626
number of, in whole report 35

ITEMS built-in field (see #ITEMS built-in field) 626

J
JCL 411

completion codes 230, 425, 439, 549, 569, 586
copy library used 423, 517
copying statements not in the copy library 519
DATE statement (VSE) 626
DD used for report 414, 417, 419, 571
DD used for sort work files 414, 574
default blocksize 567
DLBL used for report 435
DLBL used for sort work files 434, 435, 574
EXEC statement SIZE parm (VSE) 433, 575
for DB2 393, 415
for multiple reports (OS/390) 419
for multiple reports (VSE) 435
for OS/390 systems 412
for PC files (OS/390) 415
for PC files (VSE) 429
for reports (OS/390) 412, 415
for reports (VSE) 427
for VSE systems 425
list of DDs used 414
logical unit assignments 427
logical unit used for report (VSE) 431
LRECL of output file 571
no copy library used 360
sample PROC (OS/390) 417
specifying buffer size in JCL 423, 433
what DD statement used for input files 329, 423,

534, 546, 582
which DLBL/TLBL used for input files 331, 432,

533
writing FIELD statements to output file 379

Job
completion codes 230, 549, 569, 586
including jobname in report 625

JOBNAME built-in field (see #JOBNAME built-in
Index 709

field) 625
JPG files 305
Julian dates 343, 612, 613

date literals 44
formatting output as 621–622
in Cobol records 375
in input file 341, 612, 613
with all zeros or all nines 271
working with 269, 271
writing to output file 282

Justification
doesn’t look correct 168, 173, 606
maximum size allowed 146
of column headings 132
of data in report columns 129, 146, 505
of data printed at control breaks 192, 491
of data within titles 165, 168, 606
of data, default 146
of titles (left, center and right) 55, 153, 168, 603
(see also Alignment)

K
KB (kilobytes)

formatting 454
KEEPRDW parm

in FILE statement 263, 353, 535
in INPUT statement 353, 547
in OPTIONS statement 565

KEY parm (see READKEY parm)
KEYRANGE parm

in INPUT statement 547, 591, 660
Keys

auxiliary input files 590
auxiliary input files are keyed 76, 587, 591
building a packed or binary read key 589
creating read key with COMPUTE statement 79,

589
generic 230, 232, 547
generic (see also GENERIC)
greater than or equal to 230, 583
key to one file is contained in another file 226
reading a keyrange 547, 660
selecting key for READ statement 77, 226, 587

KGE parm
in READ statement 230, 583–588

KSDS VSAM files 329, 331, 547

L
Label

HTML labels 309, 322
tape labels (VSE) 533

Large (see Big)
Laser printers

fonts 572
setup string 572
skipping to new sheet 572

Last
line of report, putting lines after 309, 318, 572
sign in last digit of number 610

LCASE built-in function (see #LCASE built-in func-
tion) 632

Leading
blanks, removing 631
slash, in TITLE statement 169
zero, in time literals 450
zero, not required in date literals 449
zero, suppression 139, 455, 619
zeros, printing 455, 619

Leap year
testing for 642

LEAPYEAR see #LEAPYEAR built-in function) 642
Left alignment

of titles 55, 153, 168, 603
(see also Alignment and Left justification)

LEFT built-in function (see #LEFT built-in function)
632

Left justification
of column headings 132
of data in report columns 146, 505
of items in control break lines 192, 491
(see also Justification)

Left margin
aligning titles with 168, 603
how to specify 154, 565
moving first report column over 181, 210
(see also Margins)

LEFT parm
in #FORMAT built-in function 632
in BREAK statement 192
in COLUMNS statement 129, 146
in TITLE statement 168, 606

LEFTMARGIN parm
in OPTIONS statement 154, 565

Legend, for PC files 133
Length

allowed for file and field names 444, 446
710 Spectrum Writer User’s Guide & Reference Manual

comparing operands of different length 462, 470,
472

of date fields 611
of PC file records (OS/390) 415, 571
of PC file records (VSE) 431
of time fields 613
of variable length records 353

LENGTH (LEN) parm
in FIELD statement 335, 337, 341, 346, 528

Less than
#MIN built-in function 637
comparing contents of fields 44, 461, 470

Letters
ASCII versus EBCDIC 558, 562, 631, 632
lower case 632
upper case 634

Level, of control breaks 181, 204
Librarian (OS/390)

copying records from 383, 519
Librarian (VSE)

assembler copy library 559
COBOL copy library 559
copying records from 516
using as copy library 363, 437, 576
where loaded 434
which member type read 518, 566

Limiting
records read from input file 551, 576

Lines
how many per page 571
line number in report 211
printing a vertical line between columns 156
putting a line at control breaks in Web reports 303,

323
Links (see Hot links)
LIST parm

in COPY statement 446, 519
in INPUT statement 364, 547
in READ statement 364, 584

LIST/NOLIST parm
in COLUMNS statement 159, 505

Listing
of fields in a DB2 table 397
of fields in a file 37, 372, 374, 550, 589
records copied from copy library 364, 519, 547,

584
Literals 448

headings for columns of literal text 133, 501
how to write 42, 448
HTML tags 297
in body of report 126, 153, 501
in DB2 expressions 405, 407

in hexadecimal format 448, 464, 472, 514
in PC files 501
in titles 53, 161, 444, 448, 605
putting in PC file 95
that don’t fit on single line 444
using DD/MM/YY date literals 561
when to use quotation marks 340, 450
writing time literals 450

Location
of field in record, after defining a bit field 352
of field in record, default 351, 524

Logical operations
#OFF built-in function 642
#ON built-in function 643
AND operation 630
OR operation 633
XOR operation 635

Logical units
assignments 427
for tapes (VSE) 332

Logo
in Web reports 294, 305, 312, 319, 323

LONG1-LONG3
date display format 621

Loop
looping through arrays 238

Lotus 1-2-3
example 101, 103
producing output file for 572

Lower
#MIN built-in function 637
level of control break 204

Lower case 632
Low-values 472

in date field 271
LRECL parm

in FILE statement 330, 535
in INPUT statement 547
in JCL, for output files 415
in READ statement 584
LRECL of output file 571

M
MAINFRAME parm

in OPTIONS statement 565
Mainframes

producing output files for 280, 565
sorting mainframe files 283
subsetting mainframe files 283
Index 711

MAINSIZE parm
for system sort program 568, 575

MAKEDATE built-in function (see #MAKEDATE
built-in function) 640

MAKENUM built-in function (see #MAKENUM
built-in function) 636

MAKETIME built-in function (see #MAKETIME
built-in function) 641

Margins
aligning titles with 168, 603
how to specify 154, 565, 571
moving first report column over 181, 210

Mathematical operations
between different types of numeric fields 337
how to perform 47, 472, 506, 513
(see also COMPUTE statement and Statistical

lines)
MAX built-in function (see #MAX built-in function)

637
Maximum

#MAX built-in function 637
length of file and field names 444, 446
line (see also Statistical lines) 67, 186, 484, 597
line, printing at Grand Total time 207, 483
number of control statements 568
number of digits allowed in literals 449
number of lines to print 566
number of pages to print 566
number of records to include in report 565
number of records to read 565
selecting the largest of several values 637
size of character fields 511
value in control group, printing 67, 186, 192,

200, 491
value, which columns receive 148, 339, 502,

509, 523
year allowed in date literals 449
(see also MAXIMUM parm)

MAXIMUM (MAX) parm
in BREAK statement 67, 186, 484
in BREAK statement print expressions 192, 196,

200
in BREAK statement, two different uses 194
in SORT statement 186, 597

MAXINCLUDE parm
in OPTIONS statement 565, 664

MAXINPUT parm
in OPTIONS statement 565, 663

MAXINVSHOW parm
in OPTIONS statement 566

MAXNORMDUMP parm
in OPTIONS statement 248, 550, 566, 570, 587

MAXOCCURS parm
in ASM & COBOL statements 378, 495

MAXPAGES parm
in OPTIONS statement 566, 567, 664
suppressing message 279, 567

MAXPRINT parm
in OPTIONS statement 566, 567, 664
suppressing message 279, 567

MB (megabytes)
formatting 454

MDY see #MDY built-in function) 640
Member

of copy library, which one copied 367, 517
type, of VSE library 566

Memory (see Storage)
MEMTYPE parm

in OPTIONS statement 566
Messages

changing severity of 230, 549, 569, 586
suppressing maximum printed message 279, 567

Microsoft Access
example 94, 99
suppressing columns headings

Access, Microsoft
suppressing columns headings 93

Microsoft Excel
example 89, 109, 111, 118, 119, 121

Microsoft Works
example 106

MID files 308
Midnight

did time interval cross into next day 639
Millions

rounding to 453, 638
MIN built-in function (see #MIN built-in function)

637
Minimum

#MIN built-in function 637
excluding zero values 186, 485, 491, 598
line (see also Statistical lines) 67, 186, 484, 598
line, printing at Grand Total time 207, 483
value in control group, printing 67, 186, 192,

200, 491
value, which columns receive 148, 339, 502,

509, 523
(see also MINIMUM parm and NZMINIMUM

parm)
MINIMUM (MIN) parm

in BREAK statement 67, 186, 484
in BREAK statement print expressions 192, 200
in BREAK statement, two different uses 194
in SORT statement 186, 598
712 Spectrum Writer User’s Guide & Reference Manual

Minus sign (-)
blanks required around 473
formatting negative numbers, where to put 452
in numeric literals 449
meaning in COLUMN or DISP parm 351, 524
name broken at, for column headings 130, 504
subtraction symbol 47, 473
use in field names 446, 473

MINUTENUM built-in function (see #MINUTENUM
built-in function) 637

Minutes
adding to or subtracting from a date-time 639
adding to or subtracting from a time 640, 641
displaying times as 622, 623
extracting from a given time 637
MINS data type 614, 615
rounding to minutes 58, 347
since midnight 614, 615

Missing
records 231, 424, 433
records, default value used 229, 594
records, how to detect 230, 642

MISSING see #MISSING built-in function) 642
MISSOFFSET parm

in OPTIONS statement 566, 646
MMDDYY

date fields 611, 612, 620–621
MMDDYYYY

date fields 611, 612, 620–621
MOD built-in function (see #MOD built-in function)

637
Month

adding/subtracting months to/from a date 639
calculating first & last days of a month 638
calculating previous 221
converting numeric day, month and year into a date

640
extracting for a given date 221, 368, 637
name, for a given date 633
spelling out 139, 192, 343, 503, 621, 632
spelling out name, in column headings 224
spelling out name, in titles 55, 58, 167

MONTH built-in function (see #MONTH built-in
function) 633

MONTHNUM built-in function (see #MONTHNUM
built-in function) 637

MULTI parm
in READ statement 79, 232, 401, 584–588, 590,

658
with DB2 tables 590

MULTICOLHDG parm
in OPTIONS statement 133, 153, 254, 566

Multi-line reports 151, 249, 498, 566
Multiple

BREAK statements 69
COLUMNS statements 151, 254, 498, 566
conditions 40, 50, 465, 471
control breaks 69, 204, 210
DB2 tables 400, 403
fields defined at same location in record 158, 327,

352, 368, 505
footing lines at control breaks 196
INCLUDEIF statements 40, 540
input files 76, 224, 578
levels of totals 71, 204, 210
lines required for control statement 444
lines, splitting column headings 130, 350, 504,

527
multiple step jobs 284
NEWOUT statements 554
PC file records per input record 498
READ statements 79, 224
records for a READ statement 584
records from same input file 224
records in file for a key 232
report lines per record 151, 249, 498
reports in one run 289
reports, JCL changes (OS/390) 419
reports, JCL changes (VSE) 435
reports, sort work files for 414, 420, 435, 574
reports, storage for sort 575
sort fields 595
TITLE statements 53
total lines at control breaks 184
values in a relation condition 468, 471

Multiplication
how to perform 47, 473, 506
results in overflow (**V**) 645

N
NAME parm (see RECNAME parm)
Names

assigning field names 335
assigning file names 329, 367
field names from COBOL and Assembler record

layouts 377, 386, 390
getting list of DB2 column names 397
getting list of field names 37, 372, 378, 550, 589
month, spelling out 55, 58, 139, 167, 192, 343,

503, 621, 633
of day for a given date 631
Index 713

of day for current day 625
removing blanks between last and first name 631
rules for file, field, and record names 444, 446
sorting mixed case names 634
spelling out state name 228, 513
(see also File names and Record names)

Narrower
making a column narrower 60, 135, 505
(see also Width)

Negate
how to negate a condition 469, 471

Negative
numbers, scaled down to far or to zero 455
sign (see Minus sign)

Nesting
control breaks 204, 210
input files 226
nested arrays 244
parentheses 467, 474

New fields
how to create 46, 98, 472, 506

New page
skipping to in control listing 446
skipping to, in report 67, 178, 253, 486, 598

NEWOUT statement 289, 554
NEWSHEET (NEWSHEET1) parm

in BREAK statement 180, 209, 487, 572
in SORT statement 180, 209, 572, 598

Next page
skipping to new page 67

Nibble
C versus F for packed data 630, 633

NOACCUM parm
how to use 150
in COLUMNS statement 128, 150, 502
in COMPUTE statement 150, 509
in FIELD statement 150, 326, 338, 346, 451,

523
NOBLOCKSIZE parm

in OPTIONS statement 567
NOCC parm

in OPTIONS statement 279, 320, 567
NOCHECK parm

in OPTIONS statement 567
NOCLEARIO parm

in OPTIONS statement 567
NOCOLHDGS parm

in OPTIONS statement 93, 133, 175, 279, 320,
567

NOCOMMAS display format 619
NOGRANDSPACES parm

in OPTIONS statement 279, 283, 567

NOGRANDTOTAL parm
in OPTIONS statement 209, 279, 567

NOLABEL 533
NOMAXMSG parm

in OPTIONS statement 567
NONORMALIZE parm

in INPUT statement 548, 549
in READ statement 585

Non-proportional font 301
Non-zero average

line (see also Statistical lines) 67, 186, 485, 598
value in control group, printing 67, 186, 193,

200, 491
which columns receive 148, 339, 502, 509, 523

Non-zero minimum
line (see also Statistical lines) 67, 186, 485, 598
value in control group, printing 67, 186, 193,

200, 491
value, which columns receive 148, 339, 502,

509, 523
NOOVERPRINT parm

in OPTIONS statement 133, 568
NOREPEAT/NOREPEATPAGE parm

in COLUMNS statement 129, 144, 505
Normalization

errors 248, 549, 566, 569, 586
FIELD statements needed 243, 355
nested arrays 244
of arrays 237–248, 548, 585
of batched files 247
parallel arrays 245
preventing 548, 585
selected records only 549, 586
(see also NORMALIZE parm and NORMWHEN

parm)
NORMALIZE parm

in FILE statement 242, 536
in INPUT statement 240, 548
in READ statement 585

NORMWHEN parm
in FILE statement 536
in INPUT statement 247, 549
in READ statement 586

NOSEQ parm
in ASM & COBOL statements 372, 495

NOSORTSIZE parm
in OPTIONS statement 568

NOSTOPWHEN parm
in INPUT statement 536, 549, 551

NOSYSINLIMIT parm
in OPTIONS statement 568

Not character (¬)
714 Spectrum Writer User’s Guide & Reference Manual

use in conditional expressions 470
NOT keyword

use in conditional expressions 469, 471
NOTALIAS parm

in COPY statement 519
NOTEMPTYCC parm

in OPTIONS statement 568
NOTITLES parm

in OPTIONS statement 134, 175, 279, 313, 568
NOTOTAL parm

in BREAK statement 185, 196, 209, 212, 487
in SORT statement 185, 599

NOUNDERSCORES parm
in OPTIONS statement 133, 134, 300, 320, 568

Number
in COLUMNS statement, meaning of 502, 505
including a certain number of records in report 565
of characters in report line 160, 417
of lines to print 566
of occurrences, counting 214
of pages to print 566
reading a certain number of records 565

Number of items
as column in report 211
in control group 181, 198, 489, 626
included in report 35
printed in report so far 198, 489, 626

Number sign (#), meaning of 53
NUMERIC

data type 610
display format 619

Numeric fields
comparing 42, 337, 449, 461, 470, 514
comparing to character fields 463
confusing with character fields containing num-

bers 339, 450
converting to a time value 274, 637, 641
converting to character 340, 632
converting to date value 475, 640
creating your own 46, 449, 472, 506
default display format 562, 618
formatting in report 58, 137, 167, 192, 338, 451,

503, 619, 632
formatting with dots instead of commas 140, 619
how sorted 600
how stored in input file 335, 529, 610
how to define 335, 521
integer portion 635
performing calculations 47, 449, 472, 506, 513
printing as a bar graph 154
printing blanks instead of zero 129, 167, 192,

490, 503, 605, 632

sign in last digit 610
specifying where to put plus, minus sign 452
testing for valid number 464, 472, 642, 647
writing numeric literals 42, 449, 470
zero assigned if record missing 229, 594

NUMERIC-SLD data type 610
NUMWORDS built-in function (see #NUMWORDS

built-in function) 638
NZAVERAGE (NZAVG) parm

in BREAK statement 67, 186, 485
in BREAK statement print expressions 193, 200
in BREAK statement, two different uses 194
in SORT statement 186, 598

NZMINIMUM (NZMIN) parm
in BREAK statement 67, 186, 485
in BREAK statement print expressions 193, 200
in BREAK statement, two different uses 194
in SORT statement 186, 598

O
Occurrences

counting in a file 214
OCCURS clause in COBOL 249, 255, 266, 327,

355, 377, 495
how to process arrays 237

Odd page numbers
skipping to 180, 487

ODDPAGE (ODDPAGE1) parm
in BREAK statement 180, 209, 487
in SORT statement 180, 209, 598

OFF built-in function (see #OFF built-in function) 642
OFFSET parm

error in calculating 644
in FIELD statement 266, 353, 528
suppressing errors in 566, 646

OFFTEXT parm
in FIELD statement 349, 529, 601

ON built-in function (see #ON built-in function) 643
One-time

lines at beginning or end of report 309, 318, 572
One-to-many I/O 232, 584
ONIOERROR parm

in OPTIONS statement 569
in READ statement 586

ONNORMERROR parm
in INPUT statement 549
in OPTIONS statement 569
in READ statement 586

ONTEXT parm
Index 715

in FIELD statement 349, 529, 601
Operating systems 411
Operations

character, how to perform 48, 473, 506
mathematical, how to perform 47, 473, 506
(see also COMPUTE statement and Computational

expressions)
Operators

allowed in relation conditions 461
OPTIONS statement 555

column heading options 133, 175
parms (see under name of parm)
parms for custom PC files 279
sort-related options 601
specifying shop-wide options 414, 424
syntax 556–558
title options 133, 175
Web report options 320
where to put 445, 555

OR built-in function (see #OR built-in function) 633
OR keyword

use in conditional expressions 42, 466, 471
Order

in which BREAK statements appear 204
in which columns appear 159, 503
in which conditions are evaluated 467
of control statements 444
of input file processing 552
of operations in computational expressions 474
of report, how to specify 62, 595
of rows in PC file, how to specify 105
(see also SORT statement)

ORDERBY parm
in INPUT statement 399, 550
in READ statement 401, 587
similar to DB2 ORDER BY clause 399

ORG statement in Assembler 387
OS/390 operating system 412
OUTATTR parm

in ASM and COBOL statements 379, 496
in OPTIONS statement 429, 431, 435, 570

OUTDDN parm
in ASM and COBOL statements 379, 496
in OPTIONS statement 420, 571

OUTER parm
in COLUMNS statement 158, 505

OUTLRECL parm
in OPTIONS statement 418, 420, 571

Output files
access method used 417, 431
attributes (VSE) 570
blocksize 567

DD used for 414, 419, 571
DLBL used for 427, 435
empty 562
for mainframe programs 280, 565
for non-standard PC programs 275
HTML 294
JCL (OS/390) 415
JCL (VSE) 429
logical unit written to (VSE) 427, 435
making binary data fields 282
making packed data fields 282
not empty 568
printing one-line column headings 279
producing delimited ASCII file 276
producing fixed format ASCII file 279
record size 571
spacing between fields 282, 560
specifying display format 278, 282, 562
specifying field width 282
specifying record length (OS/390) 415
specifying record length (VSE) 432
specifying the delimiter 278, 560
suppressing blank lines 279, 283, 567
suppressing column headings 279, 283, 567
suppressing report titles 134, 175, 279, 283, 568
suppressing the carriage control character 279,

283, 567
suppressing the Grand Totals 279, 283, 567
suppressing underscores 568
using as an input file 234, 258
writing entire records from input file 283
writing FIELD statements to (OS/390) 496
writing FIELD statements to (VSE) 496
writing julian dates 282
writing selected records to output file 283
writing to VSAM (OS/390) 417, 571
writing to VSAM (VSE) 432
(see also PC files)

OUTPUT parm
in OPTIONS statement 279

OUTTYPE parm
in OPTIONS statement 417, 420, 571

Overflow
error indicator (***V***) 645
suppressing error 577, 646
testing for 642

Overlap
excluding overlapping fields from output 158,

505
title parts 173
total line text overlapping a column total 181

Overprinting
716 Spectrum Writer User’s Guide & Reference Manual

suppressing 133, 568
Overriding

column headings 60, 129, 130, 504
file definition parms 330, 332, 542, 578

P
Packed data

C or F in zone nibble 630, 633
calculating the number of digits 337
comparing with binary data 337
dates stored as 621–622
invalid 257, 577, 644
testing for invalid data 642
testing for valid data 464, 472, 647
unsigned, writing to output file 620
writing to output file 282, 620, 622, 623

PACKED data type
dates stored as 341, 612, 613
needed in read key 589
numeric field 333, 335, 610
times stored as 614, 615

PACKUN
data type, for time fields 614, 615
numeric data type 610
writing packed unsigned data to output file 620

Padding
blank, computed fields 511
blank, operands of different lengths 462, 470
hex literals 449
zero, operands of different lengths 472

Page
control group headings at top of 202, 207, 486
fixing page length 300
how many lines per page 571
layout, crosstab reports 219
maximum number to print 566
maximum width of 160, 417
printing footnotes at bottom 175
skipping to new page 67, 178, 253, 486
skipping to new sheet of paper 180, 487, 572,

598
skipping to new, in control listing 446
skipping to odd page 180, 487, 598
splitting related report lines across pages 253, 575
when Grand Totals put on new page 209

PAGE (PAGE1) parm
in BREAK statement 67, 178, 180, 209, 486
in SORT statement 178, 180, 185, 209, 598

Page breaks

suppressing 134, 175, 568, 577
Web reports 300
(see also Control breaks and BREAK statement)

Page number
built-in field 626
changing number of digits in 174
including in footnotes 175
including in titles 163, 604
resetting to page one 180, 486, 598
skipping to odd page 180, 487, 598

PAGELEN parm
in OPTIONS statement 154, 300, 424, 571

PAGENUM built-in field (see #PAGENUM built-in
field) 626

Panvalet
copying records from 383, 519

Paper
skipping to new sheet 180, 487, 572

Paradox
example 114

Parentheses
nesting 467, 474
use in COLUMNS statement 128
use in computational expressions 46, 474
use in conditional expressions 44, 467, 469, 471
use in SORT statement 178
use in TITLE statement 167

PARM parm (see EXITPARM parm)
Parms

passed to system sort program 574
passing parms to exit programs 357, 360, 525,

534, 546, 582, 666
PARSE built-in function (see #PARSE built-in func-

tion) 633
Parsing

IP addresses 633
Partial

input file, reading 551, 576
keys (see GENERIC parm)

Partitioned data set (see PDS files)
Path to VSAM file 232
Payback chart 25
PC file

converting entire mainframe file 88
PC files

ASCII files 143, 219, 276, 279
blank lines in 110
control breaks in 108
creating from an existing report 258
dates 271
default total line format 108
delimiter used 278
Index 717

display formats 278, 503
enclosing data in quotes 278
how to request 84, 572
inserting blank columns 110
JCL (OS/390) 415
JCL (VSE) 429
logical unit written to (VSE) 427, 435
printing one-line column headings 279, 564
producing non-standard PC files 275
related parms in OPTIONS statement 279
sorting 105
specifying record length (OS/390) 415
specifying record length (VSE) 432
summary files 110, 113
suppressing column headings 279
suppressing the carriage control character 279
suppressing the Grand Totals 279
using DB2 data 395
writing multiple records per input record 498
writing to VSAM (OS/390) 417
writing to VSAM (VSE) 432
YYYY dates 278

PDS files
copying statements from non-PDS files 519
rules for naming members 367
used as input to report 329, 536
using as copy library 363, 421, 423, 516, 517

PDSDDN parm
in COPY statement 517, 520

Percent
computing for control group 202, 510, 515
of totals 284
percentage change, how to compute 474
showing percent sign in PICTUREs 456

Period (.)
using instead of commas in numbers 140, 619

Photographs
in Web reports 294, 305, 306

PICTURE format
can prevent totalling 148, 502, 509, 523
compared to COBOL 327
currency indicator 140, 456
display format 619
eliminating unwanted leading digits 455
for international users 140
for time fields 622
how to write 451
in BREAK statement, examples 194
in COLUMNS statement, examples 138
meaning of @ and ? symbols 453, 454, 456, 458,

573
number scaled down too far or to zero 455

scaling to thousands, millions 453, 573
using to change column width 137
using to round out decimal digits 339
when allowed 340, 453
(see also TPICTURE format)

PL/1
"IF" statement 42, 540
INCLUDE library 363, 516
INDEX built-in function 462, 635

Plan
DB2 plan name 409, 560

Plural
ending of word 198, 489, 625

Plus sign (+)
addition symbol 47, 473
concatenation symbol 48, 473
formatting positive numbers, where to put 452
meaning in COLUMN or DISP parm 351, 524
meaning in PICTUREs 455

PM
showing AM and PM 347, 622

Pointers
to field within a record 266, 353, 528

POSTSCRIPT parm 318
in OPTIONS statement 297, 309, 315, 321, 572

Pound sign (#)
meaning of 53, 447
use in field names 446

POWER
downloading files from 429
writing output to (VSE) 431

Prefix
in variable length records 353, 524
using to resolve ambiguous field names 77, 226,

228, 550, 589
PRESCRIPT parm 318

in OPTIONS statement 297, 309, 313, 315, 572
in options statement 321

Previous
month, calculating 221
record, saving data from 234, 258
year, calculating 222

Primary input file
(see Files and INPUT statement)

Print expressions
in BREAK statement 189, 488
in COLUMNS statement 126, 499
in FOOTNOTE statement 175, 539
in TITLE statement 161, 169, 603

PRINT USING in BASIC 451
Printing

DD used for report 414, 417, 419
718 Spectrum Writer User’s Guide & Reference Manual

logical unit used for report (VSE) 427, 431, 435
on laser printer 572
printer can’t overprint 568
records copied from copy library 364, 519, 547,

584
Priority

in evaluating conditions 467
of operations in computational expressions 46,

474
PROC

sample PROC (OS/390) 417
Propagation

of error conditions (e.g. ***I***) 647
Proportional font 301
PRTSETUP parm

in OPTIONS statement 418, 572
PRTSHEET parm

in OPTIONS statement 424, 572
Punching holes

leaving room for 154

Q
QCHAR parm

display format 618
in OPTIONS statement 573, 618

QSAM 417
Qualified field names 77, 226, 228, 447, 550, 589
Quattro Pro

spreadsheet, example 91
Question mark (?)

meaning in PICTURES 454, 456, 458, 573
Quit

reading input file, when to 551, 576
Quotation marks (" and ’)

enclosing data in, for PC files 278, 618, 621, 623
imbedded within a literal 448
needed with character literals 42, 448, 470
use in BREAK statement 189
use in COLUMNS statement 126, 501
use in INCLUDEIF statement 42, 470
use in TITLE statement 53, 163, 444, 448, 605
when needed around numbers 340, 450
which character to use 42, 95, 448
which used for QCHAR display format 573

R
Random reads

auxiliary files read randomly 76, 591
Rank, printing in a report 211
Ratios, computing for control group 510
RDW 263, 353, 524, 535, 547, 565
READ statement 578

building a packed or binary read key 589
chaining 226
choosing the read key for 77, 226, 587
copies records from copy library 363, 582
default record name 228
generic keys 230, 232, 583
how to use 76, 116, 224
I/O errors 569, 586
key greater than or equal to 230, 583
listing records copied from copy library 364, 584
multiple READ statements for same file 224
multiple statements 79, 224, 578
naming the record 228, 589
overriding file definition parms 330, 332, 578
parms (see under name of parm)
reading DB2 tables 400, 582
reading multiple DB2 rows 79, 401
reading multiple records 584, 658
reading multiple records with the same key value

232
record not found 229, 594, 642
sorting on field from auxiliary input file 79
syntax 579
using COMPUTE field as read key 79, 589
VSAM versus sequential files 76, 590
where to put 445
which DD used for file 423, 582
which DLBL/TLBL used for file 432

Reading
a certain number of records 565
a range of records 660, 661
I/O errors 569, 586
not all VSAM records read 424
when to stop reading input file 551, 576

READKEY parm
building a packed or binary key 589
equivalent for DB2 tables 400, 590
in READ statement 230, 232, 587
in READ statement, key to file contained in anoth-

er file 226
in READ statement, using a COMPUTE field 79
key greater than or equal to 230, 583
reading multiple records 584
reading multiple records with the same key value

232
using generic keys 230, 583

REALDATE see #REALDATE built-in function) 643
Index 719

RECNAME parm
in INPUT statement 550
in READ statement 226, 228, 589
rules for record names 446

Record descriptor word (see RDW)
Record layouts

Assembler 369, 421, 438, 479
COBOL 369, 421, 438, 493

Record names
default value 228, 550, 589
how to assign 228, 550, 589
resolving ambiguous field names 77, 226, 228,

550, 589
rules for record names 446
use in COLUMNS statement 77, 88, 158, 226,

228, 500, 501, 550, 589
with DB2 data 403, 405

Record types
processing differently 234, 247
when to quit reading input file 551, 576

Records
defining the fields within 326, 521
discrepancy in record count 424, 433
length of variable length records 353
maximum size 330, 331, 332, 533, 535, 547,

584
not found for READ statement 229, 594
number of, included in report 35
reading more than one for the same key value 232
reading more than one from the same file 224
size of output records (OS/390) 571
size of output records (VSE) 570
specifying which to include in report 40, 449, 540
testing for missing records 230, 642
writing selected records to output file 283

RECSIZE 331, 332, 533, 570
REDEFINES clause in COBOL 327, 385
Redefining

part of a record 158, 352, 368, 505, 524
Relation

conditions, how to write 460
operators, list of 461

RELOC parm
in ASM and COBOL statements 381, 497

Relocatable
COLUMNS and DISP parms 524

Remainder, after a division 637
REPEAT parm

in BREAK statement 200, 202, 207, 486
Repeating

control group headings 202, 207, 486
values, blanking out 129, 144, 505

Reports
crosstab 219
for the Web 294
logical unit written to (VSE) 427, 431, 435
size of report line 571
using report output as input 234, 258
which DD used for 414, 417, 419, 571
wider than 132 characters 432

RETAIN parm
in COMPUTE statement 234, 258, 289, 512,

656
Retaining

data from previous records (see RETAIN parm)
Reverse

logic, in conditional expressions 469, 471
Right alignment

of titles 55, 168, 603
of titles, looks wrong 173, 606

RIGHT built-in function (see #RIGHT built-in func-
tion) 634

Right justification
needed in right aligned titles 173, 606
of column headings 132
of data in report columns 146, 505
of items in control break lines 192, 491
(see also Justification)

Right margin
aligning titles with 168
(see also Margins)

RIGHT parm
in #FORMAT built-in function 632
in BREAK statement 192
in COLUMNS statement 129, 146
in TITLE statement 168, 173, 606

ROUND built-in function (see #ROUND built-in func-
tion) 638

Rounding
decimal digits in computed fields 512
numbers to different scales 453
times 58, 347
to thousands, millions 638
using PICTURE to round 339

Row headings 153, 501
RRDS VSAM files 329, 331
Running count

of number of items printed in report 198, 489,
626
720 Spectrum Writer User’s Guide & Reference Manual

S
SAM files

used as input (VSE) 533
Saving

data from previous record 234, 258
SCALEPIC parm

in OPTIONS statement 454, 573
Scaling

eliminating unwanted leading digits 455
number scaled down too far or to zero 455
numbers automatically, how to 453

Scanning
a field for a given text 462, 471, 635

Scope
of ASM and COBOL statements 384

Searching
a character field for a text 462, 471, 635

SECONDNUM (see #SECONDNUM built-in func-
tion) 638

Seconds
adding to or subtracting from a date-time 639
adding to or subtracting from a time 640, 641
converting hours, minutes and seconds into 636
decimal digits 346
displaying times as 622, 623
extracting from a given time 638
how many seconds between two times 636
hundredths of seconds 346
omitting from time literals 44
rounding to minutes 58, 347
rounding to whole seconds 512
SECS data type 614
since midnight 614

Security, DB2 409
SELECT clause (DB2) 590
Selecting

a certain number of records 565
which records to include in report 40, 449, 540

Sequence numbers
in COBOL record layouts 372, 495

Sequential
files, defining 329, 331, 536
files, not allowed in READ statement 76, 590
files, used as input (OS/390) 536, 551
files, used as input (VSE) 533
primary input file read sequentially 76, 552

Setup
copy library (OS/390) 420
copy library (VSE) 437
DB2 409

defining files and fields 326, 521, 531
JCL (OS/390) 412, 415
JCL (VSE) 427, 429
printer setup text 418, 572
PROC (OS/390) 417

Sheet
skipping to new sheet of paper 180, 487, 572,

598
Shifting report 154, 181
SHORT1-SHORT3

date display format 621
Shorten (see Width)
SHOWFLDS parm

in ASM and COBOL statements 372, 378, 497
in INPUT statement 37, 397, 550
in READ statement 397, 589

Sign
nibble in packed data, changing 630, 633
plus or minus, computing absolute value 635
plus or minus, in numeric literals 449
plus or minus, where to print 452
sign in last digit of number 610
unsigned numeric data 610

SIGN clause in COBOL 387
SINGLESPACE (SINGLE) parm

in OPTIONS statement 573
Singular

ending of word 198, 489, 625
Size

block size of input file (VSE) 533
block size of output (VSE) 570
error indicator (**S**) 135, 453, 645
error indicator (**S**), in total line 182, 454
error indicator (**S**), using automatic scaling to

suppress 454
of column, changing 60, 135, 505
of computed fields 511
of fields in input records 528
of fields in output files 282
of items in control break lines 193, 491
of items in the title 165, 168, 606
of output records (OS/390) 571
of output records (VSE) 570
of report, maximum 160, 432
record size (VSE) 533
(see also Width)

SIZE parm in JCL 433, 575
Skewed

report columns 151
titles 168, 173, 606
(see also Alignment)

SKIPBLANKDET parm
Index 721

in OPTIONS statement 253, 257, 573
Skipping

to new page in control listing 446
to new page in report 67, 178, 486, 598

SKIPZERODET parm
in OPTIONS statement 249, 254, 257, 573

Slack bytes, in Cobol layouts 243
Slash (/)

changing delimiter for formatting dates 560
division symbol 46, 473
leading, in TITLE statement 169
meaning of ⁄ * and */ 445
trailing, in TITLE statement 169
used to align titles 55, 168

Smaller
making a column smaller 60, 135, 505
smallest of several values 637
(see also Width)

SMF files
date format 613, 622
tips for using 263

Social security numbers, how to format 340
Sort order

bit fields 601
character fields 600
dates 600
how to specify 62
mixed case fields 634
numeric fields 600
tie-breakers 559
times 600
(see also SORT statement)

SORT statement 595
ascending/descending order 62, 597
automatic sorting 62, 559
collating sequence used 600
computed field as sort field 506
control break spacing 67, 178, 598
control break spacing, summary reports 576
how invalid data is sorted 601
how to use 62, 105
JCL required 414, 434
multiple sort fields 62, 595
multiple sort tasks 414, 420, 435, 574, 575
multiple statements 595
name of sort program to use 574
options affecting 601
parms 62
preserving input file order 597
pre-sorting the input file 286, 659
printing averages at control breaks 186, 597

printing statistical lines at control breaks 186,
597–598

quitting the sort early 567
requesting control breaks 177, 596
requesting multiple control breaks 204, 210
requesting subtotals 177, 599
size parm passed to sort program 420, 436, 568,

575
skipping to new page 178, 598
sort field from auxiliary input file 79
sort program parms 574, 662
sort work files 414, 420, 434, 435, 574, 575
sorting mainframe files 283
speed-up tips 662
syntax 596
tie-breakers 597
using ORDERBY to sort DB2 data 399
where sort program loaded (VSE) 434
where to put 62, 445
which fields allowed 596

SORTDD parm
in OPTIONS statement 420, 436, 574

SORTNAME parm
in OPTIONS statement 574

SORTOPT parm
in OPTIONS statement 574, 663

SORTSIZE parm
in OPTIONS statement 420, 436, 575

SORTWK01 DD 414, 574
SORTWK1 DLBL 434, 574
SORTWORKNUM parm

in OPTIONS statement 434, 575
SPACE parm

for PC files 110
in BREAK statement 178, 209, 486

Spaces
ASCII spaces between fields 490
leading and trailing, removing 631
where allowed in control statement 443

Spacing
at control breaks 67, 69, 178, 486, 598
between report columns 128, 151, 502
between report columns in Web reports 301
between report lines 153, 573
of Grand Totals 209
report margins 154
(see also Spacing factor)

Spacing factor
default 128, 560
in COLUMNS statement 128, 151, 502
in lines printed at control breaks 191, 490
in titles 165, 167, 605
722 Spectrum Writer User’s Guide & Reference Manual

of zero 128, 198
used to shift report columns over 181, 210

Special characters
in literals 448, 472

Special forms, how to print 153
Speed-up tips 652
SPLITDETAIL parm

in OPTIONS statement 253, 575
Splitting

column headings into multiple lines 130, 350,
504, 527

control statement into multiple lines 444
report into multiple lines 151
titles into parts 55, 168, 603
why total line split into two lines 181

SRT2WK01, SRT3WK01, etc. DD 414, 420
SRT2WK1, SRT3WK1, etc. DLBL statements 436
Stacking

column headings 132, 350, 504, 527
Standards

shop standards 424
Stars (*) (see Asterisks)
STARTCOL parm

in ASM & COBOL statements 384, 497
in ASM and COBOL statements 384

STARTDISP parm
in ASM & COBOL statements 384, 497

State
spelling out name 228, 513

Statistical lines
at control breaks, customizing 186, 483–485
how to print 67, 186, 483–485, 597–598
order in which they print 188
printing at Grand Totals time 207, 483
printing the number of items in a control group

198, 489
which columns included in 148, 339, 502, 509,

523
which ones print at end of report 209

Statistics
breaking totals down 217
counting occurrences 214
for individual fields, how to print 191, 491
VSAM record count wrong 424
(see also Statistical lines)

STCKADJ parm
in OPTIONS statement 274, 575, 613, 616

STCKDATE
data type 575, 613

STCKTIME
data type 274, 575, 616

STDLABEL 533

STEPLIB DD 415
Stop

reading the input file, early 551, 576
the run if I/O error 569, 586

STOPWHEN parm
general 591
in FILE statement 536
in INPUT statement 551, 661
in OPTIONS statement 551, 576
overriding 549

Storage
used for sort 420, 436, 568, 575

Stringing fields together 48, 474
Subheadings (see Headings)
SUBLIB parm

in COPY statement 518, 520
in OPTIONS statement 383, 439, 518, 576

Sublibrary (VSE) (see Librarian (VSE) and Copy li-
brary)

Subroutines
(see Data exit programs and I/O Exit)

Subscripts, in Web reports 324
Subset

subsetting a mainframe file 283
SUBSTR built-in function (see #SUBSTR built-in

function) 634
Subsystem

which DB2 subsystem 393, 409, 561
Subtraction

blanks required around minus sign 473
from a date field 221
how to perform 47, 473, 506
subtracting days, weeks, months or years from a

date 639
subtracting seconds, minutes or hours from a date-

time 639
subtracting seconds, minutes or hours from a time

640, 641
SUMMARY parm

in OPTIONS statement 73, 113, 214, 576
Summary reports

counting the number of occurrences 214
how to produce 73, 209, 576
summary PC files 110, 113

Superscripts, in Web reports 324
Suppressing

all column headings 133, 134, 175, 279, 283,
567

automatic copying from copy library 364, 545,
582

blank lines 253, 257, 573
blank lines at Grand Totals 279, 283, 567
Index 723

blanks between fields 560, 631
carriage control character 279, 283, 415, 567
decimal digits in numbers 339, 452
detail report lines 73, 209, 216, 561, 576
error indicators 646
individual column headings 132, 504
leading zeros 139, 455, 619
lines with only zero values 249, 573
message when maximum lines/pages printed 567
overprinting 568
page breaks 134, 175, 568, 577
repeating values 129, 144
the Grand Totals 209, 279, 283, 567
the letter "S" when only one item 198, 489, 625
the total line at control breaks 185, 196, 487, 599
titles 134, 175, 279, 283, 568
totals for certain columns 148, 326, 338, 339,

502, 509, 523
underscore lines 133, 134, 504, 568
zeros 129, 167, 192, 490, 503, 605

SWALIAS
member in copy library 367, 422, 518, 519, 648

SWCOPY DD 382, 414, 422, 423, 517
SWLIST DD 414, 446
SWOPTION DD 414, 424
SWOUT002, SWOUT003, etc. DD 414, 419, 571
SWOUTPUT DD 414, 415, 417

blocksize 567
SYNCHRONIZED parm

in Cobol 243
Syntax

convention used 478
general rules 443
of computational expressions 472
of conditional expressions 459
of control statements 478
syntax-checking HTML 297

SYS010 427, 433
SYS011 427, 429, 431
SYS012, SYS013 etc. 427, 435
SYSIN DD 414
SYSIPT 427
SYSLST 431
SYSnnn associated with input files 533
SYSOUT DD 414

T
Tab character

as delimiter in output files 278, 560

Tables
HTML tables 312, 324
in COMPUTE statement 513, 656

Tabular
report format 219

Tapes
standard/nolabel (VSE) 533
tape files, used as input 329, 331, 332, 533, 536,

551
which tape drive 332
writing output to tapes (VSE) 432, 570

Telephone numbers
how to define 328
how to format 326, 340, 632

Testing
a bit field 465, 471, 514
for missing records 230
for valid data 257
one or more conditions 459, 470
records for inclusion in report 40, 449, 540

Thousands
rounding to 453, 638

Tie-breakers
used in sort 559, 597

TIME built-in field (see #TIME built-in field) 625
Time fields

comparing 462
conversion from GMT to local time 575
creating your own 450, 506
current system time 625, 627
decimal digits 346, 512, 525, 613
default lengths 613
how to define 344
testing for valid data 464, 472, 647
totalling 150
with hundredths of seconds 346
(see also Times)

Time of day
built-in field 625
converting to proper time of day 641

TIME24 built-in field (see #TIME24 built-in field)
625

TIMEDELIM parm
in OPTIONS statement 139, 140, 576

TIMEEXIT data type 616
Times

12-hour format 347, 622
adding/subtracting seconds, minutes or hours 640,

641
comparing 44, 273, 344, 450, 470
converting character data to time value 274, 641
converting numeric values to times 274, 637, 641
724 Spectrum Writer User’s Guide & Reference Manual

converting to character value 632
converting to numeric value 274, 463, 636
decimal digits 273
default display format 139, 562, 618
defining time fields 521
delimiter used 139, 576, 613, 622–623
extracting the hours, minutes and seconds portions

635, 637, 638
formatting in report 58, 137, 167, 192, 273, 458,

503, 622
handling invalid times 644
how many seconds in 636
how sorted 600
how time fields stored in input file 529, 613
in COBOL and Assembler record layouts 375,

379
including only certain times in a report 44, 470
including time of day in footnotes 175
including time of day in titles 163, 604
interval between two times 636
interval, did it cross into next day 639
on different days, computing interval between 274
performing calculations 472
rounding to minutes 58, 347
selecting the largest of several times 637
selecting the smallest of several times 637
showing AM and PM 347, 622
tips for using time fields 272
totalling 150, 273, 346, 502, 509, 523
writing time literals 44, 450
zero times, printing blanks 129, 167, 192, 490,

503, 605
zeros assigned for missing fields 229

TITLE statement 602
alignment (left, center and right) 55, 168, 603,

606
blank titles 153, 154
built-in fields available for 604
centered by default 53
centered data looks wrong 168, 173, 606
centering, in Web reports 298
how dates, times and numbers are formatted 167,

605
how to use 53, 161
in Web reports 298, 305, 308
including data from files 161, 604
including date, time, page number in title 53, 55,

163, 604
justifying contents of fields 165, 168, 606
leading, trailing slashes 153, 169
multiple 53
omitting 53

overlap 173
parms allowed in 167
printing in a certain column 173
right aligned part looks wrong 173, 606
spacing between items 165, 167, 605
specifying column headings with 153, 169
specifying width of fields 165, 168, 606
spelling out month name 55, 58, 167
suppressing titles 568
syntax 603
that won't fit on a single line 444
underlining 153
use of quotation marks, apostrophes 53, 163, 444,

448, 605
use of slash for alignment 55, 168, 603
where to put 53, 445
(see also Titles)

TITLEONCE parm
in OPTIONS statement 134, 175, 300, 321, 577

Titles
how to specify 53, 161
in Web reports 298, 305, 308, 312, 564
not at top of PC screen 298
options, summary of 175
printing at bottom of page 175, 538
printing just once 134, 175, 577
printing lower on page 154
putting graphics in title 305, 312
saving data from titles in input files 260
suppressing 134, 175, 279
(see also TITLE statement, FOOTNOTE statement

and Column headings)
TLBL statement 332, 432

(see also DLBL statement)
TODAY built-in field (see #TODAY built-in field)

626
Top margin, how to specify 154
Top of page

printing heading lines 202, 207, 486
Top of report

putting lines before 309, 318
Top ten type reports 212, 561
TOTAL (TOT) parm

in BREAK statement 182, 198, 207, 487
in BREAK statement print expression 193, 196,

200
in BREAK statement, two different uses 194
in SORT statement 177, 204, 210, 599

Total line
S appears in 182, 454
aligning in Web reports 303, 306, 316
customizing 182, 196, 198, 487
Index 725

display format used for 140, 491
how default total line looks 180, 487
how default total line looks in PC file 108
how to print 65, 177, 487, 599
how to suppress 185, 487, 599
in Web reports 301, 303, 309, 564
justification used in 491
level indicated by asterisks 206
multiple levels 69, 204, 210
multiple total lines at control breaks 184
percentages for control group 202, 510, 515
PICTURE can prevent totalling 148
printing blank lines after 67, 178, 486, 598
printing blank lines before 184
printing only the total lines in a report 73, 211,

216
printing the current date in 185
printing the number of items in a control group

182, 198, 489
suppressing, for a particular column 148, 326,

502, 509, 523
totalling time fields 150, 273, 346, 502, 509,

523
using footing instead of total line 196
where it prints at control break 184
which columns are totalled 128, 148, 326, 338,

339, 502, 509, 523
why split into two lines 181, 303
(see also Totals and Grand totals)

Totals
breaking down 217
customizing the total line at control breaks 487
how to print an individual field’s total 193, 491
how to request 487, 599
percent of totals 284
(see also Total line and Grand totals)

TPICTURE
display format 622
how to write 273, 458

Trailer records, in batch type files 237
Trailing

blanks, removing 631
plus or minus sign 452
slash, in TITLE statement 153, 169

TRANSLATE built-in function (see #TRANSLATE
built-in function) 634

Translation
between ASCII and EBCDIC 631

TRIPLESPACE parm in OPTIONS statement 573
True, bit value 643
Truncation

how to perform 512

of column headings 135
of columns 135, 160
of decimal digits (#INT built-in function) 635
what to do 160, 432

Type
member type of VSE library 566

TYPE parm
choosing character versus numeric 339
comparing fields of different types 340, 450, 463
converting field to different type 463, 632, 637,

641
in FIELD statement 335, 341, 344, 358, 529
in FILE statement 329, 536
in INPUT statement 551
in READ statement 590
list of data types 609
types of data 333, 448

U
UCASE built-in function (see #UCASE built-in func-

tion) 634
Undefined field indicator (***U***) 645
Underlined font

in Web reports 294, 303, 324
Underscore (_)

name broken at, for column headings 130, 504
printing in titles 153
suppressing in column headings 132, 300, 504,

568
suppressing overprinting 133, 134, 568
use in field names 446

Unique
field names, how to make 77, 226, 228, 550, 589
file key not unique 232

Unsigned numeric data 610
UNSTRING (see under #PARSE)
Upper case 634
User-defined fields 46, 98, 506

V
Valid

data, testing for 464, 472, 647
validating HTML 297

Values
comparing contents of fields 40, 460, 470
including only certain values in report 40, 460,

540
726 Spectrum Writer User’s Guide & Reference Manual

Variable
location in record 266, 353, 528
number of report lines per input record 249

Variable length files
clearing the I/O area 545, 567, 581
defining 533
record descriptor word (RDW) 352, 353, 524,

535, 547, 565
Vertical bar

printing a vertical line between columns 156
use in column headings 130, 350, 504, 527
use in conditional expressions 467
using a different character 132, 133, 563

Video clips, putting in report 294, 308
VSAM files

alternate indexes, paths 232
defining 329, 331, 536
key greater than or equal to 583
keyed reads to 76, 224
missing records 229, 230, 424, 433, 594
must be KSDS for READ statement 590
reading a limited keyrange 547, 660
reading multiple records 224, 584
specifying BUFND 423, 433, 544, 581
specifying BUFNI 423, 433, 544, 581
speed-up tip 423, 433, 547, 658
testing for missing records 642
used as input (OS/390) 329, 551
used as input (VSE) 331, 533
using generic keys 547, 583
VSAM-managed SAM files 331, 533
writing output to (OS/390) 417, 571
writing output to (VSE) 432, 570

VSE operating system 425

W
WAV files 308
Web reports 294

adding hot links 308, 322
aligning column headings 316
aligning Grand totals 303, 306, 316
aligning text and graphics 305, 312, 323
aligning titles 300
audio and video clips 308
background 319
bold font 296, 298, 301, 322
centering text 298, 322
colored font 298, 319, 322, 323
column headings 301, 306, 316, 564, 565

different colors in one column 315
dynamic HTML 315
file name extension 296
font, specifying 301, 319, 322, 323
HTML tables 312
including graphics 305, 306, 323
including graphics at control breaks 308
including graphics in titles 305, 312
summary of options for 320
titles 296, 308, 564
titles not at top of PC screen 298, 300
total lines 301

Week
adding/subtracting weeks to/from a date 639
calculating any day of week in a given week 638
day of (see Day of week)

WHEN parm
in COMPUTE statement 50, 459, 513
order of evaluation 508

WHERE parm
in INPUT statement 397, 405, 552
in READ statement 400, 584, 587, 590
reading multiple rows 584
similar to DB2 WHERE clause 397
syntax 405
testing if no records found for it 642

Whole
numbers, how to round out decimal digits 339,

452, 512, 638
Width

of column, changing 60, 129, 135, 505
of computed fields 511
of fields in output files 282
of graphics in Web reports 323
of items in lines printed at control breaks 182,

193, 491
of items in the title 165, 168, 606
of numeric data in report, specifying with a PIC-

TURE 452
of report, bigger than 132 characters 432
of report, maximum 160

Window, century windowing 269
Words

counting words in a string 638
parsing a character string 633
searching for, within a string 461, 635

Work files
sort 414, 434, 435, 574
sort (VSE) 575

Worldwide Web (see Web reports)
Index 727

X
X

meaning of X’1234’ type literals 448, 464
XOR built-in function (see #XOR built-in function)

635

Y
Year

2-digit or 4-digit 278, 282, 449, 559, 613, 620
adding/subtracting years to/from a date 639
calculating first & last days of a year 639
calculating previous 222
converting numeric day, month and year into a date

640
extracting for a given date 635, 638
maximum year allowed in literals 449
testing for leap year 642
which century 559

YEAR built-in function (see #YEAR built-in function)
635

YEARNUM built-in function (see #YEARNUM built-
in function) 638

Yesterday
computing yesterday’s date 639

Yesterday, computing yesterday’s date 266
YMD see #YMD built-in function) 640
YY

year in dates, which century 269, 559
YYDDD

date fields 612, 613, 621–622
Julian dates 271

YYMMDD
date fields 611, 612, 621

YYYYDDD
date fields 612, 613, 621–622

YYYYDDMM
date fields 612

YYYYMMDD
date fields 611, 612, 621–622

Z
Zero

assigned to missing date, time and numeric fields
229, 594

division by zero 645
division by zero, suppressing 577, 646

excluding zero values from averages and mini-
mums 186, 485, 491, 598

leading zero in date literals 449
leading zero suppression 139, 455
leading zeros, printing 455
number scaled down to zero 455
padding 472
printing blanks instead of zeros 257, 632
records included in report 562
spaces between items in title 605
spaces between items in total line 198, 490
spaces between report columns 128, 502
suppressing lines with only zeros 249, 573
treating invalid data as zeros 577
value, in date 271

ZERODIVBYZERO parm
in OPTIONS statement 577, 646

ZEROINVDATA parm
in OPTIONS statement 254, 577, 646

ZEROOVERFLOW parm
in OPTIONS statement 577, 646

Zoned data 387
C versus F for packed data 630, 633
728 Spectrum Writer User’s Guide & Reference Manual

	How to use This Manual
	What Should You Read?
	How This Manual Is Organized

	Table of Contents
	List of Figures
	Chapter 1.� Introduction
	What Is Spectrum Writer?
	Create Brand–New Reports in Minutes
	Use Mainframe Data in Any PC Program
	Create Web Reports and E-Mail Attachments
	Create Custom Mainframe Files in Minutes
	Ways that Spectrum Writer Benefits You!
	Spectrum Writer Pays for Itself Fast!
	Spectrum Writer Features

	Chapter 2.� How to Request a Report
	Lesson�1.�� How to Produce a Report in 5 Minutes
	How to Use the INPUT Statement
	How to Use the COLUMNS Statement
	Another 5–Minute Report Example
	Using Your Company's Files

	Lesson�2.�� How to Specify Which Records to Include in Your Report
	How to Use the INCLUDEIF Statement
	How to Write Conditional Expressions

	Lesson�3.�� How to Create Your Own Fields
	Creating Numeric Fields
	Creating Character Fields
	Assigning Values to Fields Based on Conditions

	Lesson�4.�� How to Make Your Own Report Titles
	How to Use the TITLE Statement
	More Date and Time Features
	How to Align the Title
	How to Put File Data in the Title

	Lesson�5.�� Changing the Format of your Report
	Using Display Formats
	Specifying Column Headings
	Specifying a Column's Width
	Multiple Overrides

	Lesson�6.�� How to Specify the Report Order
	How to Use the SORT Statement
	Automatic Sorting

	Lesson�7.�� How to Create Control Breaks
	How to Use the BREAK Statement
	How to Specify Control Break Spacing
	How to Print Statistics at a Control Break
	How to Produce Multiple Control Breaks

	Lesson�8.�� How to Create Summary Reports
	How to Create a Summary Report

	Lesson�9.�� How to Use Data from More Than One File
	How Auxiliary Input Files Are Processed
	How to Use the READ Statement
	"One-to-Many" Random Reads
	How to Use Multiple READ Statements

	Chapter 3.� How to Request a PC File
	Lesson�1.�� How to Produce a PC File in 5 Minutes
	Converting a Whole Mainframe File
	Another 5–Minute Example
	Using Your Company's Files

	Lesson�2.�� How to Include Only Certain Records In Your PC File
	How to Use the INCLUDEIF Statement
	How to Write Conditional Expressions

	Lesson�3.�� How to Create Your Own Fields
	Creating Numeric Fields
	Creating Character Fields
	Assigning Values to Fields Based on Conditions

	Lesson�4.�� How to Specify the PC File Order
	How to Use the SORT Statement
	Automatic Sorting

	Lesson�5.�� How to Create Control Breaks
	How to Use the BREAK Statement
	Customizing the Control Break

	Lesson�6.�� How to Create Summary Files
	How to Create a Summary File

	Lesson�7.�� How to Use Data from More Than One File
	How Auxiliary Input Files Are Processed
	How to Use the READ Statement
	"One-to-Many" Random Reads
	How to Use Multiple READ Statements

	Chapter 4.� Beyond the Basics
	Additional Features in the COLUMNS Statement
	Writing Print Expressions
	How to Change the Column Headings
	Special Options Related to Column Headings
	How to Change the Width of a Column
	How to Change the Way Dates, Times and Numbers Are Formatted
	Formatting Tips for International Users
	How to Format Data as ASCII
	How to Blank Out Repeating Values
	How to Change the Justification of Data within a Column
	How to Specify Which Columns to Total
	How to Produce Multi–Line Reports
	How to Change the Report Margins
	How to Print Bar Graphs
	How to Print Vertical Lines between Report Columns
	Including All Fields in the COLUMNS Statement

	What If You Run Out of Room?
	Why Do I See ****X**** in My Report?
	Customizing the Report Titles
	How to Include Data from a File in the Title
	How to Include the Page Number, Date and Time in a Title
	How to Change the Appearance of Items in the Title
	How to Split the Title into Left Aligned, Centered, and Right Aligned Parts
	Special Options Related to Titles
	How to Print "Titles" at the Bottom of Each Page

	Customizing the Control Breaks
	How to Change the Control Break Spacing
	How a Default Total Line Looks
	How to Customize the Total Line at a Control Break
	How to Suppress the Total Line at a Control Break
	How to Customize the Statistical Lines at a Control Break
	How to Print Customized Footing Lines at a Control Break
	How to Print the Number of Items in a Control Group
	How to Print Header Lines at the Beginning of a Control Group

	Computing True Percentages and Ratios at Control Breaks
	Reports with Multiple Control Breaks
	How to Customize the Grand Totals
	How to Produce Summary Reports
	Printing a "Line Number" in Your Report
	How to Create "Top 10" Type Reports
	How to Count "Occurrences" in a File
	How to Break Totals Down into Categories
	How to Make “Crosstab” Reports
	A Simple Crosstab Report
	Another Crosstab Report

	Working With Multiple Input Files
	Using Multiple READ Statements for the Same File
	How to Chain READ Statements
	How to Name the Input File Records
	How Missing Records Are Handled
	Testing for Missing Records
	How I/O Errors Are Handled
	Using Generic and KGE Keys
	How to Perform "One–to–Many" Reads

	Working with "Batched" Input Files
	Working With Arrays
	Using Normalization to Process Arrays
	The NORMALIZE Parm
	File Definition Tips for Records with Arrays
	Normalizing Nested Arrays
	Normalizing Multiple, Non-Nested Arrays
	Normalizing only Certain Records
	Normalizing an Auxiliary Input File
	Normalization Errors

	How to Print a Variable Number of Lines Per Input Record
	Variable Number of Lines — Strategy 1
	Variable Number of Lines — Strategy 2
	Putting a Variable Number of Items on a Single Line

	Creating PC Files from Non-Spectrum Writer Reports
	Working with SMF Records
	Working with Date Fields
	Working with Time Fields
	Producing Files for Non-Standard PC Programs
	Producing Files for Mainframe Programs
	How to "Subset" Mainframe Files
	How to Sort Mainframe Files

	Computing Percent of Totals
	Creating Multiple Reports in a Single Run

	Chapter 5.� How to Make a Web Report
	How to Create a Web Report
	Writing Your Own HTML Tags
	Experimenting with HTML Tags
	Customizing the Web Report's Titles
	Customizing the Web Report's Data Columns
	Customizing Control Breaks and Grand Totals
	Putting Graphics in Your Web Report
	Putting Graphics in Your Report Title
	Putting Graphics in the Body of Your Report
	Putting Graphics at Control Breaks
	Putting Hot Links in your Web Report
	Using HTML Tables in your Web Report
	Using Dynamic HTML Tags
	Using the PRESCRIPT and POSTSCRIPT Options
	Summary of Options for Web Reports
	Common HTML Tags

	Chapter 6.� How to Define Your Input Files
	How to Define a File
	How to Use the FILE Statement –– OS/390
	How to Use the FILE Statement –– VSE

	How to Define a Field
	How to Define a Character Field
	How to Define a Numeric Field
	Should You Define a Field as Character or Numeric?
	How to Define a Date Field
	How to Define a Time Field
	How to Define a Bit Field
	How to Specify a Field’s Column Heading
	How to Specify a Field’s Location in a Record
	Variably Located Record Segments
	How to Define Arrays
	How to Specify What File a Field Belongs To
	How to Define a Field Created by a Data Exit

	Keeping Your File Definitions in a Copy Library
	Including the Definition Statements "In–Line"
	Using the Spectrum Writer Copy Library
	How to Use a Copy Library Alias
	Defining One–Time Fields

	Using Cobol and Assembler Record Layouts
	Live Runs Using Cobol Record Layouts
	Live Runs Using Assembler Record Layouts
	Handling Date and Time Fields in Record Layouts
	How Spectrum Writer Handles Cobol Arrays
	Converting Cobol and Assembler Layouts to FIELD Statements
	How to Copy Cobol and Assembler Record Layouts from Libraries
	Mixing FIELD Statements with COBOL and ASM Statements
	The Starting Column of a Cobol or Assembler Layout
	The "Default Location" After a Cobol or Assembler Layout
	The Scope of the COBOL and ASM Statements
	Technical Notes on Cobol Support
	Technical Notes on Assembler Support

	Chapter 7.� Working with Databases
	Using Spectrum Writer with DB2 Databases
	Using DB2 Data in Reports
	Using DB2 Data in PC Programs
	What Fields Are in Your DB2 Table?
	Using the WHERE Parm
	Using the ORDERBY Parm
	Using Multiple DB2 Tables
	Using Data from Three DB2 Tables
	WHERE Parm Syntax
	Customizing Your DB2 Fields
	Saving DB2 File Definitions
	DB2 Setup
	DB2 Restrictions

	Chapter 8.� Operating System Considerations
	OS/390 Operating System Considerations
	Execution JCL for Reports — OS/390
	DD statements used by Spectrum Writer
	Execution JCL for PC and Mainframe Files — OS/390
	Spectrum Writer PROC — OS/390
	Output File Options –– OS/390
	Considerations for Runs with Multiple Outputs — OS/390
	Setting Up File Definitions — OS/390
	Copy Library DD — OS/390
	Input File DDs — OS/390
	Specifying Shop–Wide Options –– OS/390
	Completion Codes –– OS/390

	VSE Operating System Considerations
	Execution JCL for Reports — VSE
	Execution JCL for PC and Mainframe Files — VSE
	Output File Options –– VSE
	Input File DLBL/TLBLs –– VSE
	The Control Statement Listing — VSE
	The EXEC Statement’s SIZE Parm –– VSE
	Specifying Sort Work Files — VSE
	Considerations for Runs with Multiple Outputs — VSE
	Setting Up File Definitions — VSE
	Completion Codes –– VSE

	Chapter 9.� General Syntax Rules
	Control Statements
	What Is a Control Statement?
	How to Write Control Statements
	How to Continue a Control Statement Onto Multiple Lines
	The Order of Control Statements
	How to Put Comments in Your Control Statements
	How to Put Page Breaks in the Control Listing

	Names of Files, Fields, and Records
	Rules for Assigning Names
	How to Make Field Names Unique

	How to Write Literals
	The Five Types of Data
	Character Literals
	Numeric Literals
	Date Literals
	Time Literals
	Bit Literals
	When Do You Need Quotes Around a Number?

	PICTURE Display Formats
	Examples of PICTUREs
	Showing Scaled Numbers with PICTUREs
	How PICTUREs Work
	Time PICTUREs

	Conditional Expressions
	How to Specify a Relation Condition
	Comparing Character Operands of Different Lengths
	Comparing Fields of Different Data Types
	Conditions Involving Explicit Literals
	How to Specify a Bit Field Condition
	How to Specify Multiple Conditions
	Conditional Expressions That Use AND
	Conditional Expressions That Use OR
	Conditional Expressions That Use Both AND and OR
	How to Shorten Long Expressions
	How to Negate Conditions
	Examples of Conditional Expressions

	Computational Expressions
	Operands in Computational Expressions
	Operators in Computational Expressions
	Order of Operations
	Examples of Computational Expressions

	Chapter 10.� Control Statement Syntax
	Syntax Notation
	ASM Statement
	BREAK Statement
	COBOL Statement
	COLUMNS Statement
	COMPUTE Statement
	COPY Statement
	FIELD Statement
	FILE Statement
	FOOTNOTE Statement
	INCLUDEIF Statement
	INPUT Statement
	NEWOUT Statement
	OPTIONS Statement
	READ Statement
	SORT Statement
	TITLE Statement

	Appendix A.� Data Types
	Character Data Types
	Numeric Data Types
	Date Data Types
	Time Data Types
	Bit Data Types

	Appendix B.� Display Formats
	Default Display Formats
	Display Formats for Any Type of Field
	Numeric Display Formats
	Date Display Formats
	Time Display Formats

	Appendix C.� Built-In Fields
	Character Built–In Fields
	Numeric Built-In Fields
	Date Built-In Fields
	Time Built-In Fields

	Appendix D.� Built-In Functions
	Functions that Return a Character Value
	Functions that Return a Numeric Value
	Functions that Return a Date Value
	Functions that Return a Time Value
	Functions that Return a Boolean (or Bit) Value

	Appendix E.� Error Indicators
	Suppressing Error Indicators
	Propagation of Error Indicators
	Determining if a Field Is In Error

	Appendix F.� Files Used in Examples
	Sample File Definitions
	Sample Files’ Raw Data

	Appendix G.� Speed-Up Tips
	INCLUDEIF Statement
	Conditional COMPUTE Statements
	Compute Statements with RETAIN
	Intermediate Computational Expressions
	Intermediate Conditional Expressions
	Read Statements with the MULTI parm
	Use the STOPWHEN Parm for Non-Keyed Files
	Replace an Auxiliary File with a “Table Lookup”
	Clearing I/O Areas
	Fine-Tuning the Sort
	Development Cycle
	Using Explicit Literals in Conditional Expressions

	Appendix H.� Sample Data Exit Programs
	Sample Assembler Data Exit Program
	Sample Cobol Data Exit Program

	Appendix I.� I/O Exits
	Updates to This Manual
	Index

