
Technical Support | March 2004

Report Writer Speedup
Tips—Part One

By Tom Pu r n e l l

Did you realize that how you write your report writer queries
has a big impact on how fast they run? Most mainframe shops
have at least one report writer utility. Report writers can be a
wonderful productivity tool for programmers. They help you
quickly put together one-time, ad-hoc reports and are appro-
priate tools for developing production reports. This article
presents techniques you should use when writing your report
writer queries to help them run as fast as possible.

DID
you realize that how you write
your report writer queries has a

big impact on how fast they run?
Almost all mainframe shops have at least

one (and often several) report writer utilities.
Report writers can be a great productivity tool
for programmers. They are perfect for quickly
putting together those one-time ad-hoc
reports. And an efficient report writer is an
appropriate tool for developing production
reports. You should use some techniques
when writing your report writer queries to
help them run as fast as possible. This two-
part series discusses several of these speedup
tips for the report writer.

Note: The code examples in this article are
written in a generic “pseudo-code,” not the
actual syntax of any specific report writer.
You should be able to adapt the tips in this
article to almost any report writer.

SELECTING RECORDS
EFFICIENTLY

The way you write your record selection
logic can greatly affect how efficiently your
job runs. After all, those selection tests are
performed on every single record in the input
file. Even when you just need a dozen records
out of a million record file, the selection tests
must be performed a million times.

With most report writers, record selection is
specified by a conditional expression. The
conditional expression identifies the records

from the input file to include in the report.
Depending on the report writer, this might be
specified via a keyword named IF, WHERE,
SELECT, INCLUDE, etc.

The first three speedup tips are based on a
fact about report writers that you may not even
know about. A well-designed report writer
stops processing a conditional expression as
soon as it determines that the entire expression
is either true or false. That is, the report writer
does not always perform every test in your
selection logic. By writing your conditional
expressions so that the report writer makes its
determination as early as possible, you will
eliminate unnecessary processing.

CONDITIONAL EXPRESSIONS
USING AND

Let’s look at a simple example. Assume
that you are processing a large database of
people. You want to select all records where
the sex is male and the last name is Alexander.

There are two ways you could write the
conditional expression to select these records:

1. IF LASTNAME=’ALEXANDER’ AND SEX=’M’

2. IF SEX=’M’ AND LASTNAME=’ALEXANDER’

Many people might assume it makes no dif-
ference which of the above IF statements is
used, since the results will be the same. And
in terms of the report output, that’s true.
Nevertheless, one of the above statements

would use 50% more CPU cycles than the
other statement. Do you know which one?

In conditional expressions with ANDed tests,
all tests have to pass before the expression is
true. If any test fails, the whole expression also
fails. That means that the report writer can stop
processing the expression as soon as a single test
fails. It does not need to perform the remaining
tests. Thus, the speedup tip for conditional
expressions with ANDed tests is:

Speedup Tip 1: when a conditional expres-
sion has multiple tests separated with AND, put
the most difficult test first. Put the next-most-dif-
ficult test second, and so on. The “most difficult
test” means the test that the most input file
records will fail. The “next-most-difficult” test
means the test that will be failed most often by
those records that pass the first test, and so on.

In this example, one of the tests (SEX = ‘M’)
should be passed by about half of the input
records. (We are assuming that the database is
representative of the population at large.) The
other test (LASTNAME = ‘ALEXANDER’)
will be passed by only a tiny fraction of the data-
base (around six one-hundredths of one percent,
based on a quick telephone directory check).

Thus, according to the speedup tip, we
would choose to put the more “difficult” last
name test first (as in line 1 above):

IF LASTNAME=’ALEXANDER’ AND SEX=’M’

Using this statement, 99.94% of the input
file records will fail the first test. For all those

©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

records, the second test will not have to be per-
formed. The report writer will exclude the
input record with just a single test 99.94% of
the time. It will perform the second test (SEX
= ‘M’) only on 0.06% of the input records.

Now consider if we had used line 2, with
the sex test first:

IF SEX=’M’ AND LASTNAME=’ALEXANDER’

In this case, the report writer would have to
perform both tests on approximately 50% of
the input records (instead of just 0.06%). That
is because the first test (SEX = ‘M’) will be
passed by about half of the records in the input
file. For that half of the file, the second test
(LASTNAME = ‘ALEXANDER’) then has to
be performed as well. When this second test is
performed, most of the records will fail it and
will thus fail the entire IF statement. The result
is the same, but it took a lot more CPU cycles
to get there.

Obviously, when processing large files, a
small CPU saving in each record can add up.
Assume that the database contains one mil-
lion people. Using the first IF statement
shown earlier, the report writer would have to
perform about 1,000,600 tests to select the
correct records from the file. (That is
1,000,000 last name tests, plus 600 sex tests.)
Using the second IF statement, the report
writer would have to perform 1,500,000 tests.
(That is 1,000,000 sex tests, plus 500,000 last
name tests.) You can see that the second IF
statement has to perform almost 50% more
selection tests than the first statement.

CONDITIONAL EXPRESSIONS
USING OR

A similar principle applies to IF statements
that use “OR logic,” but with one difference.

In conditional expressions with ORed tests,
the whole expression is true if any of the indi-
vidual tests are true. That means that the report
writer can stop processing the expression as
soon as a single test passes. It does not need to
perform any of the remaining tests. Thus, the
speedup tip for conditional expressions with
ORed tests is:

Speedup Tip 2: when a conditional expres-
sion has multiple tests separated with OR, put
the easiest test first. Put the next-easiest test
second, and so on. The “easiest test” means
the test that the most input file records will
pass. The “next-easiest test” means the test
that will be passed most often by those records
which did not pass the first test, and so on.

For example, assume now that you want a
query that includes all the people in the data-
base where either the sex is male or the last
name is Alexander.

The best way to write the IF statement is:

IF SEX=’M’ OR LASTNAME=’ALEXANDER’

By using the above statement, the report
writer will be able to select about 50% of the
file after evaluating only the first test. It will
only have to perform the second test on the
other half of the file.

What if we had written the statement this way?

IF LASTNAME=’ALEXANDER’ OR SEX=’M’

In this case, the first test would be false over
99% of the time. That means that the report
writer has to go on to perform the second test
on 99% of the input file (instead of just 50%).
While both statements would select the same
records for your report, the above statement
would require 33% more CPU cycles to process
than the earlier statement. (That is, just under
2,000,000 tests versus 1,500,000 tests.)

One common application of this tip comes
when you are including records where a cer-
tain field is equal to any one of a number of
values. For example:

IF TRANS-TYPE = 20 OR 30 OR 40

You will improve performance in such a
case if you put the most common value first.
For example, if the majority of transactions
are type 40, you should put 40 first:

IF TRANS-TYPE = 40 OR 20 OR 30

CONDITIONAL EXPRESSIONS
USING BOTH AND AND OR

If your conditional expression uses both
AND logic and OR logic, you can still apply
these rules. Just break the expression down
into smaller, logical clauses. Each clause
should use only AND logic, or only OR logic.

Speedup Tip 3: when a conditional expres-
sion has mixed AND and OR logic, first opti-
mize the innermost AND-only and OR-only
clauses. Then, treating each of those clauses as
single tests, optimize the next outer level of
such clauses, and so on.

This is easier to understand with an exam-
ple. Assume that we found the following con-

ditional expression in an existing report writer
query:

IF (LASTNAME=’ALEXANDER’ AND SEX=’M’) OR

(SEX=’F’ AND LASTNAME=’JONES’)

We want to optimize the selection logic for
speed. This statement uses both AND and OR
logic. Thus, the first step is to optimize the
innermost clauses that contain only one type
of logic. There are two such clauses in this
example. (The two clauses within parenthe-
ses.) Each of these clauses just contains two
tests separated by AND. Applying Speedup
Tip 1, we know that the harder test should
come first. We can see that the tests in the first
clause are already in the correct order (with
the more difficult last name test first):

(LASTNAME=’ALEXANDER’ AND SEX=’M’)

However, in the second clause, we need to
reverse the order of the two tests. Fewer records
will have LASTNAME = ‘JONES’ than will
have SEX = ‘F’. Therefore we should move the
harder, last name test first:

(LASTNAME=’JONES’ AND SEX=’F’)

The two innermost clauses are now written
to run as fast as possible. The next step is to
optimize the next outer level of tests. We will
treat the optimized inner clauses as if each
clause were just a single test. Now we just
have two logical tests, separated by OR. Using
Speedup Tip 2 above, we want to put the easi-
er test (clause) first. Since Jones is a more
common last name than Alexander, we
assume that we will find more females named
Jones than we will find males named
Alexander. Therefore, we decide to reverse the
order of the clauses. Now the easier of the
ORed clauses comes first.

Here is the rewritten selection logic, now
arranged to run as fast as possible:

IF (LASTNAME=’JONES’ AND SEX=’F’) OR

(LASTNAME=’ALEXANDER’ AND SEX=’M’)

SERIES OF CONDITIONAL
EXPRESSIONS

Often a report writer query will involve a
series of mutually exclusive conditional
expressions. The report writer may have its
own special construct (perhaps called CASE,
SELECT or WHEN). Alternatively, you might
simply have a block of nested IF statements.

Technical Support | March 2004©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Consider this series of IF statements, used to expand state codes into
state names.

IF STATE-CODE = ‘AL’ THEN STATE=’ALABAMA’

ELSEIF STATE-CODE = ‘AK’ THEN STATE=’ALASKA’

ELSEIF STATE-CODE = ‘AZ’ THEN STATE=’ARIZONA’

ELSEIF STATE-CODE = ‘AR’ THEN STATE=’ARKANSAS’

...

ELSEIF STATE=CODE = ‘WY’ THEN STATE=’WYOMING’

ELSE STATE=’UNKNOWN’

ENDIF

This example shows the states being checked in alphabetical order,
which certainly seems like a logical way to write the code. However, if
run-time performance is what you want, you are better off arranging the
IF statements so that the most common cases occur early in the list.
That is because, obviously, once the correct state has been found, the
remainder of the nested IF statements will not be executed.

Speedup Tip 4: in a series of exclusive conditional expressions, put
the conditional expression that is most likely to be true first. Then put
the conditional expression that is next most likely to be true, and so on.

The most common state code in the file will be CA, since California
is the most populous state in the United States (and since we are assum-
ing a representative nationwide database.) Thus the IF statement for
California should be first in the list. That way, for 12% of all input
records, only the very first IF statement has to be processed. Compare
that to the alphabetical list where the first IF statement (for Alabama)
would catch only 1.5% of the input records.

If we order the nested IF statements according to population, the list
looks like this:

IF STATE-CODE = ‘CA’ THEN STATE=’CALIFORNIA’

ELSEIF STATE-CODE = ‘TX’ THEN STATE=’TEXAS’

ELSEIF STATE-CODE = ‘NY’ THEN STATE=’NEW YORK’

ELSEIF STATE-CODE = ‘FL’ THEN STATE=’FLORIDA’

...

ELSEIF STATE=CODE = ‘WY’ THEN STATE=’WYOMING’

ELSE STATE=’UNKNOWN’

ENDIF

Now, for about one-third of the input file, the correct state will be
found within the first four IF statements. (In the alphabetical list, the
correct state would be found in the top four statements for less than 5%
of the input records.) The report writer will have to evaluate all 50 IF
statements for only 0.2% of the input records (for Wyoming, which
coincidentally comes last in population as well as alphabetically).

Putting the IF statements in the above order ensures that the report
writer performs the fewest overall number of state code comparisons,
and thus ensures the best performance.

If you have a database that is not representative of the United
States as a whole, you can probably get results that are even more
dramatic. (And with less work.) For example, if the vast majority of
people in your database live in your company’s home state, just
move that state to the top of the list and leave the rest in alphabeti-
cal order. That one simple change might reduce your state name
processing by 90% or more. (Especially if your company happens
to be located in Wyoming!)

Of course, series of conditional expressions are used for all sorts of
things other than state name lookups. Often it will be hard to determine
the precise probability of each case. Nevertheless, even if you are only
able to identify the one or two most common cases, putting those first
can result in a significant benefit.

DO NOT EVALUATE THE SAME CONDITIONAL
EXPRESSION MORE THAN ONCE

Here is yet another way to speed up evaluation of conditional expres-
sions in your report writer requests.

Speedup Tip 5: if your request refers in multiple places to the same
conditional expression (of two or more tests), save the value of that
expression in a variable.

That is, assign the value of the common expression to a Boolean
variable (or to a Y/N character field). Then use the variable wherever
that expression is needed. This way the report writer only has to com-
pute the value of the expression once, while using the result as many
times as needed. Obviously, the longer and more complex the common
expression is, the more benefit you will get from this tip.

For example, assume that your request contains a computation based
on case-like conditions:

COMPUTE X =

WHEN((A=B OR C>D) AND E=1) ASSIGN(1.23)

WHEN((A=B OR C>D) AND E=2) ASSIGN(8.45)

WHEN((A=B OR C>D) AND E=3) ASSIGN(0.29)

You could improve performance by evaluating the common part of
the conditional expressions (in the WHENparameters) just once, saving
the result in a Boolean variable, like this:

COMPUTE TEMP =

WHEN(A=B OR C>D) ASSIGN(TRUE)

COMPUTE X =

WHEN(TEMP AND E=1) ASSIGN(1.23)

WHEN(TEMP AND E=2) ASSIGN(8.45)

WHEN(TEMP AND E=3) ASSIGN(0.29)

DO NOT PERFORM THE SAME COMPUTATION
MORE THAN ONCE

Use a similar technique if your request uses the same computational
expression in more than one place.

Speedup Tip 6: if your request performs the same computation in
multiple places, just compute its value once and save it in a variable.
This reduces the amount of processing time spent on the calculations.

For example, assume that your request contains these COMPUTE
statements:

COMPUTE X = ((B - C) * 100) / C + 0.02

COMPUTE Y = ((B - C) * 100) / C + 0.09

COMPUTE Z = ((B - C) * 100) / C + 1.57

Improve your performance by computing the common part of the
expressions just once, like this:

Technical Support | March 2004 ©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

COMPUTE TEMP = ((B - C) * 100) / C

COMPUTE X = TEMP + 0.02

COMPUTE Y = TEMP + 0.09

COMPUTE Z = TEMP + 1.57

CONCLUSION

In this article, I presented six tips for speeding up the execution of
your report writer queries. Most of this month’s tips involved condi-
tional expressions and the best way to write them. As you write future
queries (or modify existing slow-running queries), I hope you give
some thought to these tips. A little time spent optimizing your condi-
tional expressions for speed will pay off every time they run. Next
month, I will conclude this series with seven more speedup tips for the
report writer—all related to efficient file processing.

NaSPA member Tom Purnell is Product Manager for
Spectrum Writer with Pacific Systems Group. This
northern California-based software company special-
izes in 4GL report writers for OS/390 and VSE. Tom
has over 25 years experience in mainframe software
development. He has also worked as a volunteer

teacher in a Russian orphanage, teaching basic computer skills to orphans. He
can be contacted via e-mail at tpurnell@pacificsystemsgroup.com.

Technical Support | March 2004

Test Your Report Writing Skill
Ready to try your own skill at implementing Speedup Tip 1?

Assume these facts.You will read a tape containing a very large
transaction log. The log covers the whole month of February
2004.There were roughly 100,000 transactions each day.Assume
that the transactions were evenly distributed around the clock.
Your task is to make a report showing all the transactions that
occurred on February 15 between 9:00 AM and 9:01 AM.

Question: which of the following IF statements would you
expect to run faster? (The answer is below.)

A. IF DATE=2/15/04 AND TIME>9:00 AND TIME<9:01
B. IF DATE=2/15/04 AND TIME<9:01 AND TIME>9:00
C. IF TIME>9:00 AND TIME<9:01 AND DATE=2/15/04

Answer:Choice B is the fastest way to perform the selection tests.It arranges the three tests in
decreasing order of difficulty,as Speedup Tip 1 suggests.The date test comes first because it is the
hardest test to pass.(Since the transactions were evenly distributed over the 29 days in February,
only 1/29th of the records in the file will pass the date test.) The next-hardest test to pass is TIME
< 9:01.(Since the transactions were spread evenly among the 24 hours of each day,approximately
9/24ths of the records will pass that test.) That leaves the TIME > 9:00 for last.It is the easiest test
to pass.Over half of the records in the file (15/24ths) will pass that test.

©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

